

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08ac128cfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Chapter 1 Device Overview
1.1 MCU Block Diagram
Chapter 2
Pins and Connections
2.1 Device Pin Assignment
Chapter 3
Electrical Characteristics and Timing Specifications11
3.1 Introduction
3.2 Parameter Classification
3.3 Absolute Maximum Ratings11
3.4 Thermal Characteristics
3.5 ESD Protection and Latch-Up Immunity
3.6 DC Characteristics14
3.7 Supply Current Characteristics
3.8 ADC Characteristics

3.9	Internal Clock Generation Module Characteristics 24
	3.9.1 ICG Frequency Specifications
3.10	AC Characteristics
	3.10.1 Control Timing 27
	3.10.2 Timer/PWM (TPM) Module Timing 28
3.1	SPI Characteristics
3.12	2 FLASH Specifications
3.10	B EMC Performance
	3.13.1 Radiated Emissions 34
Chapter	4
Ord	ering Information and Mechanical Drawings
4.1	Ordering Information
4.2	Orderable Part Numbering System
4.3	Mechanical Drawings
Chapter	5
Rev	ision History

Related Documentation

MC9S08AC128 Series Reference Manual (MC9S08AC128RM)

contains extensive product information including modes of operartion, memory, resets and interrupts, register definitions, port pins, CPU, and all peripheral module information.

For the latest version of the documentation, check our website at: http://www.freescale.com

Chapter 1 Device Overview

The MC9S08AC128 is a member of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). The MC9S08AC128 uses the enhanced HCS08 core.

1.1 MCU Block Diagram

The block diagram in Figure 1-1 shows the structure of the MC9S08AC128 Series MCU.

Chapter 1 Device Overview

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Figure 2-1 shows the 48-pin package assignments for the MC9S08AC128 Series devices.

Note: Pin names in **bold** are lost in lower pin count packages.

	Pin N	umber		Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
54	42	30	27	PTD0	AD1P8	
55	43	31	28	PTD1	AD1P9	
56	44	32	29	V _{DDAD}		
57	45	33	30	V _{SSAD}		
58	46	34	31	PTD2	KBI1P5	AD1P10
59	47	35	32	PTD3	KBI1P6	AD1P11
60	48	36	33	PTG3	KBI1P3	
61	49	37		PTG4	KBI1P4	
62	50	_		PTD4	TPM2CLK	AD1P12
63	51	_	_	PTD5	AD1P13	
64	52	_	_	PTD6	PTD6 TPM1CLK	
65	53	_		PTD7	KBI1P7	AD1P15
66	54	38	34	V _{REFH}		
67	55	39	35	V _{REFL}		
68	56	40	36	BKGD	MS	
69	57	41	37	PTG5	XTAL	
70	58	42	38	PTG6	EXTAL	
71	59	43	39	V _{SS}		
72	—	_	_	V _{DD} (NC)		
73	60	44	40	PTC0	SCL1	
74	61	45	41	PTC1	SDA1	
75	—	_	_	PTH4	SPSCK2	
76	_	_	_	PTH5	MOSI2	
77	—	—	—	PTH6	MISO2	
78	62	46	42	PTC2	MCLK	
79	63	47	43	PTC3	TxD2	
80	64	48	44	PTC5	RxD2	

Table 2-4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, TPM1CLK, and TPM2CLK options are configured via software; out of reset, TPM1CLK, TPM2CLK, and TPMCLK are available to TPM1, TPM2, and TPM3 respectively.

Chapter 3 Electrical Characteristics and Timing Specifications

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits and JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Model Human Body Machine Latch-up	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
ModelHuman BodySeries ResiStorage CaNumber ofMachineSeries ResiMachineStorage CaNumber ofNumber ofLatch-upMinimum inMaximum in	Number of Pulse per pin	-	3	
Latebup	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 3-4. ESD and Latch-up Test Conditions

Table 3-5. ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	±2000	-	V
2	С	Machine Model (MM)	V _{MM}	±200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	± 500	-	V
4	С	Latch-up Current at T _A = 125°C	I _{LAT}	± 100	_	mA

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Chapter 3 Electrical Characteristics and Timing Specifications

3.7 Supply Current Characteristics

Table 3-7. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max	Unit	Тетр (°С)
		Bun supply current measured at		5	1.1	1.4 ³	_	_
	C	(CPU clock = 2 MHz, f_{Bus} = 1 MHz)	RI _{DD}	3	1.0	1.2	mA	–40 to 125°C
0	~	Bun supply current ⁴ measured at		5	6.7	8.0 ⁵		
2	C	(CPU clock = 16 MHz, f _{Bus} = 8 MHz)	RI _{DD}	3	6	7.5	mA	–40 to 125°C
		Stop2 mode supply current		5	1.0	25	μA	-40 to 85°C
3	С				1.0	100		-40 10 125 C
			S2I _{DD}	3	0.8	23 150	μA	–40 to 85°C –40 to 125°C
				5	1.0	27	μA	-40 to 85°C
4	С	Stop3 mode supply current	601		1.2	100		-40 10 125 C
			331 _{DD}	3	1.0	25 170	μA	–40 to 85°C –40 to 125°C
				5	300	500	nA	-40 to 85°C
5	С	RTI adder to stop2 or stop3 ⁶	0001			500		-40 to 125°C
			S23I _{DDRTI}	3	300	500 500	nA	–40 to 85°C –40 to 125°C
-				5	110	180	μA	-40 to 85°C
6	С	LVD adder to stop3 (LVDE = LVDSE = 1)	S3I			100		-4010125
			DDLVD	3	90	160 160	μA	–40 to 85°C –40 to 125°C
7	6	Adder to stop3 for oscillator enabled ⁷		5.0	F	8	μA	–40 to 85°C
/		(OSCSTEN =1)	S3I _{DDOSC}	5,3	5	8	μA	–40 to 125°C

¹ Typical values are based on characterization data at 25°C unless otherwise stated. See Figure 3-5 through Figure 3-7 for typical curves across voltage/temperature.

² All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins

³ Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.

⁴ All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins

⁵ Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.

 6 Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 560 μ A at 3 V with f_{Bus} = 1 MHz.

⁷ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal, low power mode (HGO = 0), clock monitor disabled (LOCD = 1).

V_{DD} (V) Figure 3-7. Typical Stop3 I_{DD}

MC9S08AC128 Series Data Sheet, Rev. 4

Chapter 3 Electrical Characteristics and Timing Specifications

Figure 3-8. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		133	_	μΑ
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		Т	I _{DDAD}	_	218	_	μΑ
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		327	—	μΑ
Supply current		Т	I _{DDAD}	—	582	—	μA
ADLPC = 0 ADLSMP = 0 ADCO = 1	$V_{DDAD} \le 5.5 V$	Р		_	—	1	mA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
$t_{ADACK} = 1/f_{ADACK}$	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time	Short sample (ADLSMP = 0)		t _{ADC}	—	20	—	
(including sample time)	Control of S (a) C (b) Symbol (b) Imm (b) <thimm (b)<="" th=""> Imm (b) Imm (b)</thimm>	_	cycles				
Sample time	Short sample (ADLSMP = 0)	Р	t _{ADS}	—	3.5	_	ADCK
	Long sample (ADLSMP = 1)			—	23.5	—	cycles
Total unadjusted error	10-bit mode	Р	E _{TUE}	—	±1	±2.5	LSB ²
Includes quantization	8-bit mode			—	±0.5	±1.0	
	10-bit mode	Р	DNL	—	±0.5	±1.0	LSB ²
Differential non-linearity	8-bit mode			—	±0.3	±0.5	
	Monotoni	city and	d no-missing	g-codes gu	aranteed		
Integral non-linearity	10-bit mode	С	INL	_	±0.5	±1.0	LSB ²
	8-bit mode			—	±0.3	±0.5	
Zero-scale error	10-bit mode	Р	E _{ZS}	_	±0.5	±1.5	LSB ²
V _{ADIN} = V _{SSA}	8-bit mode			—	±0.5	±0.5	
Full-scale error	10-bit mode	Р	E _{FS}	_	±0.5	±1.5	LSB ²
$V_{ADIN} = V_{DDA}$	8-bit mode				±0.5	±0.5	
Quantization error	10-bit mode	D	EQ			±0.5	LSB ²
	8-bit mode					±0.5	

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

3.9.1 ICG Frequency Specifications

Table 3-11. ICG Frequency Specifications

$(V_{DDA} = V_{DDA} \text{ (min) to } V_{DDA} \text{ (max)}, \text{ Temperature Range} = -40 \text{ to } 125^{\circ}\text{C} \text{ Ambient})$

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (REFS = 1) (Fundamental mode crystal or ceramic resonator) Low range High range High Gain, FBE (HGO = 1,CLKS = 10) High Gain, FEE (HGO = 1,CLKS = 11) Low Power, FBE (HGO = 0, CLKS = 10) Low Power, FEE (HGO = 0, CLKS = 11)	flo fhi_byp fhi_eng flp_byp flp_eng	32 1 2 1 2		100 16 10 8 8	kHz MHz MHz MHz MHz
2		Input clock frequency (CLKS = 11, REFS = 0) Low range High range	f _{lo} f _{hi_eng}	32 2		100 10	kHz MHz
3		Input clock frequency (CLKS = 10, REFS = 0)	f _{Extal}	0		40	MHz
4		Internal reference frequency (untrimmed)	f _{ICGIRCLK}	182.25	243	303.75	kHz
5		Duty cycle of input clock (REFS = 0)	t _{dc}	40		60	%
6		Output clock ICGOUT frequency CLKS = 10, REFS = 0 All other cases	ficgout	f _{Extal} (min) f _{lo} (min)		f _{Extal} (max) ^f ICGDCLKmax(max)	MHz
7		Minimum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmin}	3			MHz
8		Maximum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmax}		_	40	MHz
9		Self-clock mode (ICGOUT) frequency ²	f _{Self}	f _{ICGDCLKmin}		f _{ICGDCLKmax}	MHz
10		Self-clock mode reset (ICGOUT) frequency	f _{Self_reset}	5.5	8	10.5	MHz
11		Loss of reference frequency ³ Low range High range	f _{LOR}	5 50		25 500	kHz
12		Loss of DCO frequency ⁴	f _{LOD}	0.5		1.5	MHz
13		Crystal start-up time ^{5, 6} Low range High range	^t CSTL ^t CSTH	_	430 4		ms
14		FLL lock time ^{, 7} Low range High range	t _{Lockl} t _{Lockh}			2 2	ms
15		FLL frequency unlock range	n _{Unlock}	-4*N		4*N	counts
16		FLL frequency lock range	n _{Lock}	-2*N		2*N	counts
17		ICGOUT period jitter, ^{, 8} measured at f _{ICGOUT} Max Long term jitter (averaged over 2 ms interval)	C _{Jitter}	_		0.2	% f _{ICG}
18		Internal oscillator deviation from trimmed frequency ⁹ $V_{DD} = 2.7 - 5.5 V$, (constant temperature) $V_{DD} = 5.0 V \pm 10\%$, -40° C to 125°C	ACC _{int}		±0.5 ±0.5	±2 ±2	%

¹ Typical values are based on characterization data at $V_{DD} = 5.0V$, 25°C unless otherwise stated.

² Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.

3.10 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

3.10.1 Control Timing

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1		Bus frequency $(t_{cyc} = 1/f_{Bus})$	f _{Bus}	dc	_	20	MHz
2		Real-time interrupt internal oscillator period	t _{RTI}	600		1500	μs
3		External reset pulse width ² ($t_{cyc} = 1/f_{Self_reset}$)	t _{extrst}	1.5 x t _{Self_reset}		_	ns
4		Reset low drive ³	t _{rstdrv}	34 x t _{cyc}		_	ns
5		Active background debug mode latch setup time	t _{MSSU}	25		_	ns
6		Active background debug mode latch hold time	t _{MSH}	25		_	ns
7		IRQ pulse width Asynchronous path ² Synchronous path ⁴	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8		KBIPx pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
9		Port rise and fall time (load = $50 \text{ pF})^5$ Slew rate control disabled (PTxSE = 0) Slew rate control enabled (PTxSE = 1)	t _{Rise} , t _{Fall}		3 30		ns

Table 3-12. Control Timing

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a reset pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ When any reset is initiated, internal circuitry drives the reset pin low for about 34 bus cycles and then samples the level on the reset pin about 38 bus cycles later to distinguish external reset requests from internal requests.

⁴ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

⁵ Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range -40° C to 125°C.

Figure 3-10. Reset Timing

Chapter 3 Electrical Characteristics and Timing Specifications

3.10.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
External clock period	t _{TPMext}	4		t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 3-13. TPM Input Timing

Chapter 3 Electrical Characteristics and Timing Specifications

Figure 3-14. Timer Input Capture Pulse

Chapter 3 Electrical Characteristics and Timing Specifications

3.11 SPI Characteristics

Table 3-14 and Figure 3-15 through Figure 3-18 describe the timing requirements for the SPI system.

Num ¹	С	Characteristic ²		Symbol	Min	Мах	Unit
		Operating frequency ³	Master Slave	f _{op} f _{op}	f _{Bus} /2048 dc	f _{Bus} /2 f _{Bus} /4	Hz
1		Cycle time	Master Slave	^t scк ^t scк	2 4	2048 —	t _{cyc} t _{cyc}
2		Enable lead time	Master Slave	t _{Lead} t _{Lead}	 1/2	1/2	t _{SCK} t _{SCK}
3		Enable lag time	Master Slave	t _{Lag} t _{Lag}	 1/2	1/2	t _{scк} t _{scк}
4		Clock (SPSCK) high time Master and Slave	9	t _{scкн}	1/2 t _{SCK} – 25	_	ns
5		Clock (SPSCK) low time and Slave	Master	t _{SCKL}	1/2 t _{SCK} – 25	_	ns
6		Data setup time (inputs)	Master Slave	t _{SI(M)} t _{SI(S)}	30 30		ns ns
7		Data hold time (inputs)	Master Slave	t _{HI(M)} t _{HI(S)}	30 30		ns ns
8		Access time, slave ⁴		t _A	0	40	ns
9		Disable time, slave ⁵		t _{dis}	—	40	ns
10		Data setup time (outputs	s) Master Slave	t _{SO} t _{SO}	25 25		ns ns
11		Data hold time (outputs)	Master Slave	t _{HO} t _{HO}	-10 -10		ns ns

 Table 3-14. SPI Electrical Characteristic

¹ Refer to Figure 3-15 through Figure 3-18.

³ Maximum baud rate must be limited to 5 MHz due to pad input characteristics.

- ⁴ Time to data active from high-impedance state.
- ⁵ Hold time to high-impedance state.

 $^{^2\,}$ All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

Chapter 4 Ordering Information and Mechanical Drawings

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.

MC9S08AC128, Rev. 4 08/2011