

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08ac96mfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number		
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D		
MC9S08AC16					
MC9S908AC60					
MC9S08AC128					
MC9S08AW60					
MC9S08GB60A					
MC9S08GT16A					
MC9S08JM16					
MC9S08JM60					
MC9S08LL16					
MC9S08QE128					
MC9S08QE32					
MC9S08RG60					
MCF51CN128					
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D		
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D		
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D		
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D		
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D		
MC9S08QB8					
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D		
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D		
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D		
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D		
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D		
MC9S08QG8	1				
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D		

Table of Contents

Chapter 1 Device Overview
1.1 MCU Block Diagram
Chapter 2
Pins and Connections
2.1 Device Pin Assignment
Chapter 3
Electrical Characteristics and Timing Specifications11
3.1 Introduction
3.2 Parameter Classification
3.3 Absolute Maximum Ratings11
3.4 Thermal Characteristics
3.5 ESD Protection and Latch-Up Immunity
3.6 DC Characteristics14
3.7 Supply Current Characteristics
3.8 ADC Characteristics

3.9	Internal Clock Generation Module Characteristics 24
	3.9.1 ICG Frequency Specifications
3.10	AC Characteristics
	3.10.1 Control Timing 27
	3.10.2 Timer/PWM (TPM) Module Timing 28
3.1	SPI Characteristics
3.12	2 FLASH Specifications
3.10	B EMC Performance
	3.13.1 Radiated Emissions 34
Chapter	4
Ord	ering Information and Mechanical Drawings
4.1	Ordering Information
4.2	Orderable Part Numbering System
4.3	Mechanical Drawings
Chapter	5
Rev	ision History

Related Documentation

MC9S08AC128 Series Reference Manual (MC9S08AC128RM)

contains extensive product information including modes of operartion, memory, resets and interrupts, register definitions, port pins, CPU, and all peripheral module information.

For the latest version of the documentation, check our website at: http://www.freescale.com

Chapter 2 Pins and Connections

This section describes signals that connect to package pins. It includes pinout diagrams, recommended system connections, and detailed discussions of signals.

2.1 Device Pin Assignment

Figure 2-1 shows the 80-pin LQFP package pin assignments for the MC9S08AC128 Series device.

Figure 2-1. MC9S08AC128 Series in 80-Pin LQFP Package

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Pin Number		Lowest <	Priority	> Highest		
80	64	48	44	Port Pin	Alt 1	Alt 2
54	42	30	27	PTD0	AD1P8	
55	43	31	28	PTD1	AD1P9	
56	44	32	29	V _{DDAD}		
57	45	33	30	V _{SSAD}		
58	46	34	31	PTD2	KBI1P5	AD1P10
59	47	35	32	PTD3	KBI1P6	AD1P11
60	48	36	33	PTG3	KBI1P3	
61	49	37		PTG4	KBI1P4	
62	50	_		PTD4	TPM2CLK	AD1P12
63	51	_	_	PTD5	AD1P13	
64	52	_	_	PTD6	TPM1CLK	AD1P14
65	53	_		PTD7	KBI1P7	AD1P15
66	54	38	34	V _{REFH}		
67	55	39	35	V _{REFL}		
68	56	40	36	BKGD	MS	
69	57	41	37	PTG5	XTAL	
70	58	42	38	PTG6	EXTAL	
71	59	43	39	V _{SS}		
72	—	_	_	V _{DD} (NC)		
73	60	44	40	PTC0	SCL1	
74	61	45	41	PTC1	SDA1	
75	—	_	_	PTH4	SPSCK2	
76	_	_	_	PTH5	MOSI2	
77	—	—	—	PTH6	MISO2	
78	62	46	42	PTC2	MCLK	
79	63	47	43	PTC3	TxD2	
80	64	48	44	PTC5	RxD2	

Table 2-4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, TPM1CLK, and TPM2CLK options are configured via software; out of reset, TPM1CLK, TPM2CLK, and TPMCLK are available to TPM1, TPM2, and TPM3 respectively.

3.1 Introduction

This section contains electrical and timing specifications.

3.2 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 3-1. Parameter Classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 3-2 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 125	°C
Maximum junction temperature	TJ	150	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP 1s 2s2p 64-pin QFP 48-pin QFN 44-pin LQFP 1s 2s2p 1s 2s	θ _{JA}	61 47 57 43 81 28 73 56	°C/W

Table 3-3.	Thermal	Characteristics

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

³ 1s - Single Layer Board, one signal layer

⁴ 2s2p - Four Layer Board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 3-1

where:

 $\begin{array}{l} T_A = \text{Ambient temperature, }^\circ\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, }^\circ\text{C/W} \\ P_D = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins} - \text{user determined} \end{array}$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 3-2

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Solving equations 1 and 2 for K gives:

K = P_D × (T_A + 273°C) +
$$θ_{JA}$$
 × (P_D)² Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits and JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	-	3	
Latebup	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 3-4. ESD and Latch-up Test Conditions

Table 3-5. ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	±2000	-	V
2	С	Machine Model (MM)	V _{MM}	±200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	± 500	-	V
4	С	Latch-up Current at T _A = 125°C	I _{LAT}	± 100	_	mA

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typ ¹	Мах	Unit
1	—	Operating Voltage	V _{DD}	2.7	—	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.6 mA 5 V, I _{Load} = -0.4 mA 3 V, I _{Load} = -0.24 mA		V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8		 	V
	Ρ	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -10 mA 3 V, I _{Load} = -3 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.4 mA	⊻ОН	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8		 	v
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.6 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 0.4 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.24 \text{ mA}$	М		 	1.5 1.5 0.8 0.8	V
	Р	Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA 3 V, I _{Load} = 3 mA 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 0.4 mA	VOL			1.5 1.5 0.8 0.8	V
4	Ρ	Output high current — Max total I _{OH} for all ports 5V 3V	I _{ОНТ}			100 60	mA
5	Ρ	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}		_	100 60	mA
6	Ρ	Input high $2.7v \le V_{DD} 4.5v$	V_{H}	$0.70 \mathrm{xV}_{\mathrm{DD}}$	_	—	
		voltage; all $4.5v \le V_{DD} \le 5.5v$	V _{IH}	0.65xV _{DD}	—	—	V
7	Ρ	Input low voltage; all digital inputs	V _{IL}			$0.35 \times V_{DD}$	
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$			mV
9	Ρ	Input leakage current; input only pins ²	_{In}	_	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ²	I _{OZ}	—	0.1	1	μA
11	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input Capacitance; all non-supply pins	C _{In}		_	8	pF
14	D	RAM retention voltage	V _{RAM}	_	0.6	1.0	V
15	P	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
16	D	POR rearm time	t _{POR}	10	—	—	μs
17	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVDH}	4.2 4.3	4.3 4.4	4.4 4.5	v
18	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	V

Table 3-6. DC Characteristics

MC9S08AC128 MCU Series Data Sheet, Rev. 4

3.7 Supply Current Characteristics

Table 3-7. Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typ ¹	Max	Unit	Тетр (°С)
		Bun supply current measured at		5	1.1	1.4 ³	_	_
	C	(CPU clock = 2 MHz, f _{Bus} = 1 MHz)	RI _{DD}	3	1.0	1.2	mA	–40 to 125°C
0	~	Bun supply current ⁴ measured at		5	6.7	8.0 ⁵		
2	C	$(CPU clock = 16 MHz, f_{Bus} = 8 MHz)$	RI _{DD}	3	6	7.5	mA	–40 to 125°C
		Stop2 mode supply current		5	1.0	25	μA	-40 to 85°C
3	С				1.0	100		-40101250
			S2I _{DD}	3	0.8	23 150	μA	–40 to 85°C –40 to 125°C
				5	1.0	27	μA	-40 to 85°C
4	С	Stop3 mode supply current	601		1.2	100		-40 10 125 C
			331 _{DD}	3	1.0	25 170	μA	–40 to 85°C –40 to 125°C
				5	300	500	nA	-40 to 85°C
5	С	RTI adder to stop2 or stop3 ⁶	0001			500		-40 to 125°C
			S23I _{DDRTI}	3	300	500 500	nA	–40 to 85°C –40 to 125°C
-				5	110	180	μA	-40 to 85°C
6	С	LVD adder to stop3 (LVDE = LVDSE = 1)	S3I			100		-4010125
			DDLVD	3	90	160 160	μA	–40 to 85°C –40 to 125°C
7	6	Adder to stop3 for oscillator enabled ⁷		5.0	F	8	μA	–40 to 85°C
/		(OSCSTEN =1)	S3I _{DDOSC}	5,3	5	8	μA	–40 to 125°C

¹ Typical values are based on characterization data at 25°C unless otherwise stated. See Figure 3-5 through Figure 3-7 for typical curves across voltage/temperature.

² All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins

³ Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.

⁴ All modules except ADC active, ICG configured for FBE, and does not include any dc loads on port pins

⁵ Every unit tested to this parameter. All other values in the Max column are guaranteed by characterization.

 6 Most customers are expected to find that auto-wakeup from stop2 or stop3 can be used instead of the higher current wait mode. Wait mode typical is 560 μ A at 3 V with f_{Bus} = 1 MHz.

⁷ Values given under the following conditions: low range operation (RANGE = 0) with a 32.768kHz crystal, low power mode (HGO = 0), clock monitor disabled (LOCD = 1).

Chapter 3 Electrical Characteristics and Timing Specifications

Note: External clock is square wave supplied by function generator. For FEE mode, external reference frequency is 4 MHz Figure 3-5. Typical Run I_{DD} for FBE and FEE Modes, I_{DD} vs. V_{DD}

V_{DD} (V) Figure 3-7. Typical Stop3 I_{DD}

MC9S08AC128 Series Data Sheet, Rev. 4

3.8 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Мах	Unit
Cumply voltage	Absolute	V _{DDAD}	2.7	_	5.5	V
Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV
Ref voltage high		V _{REFH}	2.7	V _{DDAD}	V _{DDAD}	V
Ref voltage low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V
Supply current	Stop, reset, module off	I _{DDAD}	_	0.011	1	μA
Input voltage		V _{ADIN}	V _{REFL}	—	V _{REFH}	V
Input capacitance		C _{ADIN}	_	4.5	5.5	pF
Input resistance		R _{ADIN}	—	3	5	kΩ
Analog source resistance External to MCU	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}	_	_	5 10	kΩ
	8-bit mode (all valid f _{ADCK})		_	—	10	
	High speed (ADLPC = 0)	f	0.4	—	8.0	MLI-
ADC conversion clock frequency	Low power (ADLPC = 1)	IADCK	0.4	—	4.0	
Temp Sensor	-40°C to 25°C		_	3.266	—	mV/∘
Slope	25°C to 125°C			3.638	—	С
Temp Sensor Voltage	25°C	V _{TEMP25}	_	1.396		V

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² dc potential difference.

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		133	_	μΑ
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		Т	I _{DDAD}	_	218	_	μΑ
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}	_	327	_	μΑ
Supply current		Т	I _{DDAD}	—	582	—	μA
ADLPC = 0 ADLSMP = 0 ADCO = 1	$V_{DDAD} \le 5.5 V$	Р		_	—	1	mA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
$t_{ADACK} = 1/f_{ADACK}$	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (Including sample time)	Short sample (ADLSMP = 0)	P t _{ADC}		—	20	—	ADCK cycles
	Long sample (ADLSMP = 1)			—	40	_	
Sample time	Short sample (ADLSMP = 0)	P t _{ADS} —		—	3.5	_	ADCK
	Long sample (ADLSMP = 1)			23.5	—	cycles	
Total unadjusted error	10-bit mode	Р	E _{TUE}	—	±1	±2.5	LSB ²
Includes quantization	8-bit mode			—	±0.5	±1.0	
	10-bit mode	Р	DNL	—	±0.5	±1.0	LSB ²
Differential non-linearity	8-bit mode			—	±0.3	±0.5	
	Monotoni	city and	d no-missing	g-codes gu	aranteed		
Integral non-linearity	10-bit mode	С	INL	_	±0.5	±1.0	LSB ²
	8-bit mode			—	±0.3	±0.5	
Zero-scale error	10-bit mode	Р	E _{ZS}	_	±0.5	±1.5	LSB ²
V _{ADIN} = V _{SSA}	8-bit mode			—	±0.5	±0.5	
Full-scale error	10-bit mode	Р	E _{FS}	_	±0.5	±1.5	LSB ²
$V_{ADIN} = V_{DDA}$	8-bit mode				±0.5	±0.5	
Quantization error	10-bit mode	D	EQ			±0.5	LSB ²
	8-bit mode					±0.5	

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

Characteristic	Conditions		Symb	Min	Typ ¹	Max	Unit
Input leakage error	10-bit mode	D	E _{IL}	—	±0.2	±2.5	LSB ²
Pad leakage ³ * R _{AS}	8-bit mode			—	±0.1	±1	

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

¹ Typical values assume V_{DDAD} = 5.0V, Temp = 25C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Based on input pad leakage current. Refer to pad electricals.

3.9 Internal Clock Generation Module Characteristics

Table 3-10. ICG DC Electrical Specifications	(Temperature Range = -40 to 125°C Ambient)
--	--

Characteristic	Symbol	Min	Typ ¹	Max	Unit
Load capacitors	C ₁ C ₂		See No	ote ²	
Feedback resistor Low range (32k to 100 kHz) High range (1M – 16 MHz)	R _F		10 1		ΜΩ ΜΩ
Series resistor Low range Low Gain (HGO = 0) High Gain (HGO = 1) High range Low Gain (HGO = 0) High Gain (HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		0 100 0 10 20		kΩ

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C or is typical recommended value.

² See crystal or resonator manufacturer's recommendation.

- ³ Loss of reference frequency is the reference frequency detected internally, which transitions the ICG into self-clocked mode if it is not in the desired range.
- ⁴ Loss of DCO frequency is the DCO frequency detected internally, which transitions the ICG into FLL bypassed external mode (if an external reference exists) if it is not in the desired range.
- ⁵ This parameter is characterized before qualification rather than 100% tested.
- ⁶ Proper PC board layout procedures must be followed to achieve specifications.
- ⁷ This specification applies to the period of time required for the FLL to lock after entering FLL engaged internal or external modes. If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- ⁸ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{ICGOUT}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry via V_{DDA} and V_{SSA} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.
- ⁹ See Figure 3-9

Average of Percentage Error

Figure 3-9. Internal Oscillator Deviation from Trimmed Frequency

Chapter 3 Electrical Characteristics and Timing Specifications

Figure 3-14. Timer Input Capture Pulse

Chapter 3 Electrical Characteristics and Timing Specifications

3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
	V_{RE_TEM}	$V_{DD} = 5.0 V$	0.15 – 50 MHz	32kHz crystal	30	dBμV
Radiated emissions, electric field and magnetic field		T _A = +25°C package type 80 LQFP 5	50 – 150 MHz	20MHz Bus	32	
			150 – 500 MHz		19	
			500 – 1000 MHz		7	
			IEC Level		l ²	—
			SAE Level		l ²	—

Table 3-16. Radiated Emissions

¹ Data based on laboratory test results.

² IEC and SAE Level Maximums: I=36 dBuV.

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information

This section contains ordering numbers for MC9S08AC128 Series devices. See below for an example of the device numbering system.

Device Number	Device Number FLASH RAM		Available Packages ¹
Device Humber			Туре
MC9S08AC128	128K	8K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP
MC9S08AC96	96K	6K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP

Table 4-1. Device Numbering System

¹ See Table 4-2 for package information.

4.2 Orderable Part Numbering System

4.3 Mechanical Drawings

Table 4-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08AC128 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 4-2, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 4-2) in the "Enter Keyword" search box at the top of the page.

Pin Count	Туре	Designator	Document No.
80	LQFP	LK	98ASS23237W
64	QFP	FU	98ASB42844B
48	QFN	FT	98ARH99048A
44	LQFP	FG	98ASS23225W

Table 4-2. Package Information

