

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08ac96clke

Email: info@E-XFL.COM

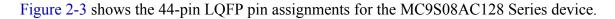
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

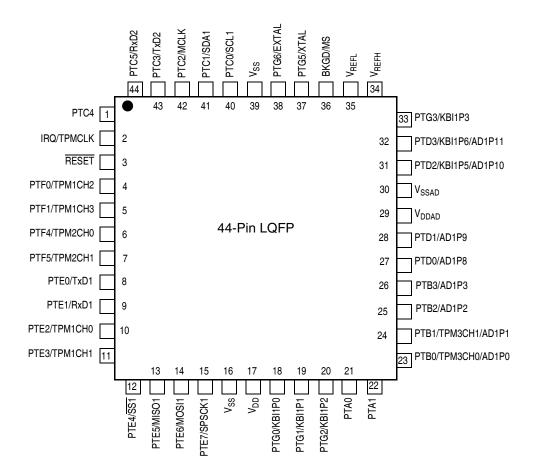
Table of Contents

Chapter 1 Device Overview
Chapter 2
Pins and Connections
2.1 Device Pin Assignment
Chapter 3
Electrical Characteristics and Timing Specifications11
3.1 Introduction
3.2 Parameter Classification
3.3 Absolute Maximum Ratings11
3.4 Thermal Characteristics
3.5 ESD Protection and Latch-Up Immunity
3.6 DC Characteristics
3.7 Supply Current Characteristics
3.8 ADC Characteristics

3.9	Internal Clock Generation Module Characteristics 24
	3.9.1 ICG Frequency Specifications 25
3.10	AC Characteristics
	3.10.1 Control Timing 27
	3.10.2 Timer/PWM (TPM) Module Timing 28
3.11	SPI Characteristics
3.12	FLASH Specifications
	EMC Performance
	3.13.1 Radiated Emissions 34
Chapter 4	4
Orde	ring Information and Mechanical Drawings
4.1	Ordering Information
4.2	Orderable Part Numbering System
4.3	Mechanical Drawings
Chapter 5	
Revis	sion History

Related Documentation


MC9S08AC128 Series Reference Manual (MC9S08AC128RM)


contains extensive product information including modes of operartion, memory, resets and interrupts, register definitions, port pins, CPU, and all peripheral module information.

For the latest version of the documentation, check our website at: http://www.freescale.com

Chapter 2 Pins and Connections

	Pin N	umber	r	Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
1	1	1	1	PTC4		
2	2	2	2	IRQ	TPMCLK ¹	
3	3	3	3	RESET		
4	4	4	4	PTF0	TPM1CH2	
5	5	5	5	PTF1	TPM1CH3	
6	6	_	_	PTF2	TPM1CH4	
7	7	_	_	PTF3	TPM1CH5	
8	8	6	6	PTF4	TPM2CH0	
9	9	_	_	PTC6		
10	10	_	_	PTF7		
11	11	7	7	PTF5	TPM2CH1	
12	12	8		PTF6		

Table 2-4. Pin Availability by Package Pin-Count

MC9S08AC128 MCU Series Data Sheet, Rev. 4

	Pin Number		Lowest <	Priority	> Highest	
80	64	48	44	Port Pin	Alt 1	Alt 2
13	—	_	_	PTJ0		
14	—	_	_	PTJ1		
15	_	_	_	PTJ2		
16	—	—	_	PTJ3		
17	13	9	8	PTE0	TxD1	
18	14	10	9	PTE1	RxD1	
19	15	11	10	PTE2	TPM1CH0	
20	16	12	11	PTE3	TPM1CH1	
21	17	13	12	PTE4	SS1	
22	18	14	13	PTE5	MISO1	
23	19	15	14	PTE6	MOSI1	
24	20	16	15	PTE7	SPSCK1	
25	21	17	16	V _{SS}		
26	22	18	17	V _{DD}		
27	—			PTJ4		
28	—			PTJ5		
29	—			PTJ6		
30	—	_	_	PTJ7		
31	23	19	18	PTG0	KBI1P0	
32	24	20	19	PTG1	KBI1P1	
33	25	21	20	PTG2	KBI1P2	
34	26	22	21	PTA0		
35	27	23	22	PTA1		
36	28	24		PTA2		
37	29	—		PTA3		
38	30	_		PTA4		
39	31	_		PTA5		
40	32	—	_	PTA6		
41	33	25	_	PTA7		
42	_	_	_	PTH0	TPM2CH2	
43	_	_	—	PTH1	TPM2CH3	
44	—	_		PTH2	TPM2CH4	
45	—	_		PTH3	TPM2CH5	
46	34	26	23	PTB0	TPM3CH0	AD1P0
47	35	27	24	PTB1	TPM3CH1	AD1P1
48	36	28	25	PTB2	AD1P2	
49	37	29	26	PTB3	AD1P3	
50	38	_	_	PTB4	AD1P4	
51	39	—	—	PTB5	AD1P5	
52	40	—	—	PTB6	AD1P6	
53	41	—	—	PTB7	AD1P7	

Table 2-4. Pin Availability by Package Pin-Count (continued)

Pin Number				Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
54	42	30	27	PTD0	AD1P8	
55	43	31	28	PTD1	AD1P9	
56	44	32	29	V _{DDAD}		
57	45	33	30	V _{SSAD}		
58	46	34	31	PTD2	KBI1P5	AD1P10
59	47	35	32	PTD3	KBI1P6	AD1P11
60	48	36	33	PTG3	KBI1P3	
61	49	37	_	PTG4	KBI1P4	
62	50	_	_	PTD4	TPM2CLK	AD1P12
63	51	—	_	PTD5	AD1P13	
64	52	_	_	PTD6	TPM1CLK	AD1P14
65	53	_	_	PTD7	KBI1P7	AD1P15
66	54	38	34	V _{REFH}		
67	55	39	35	V _{REFL}		
68	56	40	36	BKGD	MS	
69	57	41	37	PTG5	XTAL	
70	58	42	38	PTG6	EXTAL	
71	59	43	39	V _{SS}		
72	—			V _{DD} (NC)		
73	60	44	40	PTC0	SCL1	
74	61	45	41	PTC1	SDA1	
75	—	—	—	PTH4	SPSCK2	
76	—	—		PTH5	MOSI2	
77	—	—	—	PTH6	MISO2	
78	62	46	42	PTC2	MCLK	
79	63	47	43	PTC3	TxD2	
80	64	48	44	PTC5	RxD2	

Table 2-4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, TPM1CLK, and TPM2CLK options are configured via software; out of reset, TPM1CLK, TPM2CLK, and TPMCLK are available to TPM1, TPM2, and TPM3 respectively.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 125	°C
Maximum junction temperature	TJ	150	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP 1s 2s2p 64-pin QFP 48-pin QFN 1s 2s2p 44-pin LQFP 1s 2s2p	θ _{JA}	61 47 57 43 81 28 73 56	°C/W

Table 3-3	. Thermal	Characteristics

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

³ 1s - Single Layer Board, one signal layer

⁴ 2s2p - Four Layer Board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 3-1

where:

 $\begin{array}{l} T_A = \text{Ambient temperature, }^\circ\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, }^\circ\text{C/W} \\ P_D = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins} - \text{user determined} \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 3-2

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Chapter 3 Electrical Characteristics and Timing Specifications

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

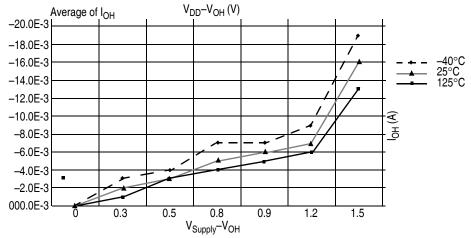
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits and JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).

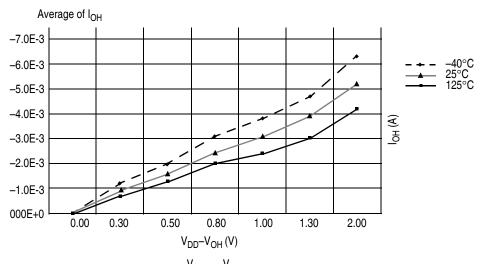
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

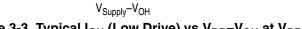
Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	-	3	
Latch-up	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

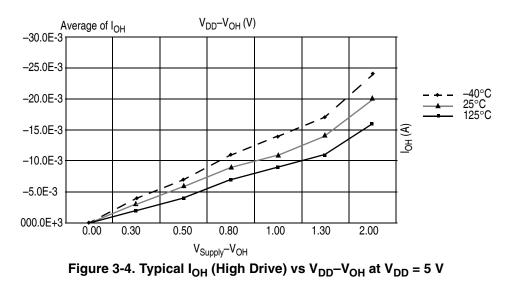
Table 3-4. ESD and Latch-up Test Conditions


Table 3-5. ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Мах	Unit
1	С	Human Body Model (HBM)	V _{HBM}	± 2000	_	V
2	С	Machine Model (MM)	V _{MM}	± 200	_	V
3	С	Charge Device Model (CDM)	V _{CDM}	± 500	_	V
4	С	Latch-up Current at T _A = 125°C	I _{LAT}	± 100	_	mA


3.6 DC Characteristics


This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.



Chapter 3 Electrical Characteristics and Timing Specifications

3.7 Supply Current Characteristics

Table 3-7. Supply Current Characteristics

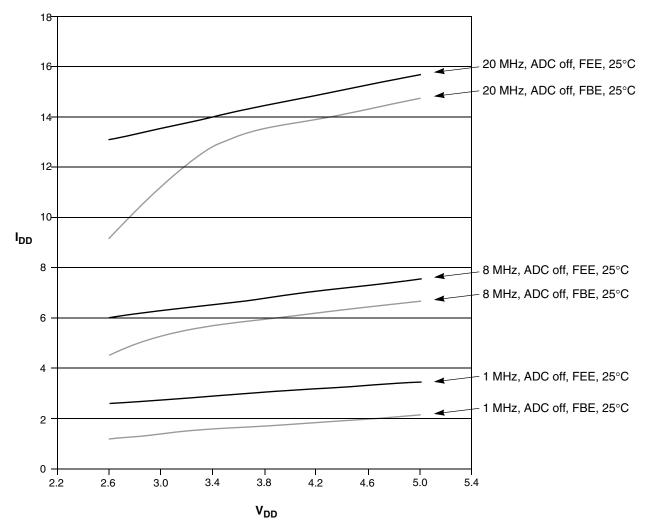
Num	с	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max	Unit	Temp (°C)
	_	Run supply current ² measured at		5	1.1	1.4 ³		
1	С	(CPU clock = 2 MHz, $f_{Bus} = 1$ MHz)	RI _{DD}	3	1.0	1.2	mA	–40 to 125°C
	с	Run supply current ⁴ measured at		5	6.7	8.0 ⁵		
2	C	(CPU clock = 16 MHz, f _{Bus} = 8 MHz)	RI _{DD}	3	6	7.5	mA	–40 to 125°C
		Stop2 mode supply current		5	1.0	25 160	μA	–40 to 85°C –40 to 125°C
3	С				1.0			
			S2I _{DD}	3	0.8	23 150	μA	−40 to 85°C −40 to 125°C
		Stop3 mode supply current		5		27	μA	–40 to 85°C
4	с		S3I _{DD}		1.2	180 ³	port	–40 to 125°C
	-			3		25	μA	-40 to 85°C
					1.0	170	•	–40 to 125°C
				5	300	500 500	nA	–40 to 85°C –40 to 125°C
5	С	RTI adder to stop2 or stop3 ⁶	S23I					
			S23I _{DDRTI}	3	300	500 500	nA	−40 to 85°C −40 to 125°C
				5	110	180	μA	-40 to 85°C
6	6 C	LVD adder to stop3 (LVDE = LVDSE = 1)	S3I			180		–40 to 125°C
			S3I _{DDLVD}	3	90	160 160	μA	−40 to 85°C −40 to 125°C
7	С	Adder to stop3 for oscillator enabled ⁷ (OSCSTEN =1)	S3I _{DDOSC}	5,3	5	8 8	μΑ μΑ	–40 to 85°C –40 to 125°C

¹ Typical values are based on characterization data at 25°C unless otherwise stated. See Figure 3-5 through Figure 3-7 for typical curves across voltage/temperature.

² All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins

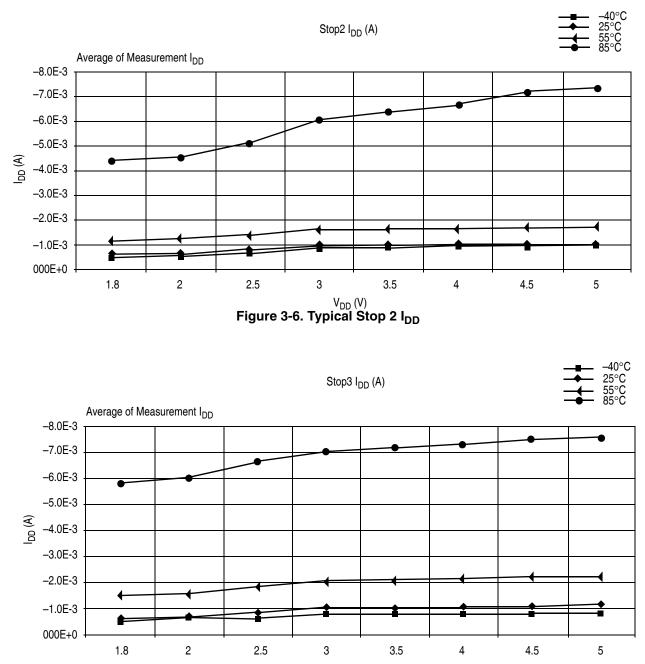
³ Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.

⁴ All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins


⁵ Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.

⁶ Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 560 μ A at 3 V with f_{Bus} = 1 MHz.

⁷ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal, low power mode (HGO = 0), clock monitor disabled (LOCD = 1).


Chapter 3 Electrical Characteristics and Timing Specifications

Note: External clock is square wave supplied by function generator. For FEE mode, external reference frequency is 4 MHz Figure 3-5. Typical Run I_{DD} for FBE and FEE Modes, I_{DD} vs. V_{DD}

V_{DD} (V) Figure 3-7. Typical Stop3 I_{DD}

MC9S08AC128 Series Data Sheet, Rev. 4

3.8 ADC Characteristics

Table 3-8. 5 Volt 10-bit ADC	Operating Conditions
------------------------------	-----------------------------

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit
Supply voltage	Absolute	V _{DDAD}	2.7	_	5.5	V
Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV _{SSAD}	-100	0	+100	mV
Ref voltage high		V _{REFH}	2.7	V _{DDAD}	V _{DDAD}	V
Ref voltage low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V
Supply current	Stop, reset, module off	I _{DDAD}	_	0.011	1	μA
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V
Input capacitance		C _{ADIN}	_	4.5	5.5	pF
Input resistance		R _{ADIN}	_	3	5	kΩ
Analog source resistance External to MCU	10-bit mode $f_{ADCK} > 4MHz$ $f_{ADCK} < 4MHz$	R _{AS}			5 10	kΩ
	8-bit mode (all valid f _{ADCK})		_	_	10	1
	High speed (ADLPC = 0)	4	0.4		8.0	N 41 1-
ADC conversion clock frequency	Low power (ADLPC = 1)	f _{ADCK}	0.4	_	4.0	MHz
Temp Sensor	-40°C to 25°C	m	_	3.266	_	mV/° C
Slope	25°C to 125°C			3.638	_	
Temp Sensor Voltage	25°C	V _{TEMP25}	_	1.396	_	V

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² dc potential difference.

Chapter 3 Electrical Characteristics and Timing Specifications

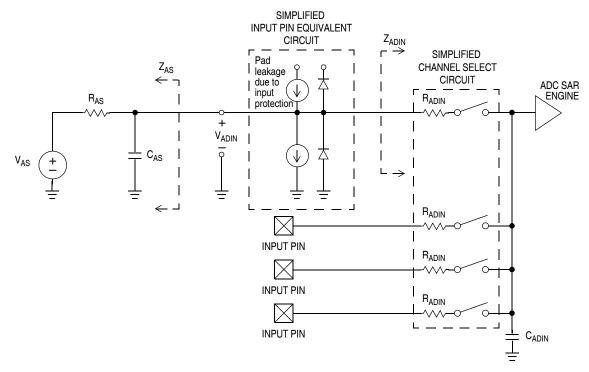


Figure 3-8. ADC Input Impedance Equivalency Diagram

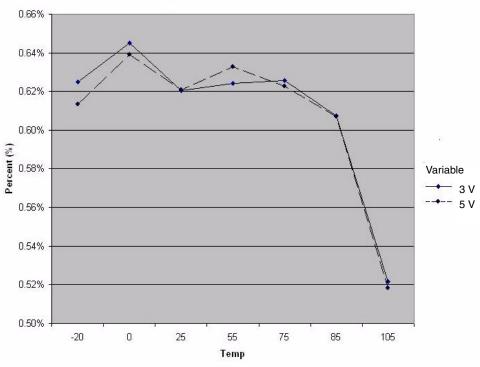
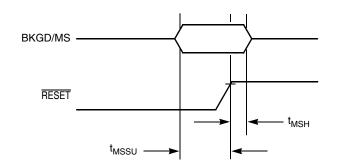
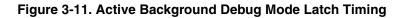

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit	
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		133		μΑ	
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		Т	I _{DDAD}	_	218	_	μΑ	
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}	_	327	_	μΑ	
Supply current		Т	I _{DDAD}	—	582	_	μA	
ADLPC = 0 ADLSMP = 0 ADCO = 1	$V_{DDAD} \le 5.5 V$	Р		_	_	1	mA	
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz	
$t_{ADACK} = 1/f_{ADACK}$	Low power (ADLPC = 1)			1.25	2	3.3		
Conversion time	Short sample (ADLSMP = 0)	Р	P t _{ADC}	—	20	_	ADCK cycles	
(Including sample time)	Long sample (ADLSMP = 1)			_	40	_		
Sample time	Short sample (ADLSMP = 0)	Р	t _{ADS}	_	3.5	_	ADCK cycles	
	Long sample (ADLSMP = 1)				23.5	_		
Total unadjusted error	10-bit mode	Р	E _{TUE}	_	±1	±2.5	LSB ²	
Includes quantization	8-bit mode			_	±0.5	±1.0		
	10-bit mode	Р	DNL	—	±0.5	±1.0	LSB ²	
Differential non-linearity	8-bit mode			_	±0.3	±0.5		
	Monotonicity and no-missing-codes guaranteed							
Integral non-linearity	10-bit mode	С	INL	—	±0.5	±1.0	LSB ²	
Integral non-intearity	8-bit mode			_	±0.3	±0.5		
Zero-scale error	10-bit mode	Р	E _{ZS}	—	±0.5	±1.5	LSB ²	
$V_{ADIN} = V_{SSA}$	8-bit mode			_	±0.5	±0.5		
Full-scale error	10-bit mode	Р	E _{FS}	_	±0.5	±1.5	LSB ²	
$V_{ADIN} = V_{DDA}$	8-bit mode			_	±0.5	±0.5		
Quantization error	10-bit mode	D	EQ	_	—	±0.5	LSB ²	
	8-bit mode			_	—	±0.5		

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

Chapter 3 Electrical Characteristics and Timing Specifications


- ³ Loss of reference frequency is the reference frequency detected internally, which transitions the ICG into self-clocked mode if it is not in the desired range.
- ⁴ Loss of DCO frequency is the DCO frequency detected internally, which transitions the ICG into FLL bypassed external mode (if an external reference exists) if it is not in the desired range.
- ⁵ This parameter is characterized before qualification rather than 100% tested.
- ⁶ Proper PC board layout procedures must be followed to achieve specifications.
- ⁷ This specification applies to the period of time required for the FLL to lock after entering FLL engaged internal or external modes. If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{ICGOUT}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DDA} and V_{SSA} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁹ See Figure 3-9



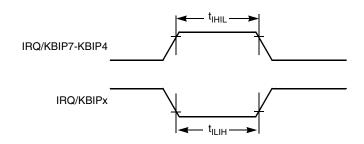

Average of Percentage Error

Figure 3-9. Internal Oscillator Deviation from Trimmed Frequency

Chapter 3 Electrical Characteristics and Timing Specifications

3.10.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Мах	Unit
External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
External clock period	t _{TPMext}	4	—	t _{cyc}
External clock high time	t _{clkh}	1.5	—	t _{cyc}
External clock low time	t _{clkl}	1.5	—	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 3-13. TPM Input Timing

3.12 FLASH Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Num	С	Characteristic Symbol Min Typ ¹ Max		Max	Unit		
1	Р	Supply voltage for program/erase	V _{prog/erase}	2.7 5.5			V
2	Р	Supply voltage for read operation	Supply voltage for read operation V _{Read} 2.7 5.5		5.5	V	
3	Р	Internal FCLK frequency ²	Internal FCLK frequency ² f _{FCLK} 150 200		200	kHz	
4	Р	Internal FCLK period (1/FCLK)	t _{Fcyc}	5 6.67		μs	
5	Р	Byte program time (random location) ⁽²⁾	t _{prog}	9			t _{Fcyc}
6	С	Byte program time (burst mode) ⁽²⁾	t _{Burst}	4 t _F			t _{Fcyc}
7	Р	Page erase time ³	t _{Page}	4000 t			t _{Fcyc}
8	Р	Mass erase time ⁽²⁾	t _{Mass}	20,000		t _{Fcyc}	
9	с	Program/erase endurance ⁴ T _L to T _H = -40° C to + 125°C T = 25°C		10,000	 100,000		cycles
10	С	Data retention ⁵	t _{D_ret}	15 100 —		years	

¹ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25°C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

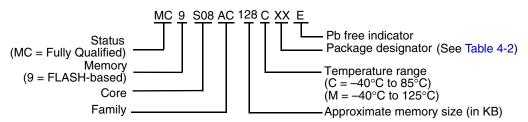
³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information


This section contains ordering numbers for MC9S08AC128 Series devices. See below for an example of the device numbering system.

Device Number	rice Number FLASH RAM		Available Packages ¹
Device Number			Туре
MC9S08AC128	128K	8K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP
MC9S08AC96	96K	6K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP

Table 4-1. Device Numbering System

¹ See Table 4-2 for package information.

4.2 Orderable Part Numbering System

4.3 Mechanical Drawings

Table 4-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08AC128 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 4-2, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 4-2) in the "Enter Keyword" search box at the top of the page.

Pin Count	Туре	Designator	Document No.
80	LQFP	LK	98ASS23237W
64	QFP	FU	98ASB42844B
48	QFN	FT	98ARH99048A
44	LQFP	FG	98ASS23225W

Table 4-2. Package Information

Chapter 5 Revision History

To provide the most up-to-date information, the version of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

Revision Number	Revision Date	Description of Changes
1	9/2008	Initial release of a separate data sheet and reference manual. Removed PTH7, clarified SPI as one full and one master-only, added missing RoHS logo, updated back cover addresses, and incorporated general release edits and updates. Added some finalized electrical characteristics.
2	6/2009	Added the parameter "Bandgap Voltage Reference" in Table 3-6 Updated Section 3.13, "EMC Performance" and corrected Table 3-16. Updated disclaimer page.
3	9/2010	Added 48-pin QFN package information.
4	8/2011	Updated the t _{RTI} in the Table 3-12. Updated the RI _{DD} in the Table 3-7.

