

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XFI

| Product Status             | Active                                                      |
|----------------------------|-------------------------------------------------------------|
| Core Processor             | S08                                                         |
| Core Size                  | 8-Bit                                                       |
| Speed                      | 40MHz                                                       |
| Connectivity               | I <sup>2</sup> C, LINbus, SCI, SPI                          |
| Peripherals                | LVD, POR, PWM, WDT                                          |
| Number of I/O              | 38                                                          |
| Program Memory Size        | 96KB (96K x 8)                                              |
| Program Memory Type        | FLASH                                                       |
| EEPROM Size                | -                                                           |
| RAM Size                   | 6K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                 |
| Data Converters            | A/D 16x10b                                                  |
| Oscillator Type            | Internal                                                    |
| Operating Temperature      | -40°C ~ 125°C (TA)                                          |
| Mounting Type              | Surface Mount                                               |
| Package / Case             | 44-LQFP                                                     |
| Supplier Device Package    | 44-LQFP (10x10)                                             |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08ac96mfge |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



# Chapter 1 Device Overview

The MC9S08AC128 is a member of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). The MC9S08AC128 uses the enhanced HCS08 core.

## 1.1 MCU Block Diagram

The block diagram in Figure 1-1 shows the structure of the MC9S08AC128 Series MCU.



Chapter 1 Device Overview





# Chapter 2 Pins and Connections

This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals.

## 2.1 Device Pin Assignment

Figure 2-1 shows the 80-pin LQFP package pin assignments for the MC9S08AC128 Series device.



Figure 2-1. MC9S08AC128 Series in 80-Pin LQFP Package



**Chapter 2 Pins and Connections** 



Figure 2-2 shows the 64-pin package assignments for the MC9S08AC128 Series devices.

Figure 2-2. MC9S08AC128 Series in 64-Pin QFP Package



| Pin Number |    | Lowest < | Priority | > Highest            |         |        |
|------------|----|----------|----------|----------------------|---------|--------|
| 80         | 64 | 48       | 44       | Port Pin             | Alt 1   | Alt 2  |
| 54         | 42 | 30       | 27       | PTD0                 | AD1P8   |        |
| 55         | 43 | 31       | 28       | PTD1                 | AD1P9   |        |
| 56         | 44 | 32       | 29       | V <sub>DDAD</sub>    |         |        |
| 57         | 45 | 33       | 30       | V <sub>SSAD</sub>    |         |        |
| 58         | 46 | 34       | 31       | PTD2                 | KBI1P5  | AD1P10 |
| 59         | 47 | 35       | 32       | PTD3                 | KBI1P6  | AD1P11 |
| 60         | 48 | 36       | 33       | PTG3                 | KBI1P3  |        |
| 61         | 49 | 37       |          | PTG4                 | KBI1P4  |        |
| 62         | 50 | _        |          | PTD4                 | TPM2CLK | AD1P12 |
| 63         | 51 | _        | _        | PTD5                 | AD1P13  |        |
| 64         | 52 | _        | _        | PTD6                 | TPM1CLK | AD1P14 |
| 65         | 53 | _        |          | PTD7                 | KBI1P7  | AD1P15 |
| 66         | 54 | 38       | 34       | V <sub>REFH</sub>    |         |        |
| 67         | 55 | 39       | 35       | V <sub>REFL</sub>    |         |        |
| 68         | 56 | 40       | 36       | BKGD                 | MS      |        |
| 69         | 57 | 41       | 37       | PTG5                 | XTAL    |        |
| 70         | 58 | 42       | 38       | PTG6                 | EXTAL   |        |
| 71         | 59 | 43       | 39       | V <sub>SS</sub>      |         |        |
| 72         | —  | _        | _        | V <sub>DD</sub> (NC) |         |        |
| 73         | 60 | 44       | 40       | PTC0                 | SCL1    |        |
| 74         | 61 | 45       | 41       | PTC1                 | SDA1    |        |
| 75         | —  | _        | _        | PTH4                 | SPSCK2  |        |
| 76         | —  | _        | _        | PTH5                 | MOSI2   |        |
| 77         | —  | —        | —        | PTH6                 | MISO2   |        |
| 78         | 62 | 46       | 42       | PTC2                 | MCLK    |        |
| 79         | 63 | 47       | 43       | PTC3                 | TxD2    |        |
| 80         | 64 | 48       | 44       | PTC5                 | RxD2    |        |

Table 2-4. Pin Availability by Package Pin-Count (continued)

<sup>1</sup> TPMCLK, TPM1CLK, and TPM2CLK options are configured via software; out of reset, TPM1CLK, TPM2CLK, and TPMCLK are available to TPM1, TPM2, and TPM3 respectively.

| Rating                                                                                                                  | Symbol           | Value                          | Unit |
|-------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|------|
| Supply voltage                                                                                                          | V <sub>DD</sub>  | -0.3 to + 5.8                  | V    |
| Input voltage                                                                                                           | V <sub>In</sub>  | - 0.3 to V <sub>DD</sub> + 0.3 | V    |
| Instantaneous maximum current<br>Single pin limit (applies to all port pins) <sup>1</sup> , <sup>2</sup> , <sup>3</sup> | ۱ <sub>D</sub>   | ± 25                           | mA   |
| Maximum current into V <sub>DD</sub>                                                                                    | I <sub>DD</sub>  | 120                            | mA   |
| Storage temperature                                                                                                     | T <sub>stg</sub> | -55 to +150                    | °C   |

Table 3-2. Absolute Maximum Ratings

<sup>1</sup> Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V<sub>DD</sub>) and negative (V<sub>SS</sub>) clamp voltages, then use the larger of the two resistance values.

 $^2~$  All functional non-supply pins are internally clamped to  $V_{SS}$  and  $V_{DD}$ 

<sup>3</sup> Power supply must maintain regulation within operating V<sub>DD</sub> range during instantaneous and operating maximum current conditions. If positive injection current (V<sub>In</sub> > V<sub>DD</sub>) is greater than I<sub>DD</sub>, the injection current may flow out of V<sub>DD</sub> and could result in external power supply going out of regulation. Ensure external V<sub>DD</sub> load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.



| Num | С | Parameter                                                                                                                                                                                                                                                                              | Symbol            | Min                                                                                              | Typ <sup>1</sup> | Мах                      | Unit |
|-----|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------|------------------|--------------------------|------|
| 1   | — | Operating Voltage                                                                                                                                                                                                                                                                      | V <sub>DD</sub>   | 2.7                                                                                              | —                | 5.5                      | V    |
| 2   | Ρ | Output high voltage — Low Drive (PTxDSn = 0)<br>5 V, I <sub>Load</sub> = -2 mA<br>3 V, I <sub>Load</sub> = -0.6 mA<br>5 V, I <sub>Load</sub> = -0.4 mA<br>3 V, I <sub>Load</sub> = -0.24 mA                                                                                            |                   | V <sub>DD</sub> - 1.5<br>V <sub>DD</sub> - 1.5<br>V <sub>DD</sub> - 0.8<br>V <sub>DD</sub> - 0.8 |                  | <br>                     | V    |
|     | Ρ | Output high voltage — High Drive (PTxDSn = 1)<br>5 V, I <sub>Load</sub> = -10 mA<br>3 V, I <sub>Load</sub> = -3 mA<br>5 V, I <sub>Load</sub> = -2 mA<br>3 V, I <sub>Load</sub> = -0.4 mA                                                                                               | ⊻ОН               | V <sub>DD</sub> - 1.5<br>V <sub>DD</sub> - 1.5<br>V <sub>DD</sub> - 0.8<br>V <sub>DD</sub> - 0.8 |                  | <br>                     | v    |
| 3   | Ρ | Output low voltage — Low Drive (PTxDSn = 0)<br>$5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$<br>$3 \text{ V}, \text{ I}_{\text{Load}} = 0.6 \text{ mA}$<br>$5 \text{ V}, \text{ I}_{\text{Load}} = 0.4 \text{ mA}$<br>$3 \text{ V}, \text{ I}_{\text{Load}} = 0.24 \text{ mA}$ | М                 |                                                                                                  | <br><br>         | 1.5<br>1.5<br>0.8<br>0.8 | V    |
|     | Р | Output low voltage — High Drive (PTxDSn = 1)<br>5 V, I <sub>Load</sub> = 10 mA<br>3 V, I <sub>Load</sub> = 3 mA<br>5 V, I <sub>Load</sub> = 2 mA<br>3 V, I <sub>Load</sub> = 0.4 mA                                                                                                    | VOL               |                                                                                                  |                  | 1.5<br>1.5<br>0.8<br>0.8 | V    |
| 4   | Ρ | Output high current — Max total I <sub>OH</sub> for all ports<br>5V<br>3V                                                                                                                                                                                                              | I <sub>ОНТ</sub>  |                                                                                                  |                  | 100<br>60                | mA   |
| 5   | Ρ | Output low current — Max total I <sub>OL</sub> for all ports<br>5V<br>3V                                                                                                                                                                                                               | I <sub>OLT</sub>  |                                                                                                  | _                | 100<br>60                | mA   |
| 6   | Ρ | Input high $2.7v \le V_{DD} 4.5v$                                                                                                                                                                                                                                                      | $V_{H}$           | $0.70 \mathrm{xV}_{\mathrm{DD}}$                                                                 | _                | —                        |      |
|     |   | voltage; all $4.5v \le V_{DD} \le 5.5v$                                                                                                                                                                                                                                                | V <sub>IH</sub>   | 0.65xV <sub>DD</sub>                                                                             | —                | —                        | V    |
| 7   | Ρ | Input low voltage; all digital inputs                                                                                                                                                                                                                                                  | V <sub>IL</sub>   |                                                                                                  |                  | 0.35 x V <sub>DD</sub>   |      |
| 8   | Ρ | Input hysteresis; all digital inputs                                                                                                                                                                                                                                                   | V <sub>hys</sub>  | $0.06 \times V_{DD}$                                                                             |                  |                          | mV   |
| 9   | Ρ | Input leakage current; input only pins <sup>2</sup>                                                                                                                                                                                                                                    | <sub>In</sub>     | _                                                                                                | 0.1              | 1                        | μA   |
| 10  | Ρ | High Impedance (off-state) leakage current <sup>2</sup>                                                                                                                                                                                                                                | I <sub>OZ</sub>   | —                                                                                                | 0.1              | 1                        | μA   |
| 11  | Ρ | Internal pullup resistors <sup>3</sup>                                                                                                                                                                                                                                                 | R <sub>PU</sub>   | 20                                                                                               | 45               | 65                       | kΩ   |
| 12  | Ρ | Internal pulldown resistors <sup>4</sup>                                                                                                                                                                                                                                               | R <sub>PD</sub>   | 20                                                                                               | 45               | 65                       | kΩ   |
| 13  | С | Input Capacitance; all non-supply pins                                                                                                                                                                                                                                                 | C <sub>In</sub>   |                                                                                                  | _                | 8                        | pF   |
| 14  | D | RAM retention voltage                                                                                                                                                                                                                                                                  | V <sub>RAM</sub>  | _                                                                                                | 0.6              | 1.0                      | V    |
| 15  | P | POR rearm voltage                                                                                                                                                                                                                                                                      | V <sub>POR</sub>  | 0.9                                                                                              | 1.4              | 2.0                      | V    |
| 16  | D | POR rearm time                                                                                                                                                                                                                                                                         | t <sub>POR</sub>  | 10                                                                                               | —                | —                        | μs   |
| 17  | Ρ | Low-voltage detection threshold — high range<br>V <sub>DD</sub> falling<br>V <sub>DD</sub> rising                                                                                                                                                                                      | V <sub>LVDH</sub> | 4.2<br>4.3                                                                                       | 4.3<br>4.4       | 4.4<br>4.5               | v    |
| 18  | Ρ | Low-voltage detection threshold — low range<br>V <sub>DD</sub> falling<br>V <sub>DD</sub> rising                                                                                                                                                                                       | V <sub>LVDL</sub> | 2.48<br>2.54                                                                                     | 2.56<br>2.62     | 2.64<br>2.7              | V    |

#### Table 3-6. DC Characteristics



| Num | С | Parameter                                                                                       | Symbol            | Min          | Typ <sup>1</sup> | Max         | Unit |
|-----|---|-------------------------------------------------------------------------------------------------|-------------------|--------------|------------------|-------------|------|
| 19  | Ρ | Low-voltage warning threshold — high range<br>V <sub>DD</sub> falling<br>V <sub>DD</sub> rising | V <sub>LVWH</sub> | 4.2<br>4.3   | 4.3<br>4.4       | 4.4<br>4.5  | V    |
| 20  | Ρ | Low-voltage warning threshold — low range<br>V <sub>DD</sub> falling<br>V <sub>DD</sub> rising  | V <sub>LVWL</sub> | 2.48<br>2.54 | 2.56<br>2.62     | 2.64<br>2.7 | V    |
| 21  | Ρ | Low-voltage inhibit reset/recover hysteresis<br>5V<br>3V                                        | V <sub>hys</sub>  | _            | 100<br>60        | _           | mV   |
| 22  | Ρ | Bandgap Voltage Reference <sup>5</sup>                                                          | V <sub>BG</sub>   | 1.170        | 1.200            | 1.230       | V    |

### Table 3-6. DC Characteristics (continued)

Typical values are based on characterization data at 25°C unless otherwise stated. 1

- <sup>2</sup> Measured with  $V_{In} = V_{DD}$  or  $V_{SS}$ .
- <sup>3</sup> Measured with  $V_{In} = V_{SS}$ .
- <sup>4</sup> Measured with  $V_{In} = V_{DD}$ . <sup>5</sup> Factory trimmed at  $V_{DD} = 3.0$  V, Temperature = 25 °C.





















**Chapter 3 Electrical Characteristics and Timing Specifications** 



Note: External clock is square wave supplied by function generator. For FEE mode, external reference frequency is 4 MHz Figure 3-5. Typical Run I<sub>DD</sub> for FBE and FEE Modes, I<sub>DD</sub> vs. V<sub>DD</sub>



## 3.8 ADC Characteristics

| Characteristic Conditions                   |                                                                             | Symb                | Min               | Typ <sup>1</sup>  | Мах               | Unit |
|---------------------------------------------|-----------------------------------------------------------------------------|---------------------|-------------------|-------------------|-------------------|------|
| Cumply voltage                              | Absolute                                                                    | V <sub>DDAD</sub>   | 2.7               | _                 | 5.5               | V    |
| Supply voltage                              | Delta to V <sub>DD</sub> (V <sub>DD</sub> -V <sub>DDAD</sub> ) <sup>2</sup> | $\Delta V_{DDAD}$   | -100              | 0                 | +100              | mV   |
| Ground voltage                              | Delta to V <sub>SS</sub> (V <sub>SS</sub> -V <sub>SSAD</sub> ) <sup>2</sup> | $\Delta V_{SSAD}$   | -100              | 0                 | +100              | mV   |
| Ref voltage high                            |                                                                             | V <sub>REFH</sub>   | 2.7               | V <sub>DDAD</sub> | V <sub>DDAD</sub> | V    |
| Ref voltage low                             |                                                                             | V <sub>REFL</sub>   | V <sub>SSAD</sub> | V <sub>SSAD</sub> | V <sub>SSAD</sub> | V    |
| Supply current                              | Stop, reset, module off                                                     | I <sub>DDAD</sub>   | —                 | 0.011             | 1                 | μA   |
| Input voltage                               |                                                                             | V <sub>ADIN</sub>   | V <sub>REFL</sub> | _                 | V <sub>REFH</sub> | V    |
| Input capacitance                           |                                                                             | C <sub>ADIN</sub>   | —                 | 4.5               | 5.5               | pF   |
| Input resistance                            |                                                                             | R <sub>ADIN</sub>   | —                 | 3                 | 5                 | kΩ   |
| Analog source resistance<br>External to MCU | 10-bit mode<br>f <sub>ADCK</sub> > 4MHz<br>f <sub>ADCK</sub> < 4MHz         | R <sub>AS</sub>     |                   |                   | 5<br>10           | kΩ   |
|                                             | 8-bit mode (all valid f <sub>ADCK</sub> )                                   |                     | _                 | —                 | 10                |      |
|                                             | High speed (ADLPC = 0)                                                      | f                   | 0.4               | —                 | 8.0               | MHz  |
| ADC conversion clock frequency              | Low power (ADLPC = 1)                                                       | 'ADCK               | 0.4               | —                 | 4.0               |      |
| Temp Sensor                                 | -40°C to 25°C                                                               | m                   |                   | 3.266             | _                 | mV/° |
| Slope                                       | 25°C to 125°C                                                               |                     | _                 | 3.638             | _                 | С    |
| Temp Sensor<br>Voltage                      | 25°C                                                                        | V <sub>TEMP25</sub> | _                 | 1.396             |                   | V    |

<sup>1</sup> Typical values assume V<sub>DDAD</sub> = 5.0 V, Temp = 25°C, f<sub>ADCK</sub> = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

<sup>2</sup> dc potential difference.



**Chapter 3 Electrical Characteristics and Timing Specifications** 



Figure 3-8. ADC Input Impedance Equivalency Diagram



| Characteristic                                        | Conditions                                   | С   | Symb               | Min  | Typ <sup>1</sup> | Max  | Unit             |  |  |
|-------------------------------------------------------|----------------------------------------------|-----|--------------------|------|------------------|------|------------------|--|--|
| Supply current<br>ADLPC = 1<br>ADLSMP = 1<br>ADCO = 1 |                                              | Т   | I <sub>DDAD</sub>  |      | 133              | _    | μΑ               |  |  |
| Supply current<br>ADLPC = 1<br>ADLSMP = 0<br>ADCO = 1 |                                              | Т   | I <sub>DDAD</sub>  | _    | 218              | _    | μΑ               |  |  |
| Supply current<br>ADLPC = 0<br>ADLSMP = 1<br>ADCO = 1 |                                              | Т   | I <sub>DDAD</sub>  |      | 327              | _    | μΑ               |  |  |
| Supply current                                        |                                              | Т   | I <sub>DDAD</sub>  | —    | 582              | —    | μA               |  |  |
| ADLPC = 0<br>ADLSMP = 0<br>ADCO = 1                   | $V_{DDAD} \le 5.5 V$                         | Р   |                    | _    | —                | 1    | mA               |  |  |
| ADC asynchronous clock source                         | High speed (ADLPC = 0)                       | Р   | f <sub>ADACK</sub> | 2    | 3.3              | 5    | MHz              |  |  |
| $t_{ADACK} = 1/f_{ADACK}$                             | Low power (ADLPC = 1)                        | 1.5 |                    | 1.25 | 2                | 3.3  |                  |  |  |
| Conversion time                                       | Short sample (ADLSMP = 0)                    | Р   | t <sub>ADC</sub>   | —    | 20               | —    | ADCK             |  |  |
| (including sample time)                               | Long sample (ADLSMP = 1)                     |     |                    | —    | 40               | _    | 0,0100           |  |  |
| Sample time                                           | Short sample (ADLSMP = 0)                    | Р   | t <sub>ADS</sub>   | —    | 3.5              | _    | ADCK             |  |  |
|                                                       | Long sample (ADLSMP = 1)                     |     |                    | —    | 23.5             | —    | cycles           |  |  |
| Total unadjusted error                                | 10-bit mode                                  | Р   | E <sub>TUE</sub>   | —    | ±1               | ±2.5 | LSB <sup>2</sup> |  |  |
| Includes quantization                                 | 8-bit mode                                   |     |                    | —    | ±0.5             | ±1.0 |                  |  |  |
|                                                       | 10-bit mode                                  | Р   | DNL                | —    | ±0.5             | ±1.0 | LSB <sup>2</sup> |  |  |
| Differential non-linearity                            | 8-bit mode                                   |     |                    | —    | ±0.3             | ±0.5 |                  |  |  |
|                                                       | Monotonicity and no-missing-codes guaranteed |     |                    |      |                  |      |                  |  |  |
| Integral non-linearity                                | 10-bit mode                                  | С   | INL                | _    | ±0.5             | ±1.0 | LSB <sup>2</sup> |  |  |
|                                                       | 8-bit mode                                   |     |                    | —    | ±0.3             | ±0.5 |                  |  |  |
| Zero-scale error                                      | 10-bit mode                                  | Р   | E <sub>ZS</sub>    | _    | ±0.5             | ±1.5 | LSB <sup>2</sup> |  |  |
| V <sub>ADIN</sub> = V <sub>SSA</sub>                  | 8-bit mode                                   |     |                    | —    | ±0.5             | ±0.5 |                  |  |  |
| Full-scale error                                      | 10-bit mode                                  | Р   | E <sub>FS</sub>    | _    | ±0.5             | ±1.5 | LSB <sup>2</sup> |  |  |
| $V_{ADIN} = V_{DDA}$                                  | 8-bit mode                                   |     |                    |      | ±0.5             | ±0.5 |                  |  |  |
| Quantization error                                    | 10-bit mode                                  | D   | EQ                 |      |                  | ±0.5 | LSB <sup>2</sup> |  |  |
|                                                       | 8-bit mode                                   |     |                    |      |                  | ±0.5 |                  |  |  |

Table 3-9. 5 Volt 10-bit ADC Characteristics ( $V_{REFH} = V_{DDAD}$ ,  $V_{REFL} = V_{SSAD}$ )



#### **Chapter 3 Electrical Characteristics and Timing Specifications**

- <sup>3</sup> Loss of reference frequency is the reference frequency detected internally, which transitions the ICG into self-clocked mode if it is not in the desired range.
- <sup>4</sup> Loss of DCO frequency is the DCO frequency detected internally, which transitions the ICG into FLL bypassed external mode (if an external reference exists) if it is not in the desired range.
- <sup>5</sup> This parameter is characterized before qualification rather than 100% tested.
- <sup>6</sup> Proper PC board layout procedures must be followed to achieve specifications.
- <sup>7</sup> This specification applies to the period of time required for the FLL to lock after entering FLL engaged internal or external modes. If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- <sup>8</sup> Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f<sub>ICGOUT</sub>. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V<sub>DDA</sub> and V<sub>SSA</sub> and variation in crystal oscillator frequency increase the C<sub>Jitter</sub> percentage for a given interval.
- <sup>9</sup> See Figure 3-9



### Average of Percentage Error

Figure 3-9. Internal Oscillator Deviation from Trimmed Frequency

**Chapter 3 Electrical Characteristics and Timing Specifications** 









### 3.10.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

| Function                  | Symbol              | Min | Мах                 | Unit             |
|---------------------------|---------------------|-----|---------------------|------------------|
| External clock frequency  | f <sub>TPMext</sub> | dc  | f <sub>Bus</sub> /4 | MHz              |
| External clock period     | t <sub>TPMext</sub> | 4   |                     | t <sub>cyc</sub> |
| External clock high time  | t <sub>clkh</sub>   | 1.5 | _                   | t <sub>cyc</sub> |
| External clock low time   | t <sub>clkl</sub>   | 1.5 | _                   | t <sub>cyc</sub> |
| Input capture pulse width | t <sub>ICPW</sub>   | 1.5 | _                   | t <sub>cyc</sub> |

Table 3-13. TPM Input Timing



**Chapter 3 Electrical Characteristics and Timing Specifications** 







Figure 3-14. Timer Input Capture Pulse



**Chapter 3 Electrical Characteristics and Timing Specifications** 

## 3.11 SPI Characteristics

Table 3-14 and Figure 3-15 through Figure 3-18 describe the timing requirements for the SPI system.

| Num <sup>1</sup> | С | Characteristic <sup>2</sup>                 |                       | Symbol                                   | Min                          | Мах                                        | Unit                                 |
|------------------|---|---------------------------------------------|-----------------------|------------------------------------------|------------------------------|--------------------------------------------|--------------------------------------|
|                  |   | Operating frequency <sup>3</sup>            | Master<br>Slave       | f <sub>op</sub><br>f <sub>op</sub>       | f <sub>Bus</sub> /2048<br>dc | f <sub>Bus</sub> /2<br>f <sub>Bus</sub> /4 | Hz                                   |
| 1                |   | Cycle time                                  | Master<br>Slave       | <sup>t</sup> scк<br><sup>t</sup> scк     | 2<br>4                       | 2048<br>—                                  | t <sub>cyc</sub><br>t <sub>cyc</sub> |
| 2                |   | Enable lead time                            | Master<br>Slave       | t <sub>Lead</sub><br>t <sub>Lead</sub>   | <br>1/2                      | 1/2                                        | t <sub>SCK</sub><br>t <sub>SCK</sub> |
| 3                |   | Enable lag time                             | Master<br>Slave       | t <sub>Lag</sub><br>t <sub>Lag</sub>     | <br>1/2                      | 1/2                                        | t <sub>scк</sub><br>t <sub>scк</sub> |
| 4                |   | Clock (SPSCK) high time<br>Master and Slave | 9                     | t <sub>scкн</sub>                        | 1/2 t <sub>SCK</sub> – 25    | _                                          | ns                                   |
| 5                |   | Clock (SPSCK) low time and Slave            | Master                | t <sub>SCKL</sub>                        | 1/2 t <sub>SCK</sub> – 25    | _                                          | ns                                   |
| 6                |   | Data setup time (inputs)                    | Master<br>Slave       | t <sub>SI(M)</sub><br>t <sub>SI(S)</sub> | 30<br>30                     |                                            | ns<br>ns                             |
| 7                |   | Data hold time (inputs)                     | Master<br>Slave       | t <sub>HI(M)</sub><br>t <sub>HI(S)</sub> | 30<br>30                     |                                            | ns<br>ns                             |
| 8                |   | Access time, slave <sup>4</sup>             |                       | t <sub>A</sub>                           | 0                            | 40                                         | ns                                   |
| 9                |   | Disable time, slave <sup>5</sup>            |                       | t <sub>dis</sub>                         | —                            | 40                                         | ns                                   |
| 10               |   | Data setup time (outputs                    | s)<br>Master<br>Slave | t <sub>SO</sub><br>t <sub>SO</sub>       | 25<br>25                     |                                            | ns<br>ns                             |
| 11               |   | Data hold time (outputs)                    | Master<br>Slave       | t <sub>HO</sub><br>t <sub>HO</sub>       | -10<br>-10                   |                                            | ns<br>ns                             |

 Table 3-14. SPI Electrical Characteristic

<sup>1</sup> Refer to Figure 3-15 through Figure 3-18.

<sup>3</sup> Maximum baud rate must be limited to 5 MHz due to pad input characteristics.

- <sup>4</sup> Time to data active from high-impedance state.
- <sup>5</sup> Hold time to high-impedance state.

 $<sup>^2\,</sup>$  All timing is shown with respect to 20% V\_{DD} and 70% V\_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.



**Chapter 3 Electrical Characteristics and Timing Specifications** 



NOTES:

1.  $\overline{SS}$  output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 3-15. SPI Master Timing (CPHA = 0)



1.  $\overline{SS}$  output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 3-16. SPI Master Timing (CPHA = 1)



**Chapter 3 Electrical Characteristics and Timing Specifications** 

## 3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

### 3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

| Parameter                         | Symbol              | Conditions                                                          | Frequency      | f <sub>OSC</sub> /f <sub>BUS</sub> | Level <sup>1</sup><br>(Max) | Unit |
|-----------------------------------|---------------------|---------------------------------------------------------------------|----------------|------------------------------------|-----------------------------|------|
|                                   | $V_{RE\_TEM}$       | $V_{DD} = 5.0 V$<br>$T_A = +25^{\circ}C$<br>package type<br>80 LQFP | 0.15 – 50 MHz  | 32kHz crystal                      | 30                          | dBμV |
|                                   | Radiated emissions, |                                                                     | 50 – 150 MHz   | 20MHz Bus                          | 32                          |      |
| Radiated emissions,               |                     |                                                                     | 150 – 500 MHz  |                                    | 19                          |      |
| electric field and magnetic field |                     |                                                                     | 500 – 1000 MHz |                                    | 7                           |      |
|                                   |                     |                                                                     | IEC Level      |                                    | l <sup>2</sup>              | —    |
|                                   |                     |                                                                     | SAE Level      |                                    | l <sup>2</sup>              | —    |

Table 3-16. Radiated Emissions

<sup>1</sup> Data based on laboratory test results.

<sup>2</sup> IEC and SAE Level Maximums: I=36 dBuV.



# Chapter 5 Revision History

To provide the most up-to-date information, the version of our documents on the World Wide Web will be the most current. Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:

http://freescale.com/

The following revision history table summarizes changes contained in this document.

| Revision<br>Number | Revision<br>Date | Description of Changes                                                                                                                                                                                                                                                                  |
|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                  | 9/2008           | Initial release of a separate data sheet and reference manual. Removed PTH7, clarified SPI as one full and one master-only, added missing RoHS logo, updated back cover addresses, and incorporated general release edits and updates. Added some finalized electrical characteristics. |
| 2                  | 6/2009           | Added the parameter "Bandgap Voltage Reference" in Table 3-6<br>Updated Section 3.13, "EMC Performance" and corrected Table 3-16.<br>Updated disclaimer page.                                                                                                                           |
| 3                  | 9/2010           | Added 48-pin QFN package information.                                                                                                                                                                                                                                                   |
| 4                  | 8/2011           | Updated the t <sub>RTI</sub> in the Table 3-12.<br>Updated the RI <sub>DD</sub> in the Table 3-7.                                                                                                                                                                                       |