

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9s08ac128mfge

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8	1		
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

Chapter 1 Device Overview

The MC9S08AC128 is a member of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). The MC9S08AC128 uses the enhanced HCS08 core.

1.1 MCU Block Diagram

The block diagram in Figure 1-1 shows the structure of the MC9S08AC128 Series MCU.

Chapter 2 Pins and Connections

This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals.

2.1 Device Pin Assignment

Figure 2-1 shows the 80-pin LQFP package pin assignments for the MC9S08AC128 Series device.

Figure 2-1. MC9S08AC128 Series in 80-Pin LQFP Package

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Figure 2-1 shows the 48-pin package assignments for the MC9S08AC128 Series devices.

Note: Pin names in **bold** are lost in lower pin count packages.

	Pin N	umber		Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
13	—	_	_	PTJ0		
14		_	_	PTJ1		
15	_	—	_	PTJ2		
16	—	—	_	PTJ3		
17	13	9	8	PTE0	TxD1	
18	14	10	9	PTE1	RxD1	
19	15	11	10	PTE2	TPM1CH0	
20	16	12	11	PTE3	TPM1CH1	
21	17	13	12	PTE4	SS1	
22	18	14	13	PTE5	MISO1	
23	19	15	14	PTE6	MOSI1	
24	20	16	15	PTE7	SPSCK1	
25	21	17	16	V _{SS}		
26	22	18	17	V _{DD}		
27	_	_	_	PTJ4		
28	_	_	_	PTJ5		
29	—	—	_	PTJ6		
30	—	—	_	PTJ7		
31	23	19	18	PTG0	KBI1P0	
32	24	20	19	PTG1	KBI1P1	
33	25	21	20	PTG2	KBI1P2	
34	26	22	21	PTA0		
35	27	23	22	PTA1		
36	28	24		PTA2		
37	29	_	_	PTA3		
38	30	_	_	PTA4		
39	31	_	_	PTA5		
40	32	_	_	PTA6		
41	33	25		PTA7		
42	—	_		PTH0	TPM2CH2	
43	—			PTH1	TPM2CH3	
44	_	_	_	PTH2	TPM2CH4	
45	_	_	_	PTH3	TPM2CH5	
46	34	26	23	PTB0	TPM3CH0	AD1P0
47	35	27	24	PTB1	TPM3CH1	AD1P1
48	36	28	25	PTB2	AD1P2	
49	37	29	26	PTB3	AD1P3	
50	38	—	_	PTB4	AD1P4	
51	39	—	_	PTB5	AD1P5	
52	40	—		PTB6	AD1P6	
53	41	—	_	PTB7	AD1P7	

Table 2-4. Pin Availability by Package Pin-Count (continued)

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	- 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	۱ _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C

Table 3-2. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

Num	С	Parameter	Symbol	Min	Typ ¹	Мах	Unit
1	—	Operating Voltage	V _{DD}	2.7	—	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.6 mA 5 V, I _{Load} = -0.4 mA 3 V, I _{Load} = -0.24 mA		$V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.8$		 	V
	Ρ	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -10 mA 3 V, I _{Load} = -3 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.4 mA	⊻ОН	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8		 	v
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.6 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 0.4 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.24 \text{ mA}$	М		 	1.5 1.5 0.8 0.8	V
	Р	Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA 3 V, I _{Load} = 3 mA 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 0.4 mA	VOL			1.5 1.5 0.8 0.8	V
4	Ρ	Output high current — Max total I _{OH} for all ports 5V 3V	I _{ОНТ}		_	100 60	mA
5	Ρ	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}		_	100 60	mA
6	Ρ	Input high $2.7v \le V_{DD} 4.5v$	V_{H}	$0.70 \mathrm{xV}_{\mathrm{DD}}$	—	—	
		voltage; all $4.5v \le V_{DD} \le 5.5v$	V _{IH}	0.65xV _{DD}	—	—	V
7	Ρ	Input low voltage; all digital inputs	V _{IL}			0.35 x V _{DD}	
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$			mV
9	Ρ	Input leakage current; input only pins ²	_{In}	_	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ²	I _{OZ}	—	0.1	1	μA
11	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input Capacitance; all non-supply pins	C _{In}		_	8	pF
14	D	RAM retention voltage	V _{RAM}	_	0.6	1.0	V
15	P	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
16	D	POR rearm time	t _{POR}	10	—	—	μs
17	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVDH}	4.2 4.3	4.3 4.4	4.4 4.5	v
18	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	V

Table 3-6. DC Characteristics

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
19	Ρ	Low-voltage warning threshold — high range V _{DD} falling V _{DD} rising	V _{LVWH}	4.2 4.3	4.3 4.4	4.4 4.5	V
20	Ρ	Low-voltage warning threshold — low range V _{DD} falling V _{DD} rising	V _{LVWL}	2.48 2.54	2.56 2.62	2.64 2.7	V
21	Ρ	Low-voltage inhibit reset/recover hysteresis 5V 3V	V _{hys}	_	100 60	_	mV
22	Ρ	Bandgap Voltage Reference ⁵	V _{BG}	1.170	1.200	1.230	V

Table 3-6. DC Characteristics (continued)

Typical values are based on characterization data at 25°C unless otherwise stated. 1

- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with $V_{In} = V_{SS}$.
- ⁴ Measured with $V_{In} = V_{DD}$. ⁵ Factory trimmed at $V_{DD} = 3.0$ V, Temperature = 25 °C.

V_{DD} (V) Figure 3-7. Typical Stop3 I_{DD}

MC9S08AC128 Series Data Sheet, Rev. 4

3.9.1 ICG Frequency Specifications

Table 3-11. ICG Frequency Specifications

$(V_{DDA} = V_{DDA} \text{ (min) to } V_{DDA} \text{ (max)}, \text{ Temperature Range} = -40 \text{ to } 125^{\circ}\text{C} \text{ Ambient})$

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (REFS = 1) (Fundamental mode crystal or ceramic resonator) Low range High range High Gain, FBE (HGO = 1,CLKS = 10) High Gain, FEE (HGO = 1,CLKS = 11) Low Power, FBE (HGO = 0, CLKS = 10) Low Power, FEE (HGO = 0, CLKS = 11)	flo fhi_byp fhi_eng flp_byp flp_eng	32 1 2 1 2		100 16 10 8 8	kHz MHz MHz MHz MHz
2		Input clock frequency (CLKS = 11, REFS = 0) Low range High range	f _{lo} f _{hi_eng}	32 2		100 10	kHz MHz
3		Input clock frequency (CLKS = 10, REFS = 0)	f _{Extal}	0		40	MHz
4		Internal reference frequency (untrimmed)	f _{ICGIRCLK}	182.25	243	303.75	kHz
5		Duty cycle of input clock (REFS = 0)	t _{dc}	40		60	%
6	Output clock ICGOUT frequency CLKS = 10, REFS = 0 All other cases		ficgout	f _{Extal} (min) f _{lo} (min)		f _{Extal} (max) ^f ICGDCLKmax(max)	MHz
7		Minimum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmin}	3			MHz
8		Maximum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmax}		_	40	MHz
9		Self-clock mode (ICGOUT) frequency ²	f _{Self}	f _{ICGDCLKmin}		f _{ICGDCLKmax}	MHz
10		Self-clock mode reset (ICGOUT) frequency	f _{Self_reset}	5.5	8	10.5	MHz
11		Loss of reference frequency ³ Low range High range	f _{LOR}	5 50		25 500	kHz
12		Loss of DCO frequency ⁴	f _{LOD}	0.5		1.5	MHz
13		Crystal start-up time ^{5, 6} Low range High range	^t CSTL ^t CSTH	_	430 4		ms
14		FLL lock time ^{, 7} Low range High range	t _{Lockl} t _{Lockh}			2 2	ms
15		FLL frequency unlock range	n _{Unlock}	-4*N		4*N	counts
16		FLL frequency lock range	n _{Lock}	-2*N		2*N	counts
17		ICGOUT period jitter, ^{, 8} measured at f _{ICGOUT} Max Long term jitter (averaged over 2 ms interval)	C _{Jitter}	_		0.2	% f _{ICG}
18		Internal oscillator deviation from trimmed frequency ⁹ $V_{DD} = 2.7 - 5.5 V$, (constant temperature) $V_{DD} = 5.0 V \pm 10\%, -40^{\circ} C$ to $125^{\circ}C$	ACC _{int}		±0.5 ±0.5	±2 ±2	%

¹ Typical values are based on characterization data at $V_{DD} = 5.0V$, 25°C unless otherwise stated.

² Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.

Chapter 3 Electrical Characteristics and Timing Specifications

Figure 3-14. Timer Input Capture Pulse

Chapter 3 Electrical Characteristics and Timing Specifications

3.11 SPI Characteristics

Table 3-14 and Figure 3-15 through Figure 3-18 describe the timing requirements for the SPI system.

Num ¹	С	Characteristic ²		Symbol	Min	Мах	Unit
		Operating frequency ³	Master Slave	f _{op} f _{op}	f _{Bus} /2048 dc	f _{Bus} /2 f _{Bus} /4	Hz
1		Cycle time	Master Slave	^t scк ^t scк	2 4	2048 —	t _{cyc} t _{cyc}
2		Enable lead time	Master Slave	t _{Lead} t _{Lead}	 1/2	1/2	t _{SCK} t _{SCK}
3		Enable lag time	Master Slave	t _{Lag} t _{Lag}	 1/2	1/2	t _{scк} t _{scк}
4		Clock (SPSCK) high time Master and Slave	9	t _{scкн}	1/2 t _{SCK} – 25	_	ns
5		Clock (SPSCK) low time and Slave	Master	t _{SCKL}	1/2 t _{SCK} – 25	_	ns
6		Data setup time (inputs)	Master Slave	t _{SI(M)} t _{SI(S)}	30 30		ns ns
7		Data hold time (inputs)	Master Slave	t _{HI(M)} t _{HI(S)}	30 30		ns ns
8		Access time, slave ⁴		t _A	0	40	ns
9		Disable time, slave ⁵		t _{dis}	—	40	ns
10		Data setup time (outputs	s) Master Slave	t _{SO} t _{SO}	25 25		ns ns
11		Data hold time (outputs)	Master Slave	t _{HO} t _{HO}	-10 -10		ns ns

 Table 3-14. SPI Electrical Characteristic

¹ Refer to Figure 3-15 through Figure 3-18.

³ Maximum baud rate must be limited to 5 MHz due to pad input characteristics.

- ⁴ Time to data active from high-impedance state.
- ⁵ Hold time to high-impedance state.

 $^{^2\,}$ All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

3.12 FLASH Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	Ρ	Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2	Р	Supply voltage for read operation	V _{Read}	2.7		5.5	V
3	Ρ	Internal FCLK frequency ²	f _{FCLK}	150		200	kHz
4	Р	Internal FCLK period (1/FCLK)	t _{Fcyc}	5 6.67			μs
5	Ρ	Byte program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
6	С	Byte program time (burst mode) ⁽²⁾	t _{Burst}	4			t _{Fcyc}
7	Ρ	Page erase time ³	t _{Page}	4000			t _{Fcyc}
8	Ρ	Mass erase time ⁽²⁾	t _{Mass}	20,000			t _{Fcyc}
9	с	Program/erase endurance ⁴ T_L to $T_H = -40^{\circ}C$ to + 125°C $T = 25^{\circ}C$		10,000 <u> </u>		cycles	
10	С	Data retention ⁵	t _{D_ret}	15	100	_	years

Table 3-15. Flash	Characteristics
-------------------	-----------------

¹ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25°C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory*.

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

Chapter 3 Electrical Characteristics and Timing Specifications

3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit	
	V_{RE_TEM}	$V_{DD} = 5.0 V$	0.15 – 50 MHz	32kHz crystal	30	dBμV	
		T _A = +25°C package type 80 LQFP	50 – 150 MHz	20MHz Bus	32		
Radiated emissions,			150 – 500 MHz		19		
electric field and magnetic field				500 – 1000 MHz		7	
			IEC Level		l ²	—	
			SAE Level		l ²	—	

Table 3-16. Radiated Emissions

¹ Data based on laboratory test results.

² IEC and SAE Level Maximums: I=36 dBuV.

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information

This section contains ordering numbers for MC9S08AC128 Series devices. See below for an example of the device numbering system.

Device Number	Mer	mory	Available Packages ¹
Device Number	FLASH	RAM	Туре
MC9S08AC128	128K	8K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP
MC9S08AC96	96K	6K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP

Table 4-1. Device Numbering System

¹ See Table 4-2 for package information.

4.2 Orderable Part Numbering System

4.3 Mechanical Drawings

Table 4-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08AC128 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 4-2, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 4-2) in the "Enter Keyword" search box at the top of the page.

Pin Count	Туре	Designator	Document No.
80	LQFP	LK	98ASS23237W
64	QFP	FU	98ASB42844B
48	QFN	FT	98ARH99048A
44	LQFP	FG	98ASS23225W

Table 4-2. Package Information

Chapter 4 Ordering Information and Mechanical Drawings

Chapter 5 Revision History

To provide the most up-to-date information, the version of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision Number	Revision Date	Description of Changes	
1	9/2008	Initial release of a separate data sheet and reference manual. Removed PTH7, clarified SPI as one full and one master-only, added missing RoHS logo, updated back cover addresses, and incorporated general release edits and updates. Added some finalized electrical characteristics.	
2	6/2009	Added the parameter "Bandgap Voltage Reference" in Table 3-6 Updated Section 3.13, "EMC Performance" and corrected Table 3-16. Updated disclaimer page.	
3	9/2010	Added 48-pin QFN package information.	
4	8/2011	Updated the t _{RTI} in the Table 3-12. Updated the RI _{DD} in the Table 3-7.	

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2009. All rights reserved.

MC9S08AC128, Rev. 4 08/2011