

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08ac96mlke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8			
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

Chapter 1 Device Overview

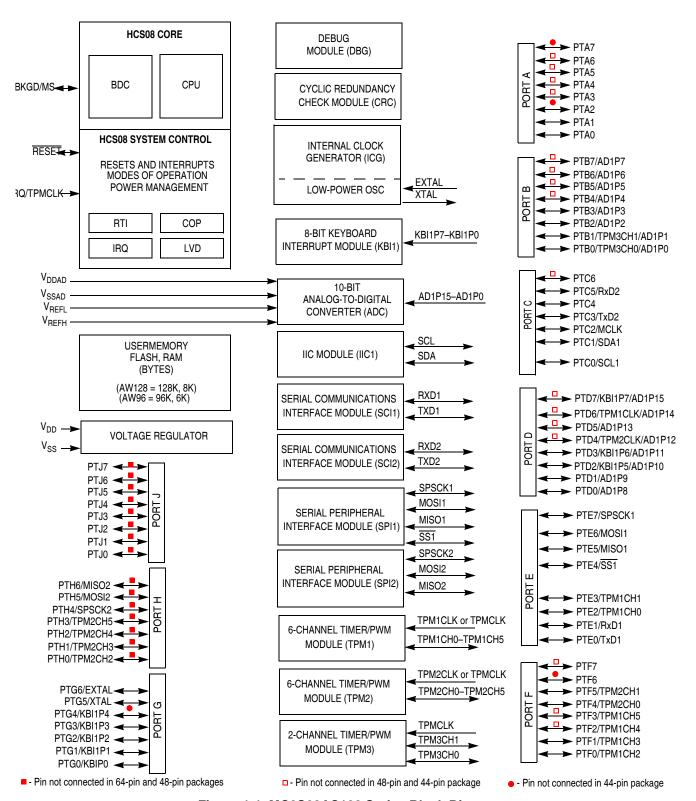


Figure 1-1. MC9S08AC128 Series Block Diagram

Chapter 2 Pins and Connections

Figure 2-2 shows the 64-pin package assignments for the MC9S08AC128 Series devices.

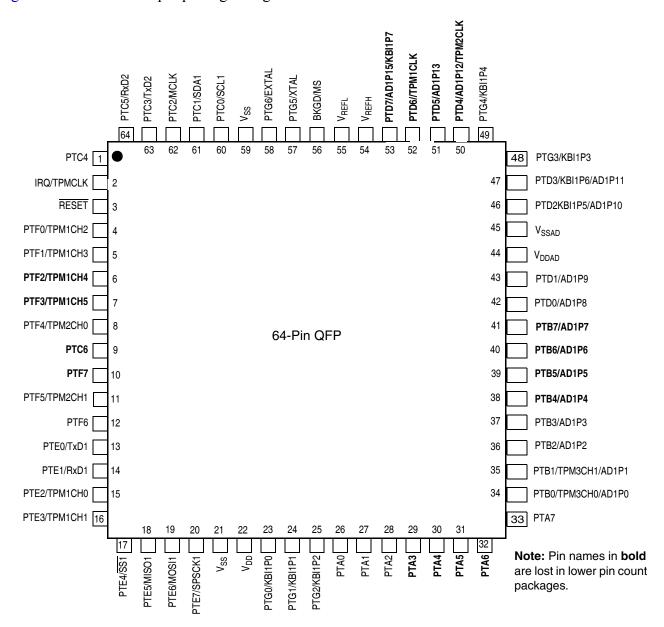


Figure 2-2. MC9S08AC128 Series in 64-Pin QFP Package

Table 2-4. Pin Availability by Package Pin-Count (continued)

Pin Number		Lowest <	Priority	> Highest		
80	64	48	44	Port Pin	Port Pin Alt 1	
13	_	_	_	PTJ0		
14	_	_	_	PTJ1		
15	_	_	_	PTJ2		
16	_	_	_	PTJ3		
17	13	9	8	PTE0	TxD1	
18	14	10	9	PTE1	RxD1	
19	15	11	10	PTE2	TPM1CH0	
20	16	12	11	PTE3	TPM1CH1	
21	17	13	12	PTE4	SS1	
22	18	14	13	PTE5	MISO1	
23	19	15	14	PTE6	MOSI1	
24	20	16	15	PTE7	SPSCK1	
25	21	17	16	V_{SS}		
26	22	18	17	V_{DD}		
27	_	_	_	PTJ4		
28	_	_	_	PTJ5		
29	_	_	_	PTJ6		
30	_	_	_	PTJ7		
31	23	19	18	PTG0	KBI1P0	
32	24	20	19	PTG1	KBI1P1	
33	25	21	20	PTG2	KBI1P2	
34	26	22	21	PTA0		
35	27	23	22	PTA1		
36	28	24		PTA2		
37	29	_		PTA3		
38	30	_	_	PTA4		
39	31	_	_	PTA5		
40	32	_	_	PTA6		
41	33	25	_	PTA7		
42	-	_	_	PTH0	TPM2CH2	
43	_	_	_	PTH1	TPM2CH3	
44			_	PTH2	TPM2CH4	
45	_	_	_	PTH3	TPM2CH5	
46	34	26	23	PTB0	TPM3CH0	AD1P0
47	35	27	24	PTB1	TPM3CH1	AD1P1
48	36	28	25	PTB2	AD1P2	
49	37	29	26	PTB3	AD1P3	
50	38	_	_	PTB4	AD1P4	
51	39	_	_	PTB5	AD1P5	
52	40	_		PTB6	AD1P6	
53	41	_	_	PTB7	AD1P7	

Chapter 2 Pins and Connections

Table 2-4. Pin Availability by Package Pin-Count (continued)

	Pin N	umber		Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
54	42	30	27	PTD0	AD1P8	
55	43	31	28	PTD1	AD1P9	
56	44	32	29	V_{DDAD}		
57	45	33	30	V _{SSAD}		
58	46	34	31	PTD2	KBI1P5	AD1P10
59	47	35	32	PTD3	KBI1P6	AD1P11
60	48	36	33	PTG3	KBI1P3	
61	49	37	_	PTG4	KBI1P4	
62	50	_		PTD4	TPM2CLK	AD1P12
63	51	_	_	PTD5	AD1P13	
64	52	_	_	PTD6	TPM1CLK	AD1P14
65	53	_	_	PTD7	KBI1P7	AD1P15
66	54	38	34	V_{REFH}		
67	55	39	35	V_{REFL}		
68	56	40	36	BKGD	MS	
69	57	41	37	PTG5	XTAL	
70	58	42	38	PTG6	EXTAL	
71	59	43	39	V_{SS}		
72	_	_		V _{DD} (NC)		
73	60	44	40	PTC0	SCL1	
74	61	45	41	PTC1	SDA1	
75	_	_	_	PTH4	SPSCK2	
76	_	_	_	PTH5	MOSI2	
77	_	_	_	PTH6	MISO2	
78	62	46	42	PTC2	MCLK	
79	63	47	43	PTC3	TxD2	
80	64	48	44	PTC5	RxD2	

TPMCLK, TPM1CLK, and TPM2CLK options are configured via software; out of reset, TPM1CLK, TPM2CLK, and TPMCLK are available to TPM1, TPM2, and TPM3 respectively.

Table 3-2. Absolute Maximum Ratings

Rating	Symbol	Value	Unit
Supply voltage	V_{DD}	-0.3 to + 5.8	٧
Input voltage	V _{In}	-0.3 to $V_{DD} + 0.3$	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C

Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^{^{2}\,}$ All functional non-supply pins are internally clamped to $\rm V_{SS}$ and $\rm V_{DD}.$

Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current ($V_{In} > V_{DD}$) is greater than I_{DD} , the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H -40 to 125	°C
Maximum junction temperature	T _J	150	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP 1s 2s2p 64-pin QFP 1s		61 47 57	
2s2p 48-pin QFN 1s	θ_{JA}	81 82	°C/W
2s2p 44-pin LQFP 1s 2s2p		28 73 56	

Table 3-3. Thermal Characteristics

The average chip-junction temperature (T_I) in ${}^{\circ}C$ can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 3-1

where:

 $T_A = Ambient temperature, °C$

 θ_{1A} = Package thermal resistance, junction-to-ambient, °C/W

$$P_D = P_{int} + P_{I/O}$$

 $P_{int} = I_{DD} \times V_{DD}$, Watts — chip internal power

 $P_{I/O}$ = Power dissipation on input and output pins — user determined

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_D = K \div (T_A + 273^{\circ}C)$$
 Eqn. 3-2

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

Junction to Ambient Natural Convection

³ 1s - Single Layer Board, one signal layer

^{4 2}s2p - Four Layer Board, 2 signal and 2 power layers

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits and JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	ries Resistance $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	es Resistance R1 1500 age Capacitance C 100 ber of Pulse per pin - 3 es Resistance R1 0 age Capacitance C 200 ber of Pulse per pin - 3 num input voltage limit -2.5		
Latch-up	Minimum input voltage limit		– 2.5	V
Laterrup	Maximum input voltage limit		7.5	٧

Table 3-4. ESD and Latch-up Test Conditions

Table 3-5. ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	± 2000	_	V
2	С	Machine Model (MM)	V _{MM}	± 200	_	V
3	С	Charge Device Model (CDM)	V _{CDM}	± 500	_	V
4	С	Latch-up Current at T _A = 125°C	I _{LAT}	± 100	_	mA

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

MC9S08AC128 Series Data Sheet, Rev. 4

Table 3-6. DC Characteristics

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
1	_	Operating Voltage	V _{DD}	2.7	_	5.5	V
2	P	Output high voltage — Low Drive (PTxDSn = 0) $5 \text{ V, I}_{Load} = -2 \text{ mA} \\ 3 \text{ V, I}_{Load} = -0.6 \text{ mA} \\ 5 \text{ V, I}_{Load} = -0.4 \text{ mA} \\ 3 \text{ V, I}_{Load} = -0.24 \text{ mA} \\ \end{aligned}$		V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8	_ _ _	_ _ _ _	
	Р	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -10 mA 3 V, I _{Load} = -3 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.4 mA	V _{OH}	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8	_ _ _ _	_ _ _ _	V
3	Р	Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V, I}_{Load} = 2 \text{ mA} \\ 3 \text{ V, I}_{Load} = 0.6 \text{ mA} \\ 5 \text{ V, I}_{Load} = 0.4 \text{ mA} \\ 3 \text{ V, I}_{Load} = 0.24 \text{ mA} \\ \end{cases}$	V	1111		1.5 1.5 0.8 0.8	V
	P	Output low voltage — High Drive (PTxDSn = 1) 5 V, I_{Load} = 10 mA 3 V, I_{Load} = 3 mA 5 V, I_{Load} = 2 mA 3 V, I_{Load} = 0.4 mA	V _{OL}	1111		1.5 1.5 0.8 0.8	>
4	Р	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}			100 60	mA
5	Р	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}	_	_	100 60	mA
6	Р	Input high $2.7v \le V_{DD} 4.5v$	V _{IH}	0.70xV _{DD}	_	_	
		voltage; all digital inputs $4.5v \le V_{DD} \le 5.5v$	V _{IH}	0.65xV _{DD}	_	_	V
7	Р	Input low voltage; all digital inputs	V _{IL}	_	_	0.35 x V _{DD}	
8	Р	Input hysteresis; all digital inputs	V _{hys}	0.06 x V _{DD}			mV
9	Р	Input leakage current; input only pins ²	II _{In} I	_	0.1	1	μΑ
10	Р	High Impedance (off-state) leakage current ²	ll _{OZ} l	_	0.1	1	μΑ
11	Р	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
12	Р	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input Capacitance; all non-supply pins	C _{In}	_	_	8	pF
14	D	RAM retention voltage	V_{RAM}	_	0.6	1.0	V
15	Р	POR rearm voltage	V_{POR}	0.9	1.4	2.0	V
16	D	POR rearm time	t _{POR}	10	_	_	μS
17	Р	Low-voltage detection threshold — high range V_{DD} falling V_{DD} rising	V _{LVDH}	4.2 4.3	4.3 4.4	4.4 4.5	V
18	Р	Low-voltage detection threshold — low range V_{DD} falling V_{DD} rising	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	٧

Table 3-6. DC Characteristics (continued)

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
19	Р	Low-voltage warning threshold — high range V_{DD} falling V_{DD} rising		4.2 4.3	4.3 4.4	4.4 4.5	٧
20	Р	Low-voltage warning threshold — low range V _{DD} falling V _{DD} rising	V _{LVWL}	2.48 2.54	2.56 2.62	2.64 2.7	V
21	Р	Low-voltage inhibit reset/recover hysteresis 5V 3V	V _{hys}	_ _	100 60		mV
22	Р	Bandgap Voltage Reference ⁵	V_{BG}	1.170	1.200	1.230	V

Typical values are based on characterization data at 25°C unless otherwise stated.

Measured with $V_{In} = V_{DD}$.

Factory trimmed at $V_{DD} = 3.0 \text{ V}$, Temperature = 25 °C.

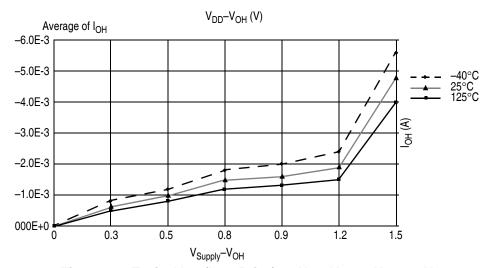


Figure 3-1. Typical I_{OH} (Low Drive) vs V_{DD} - V_{OH} at V_{DD} = 3 V

² Measured with $V_{In} = V_{DD}$ or V_{SS} .

 $^{^{3}}$ Measured with $V_{In} = V_{SS}$.

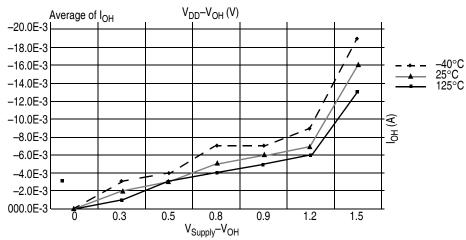


Figure 3-2. Typical I_{OH} (High Drive) vs $V_{DD}-V_{OH}$ at $V_{DD}=3~V$

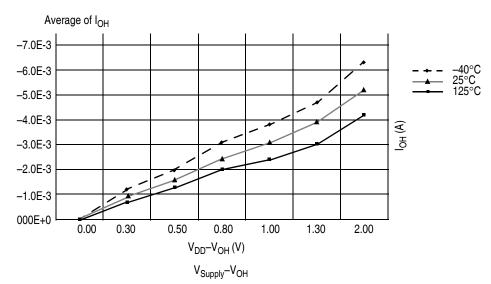


Figure 3-3. Typical I_{OH} (Low Drive) vs $V_{DD}-V_{OH}$ at $V_{DD}=5~V$

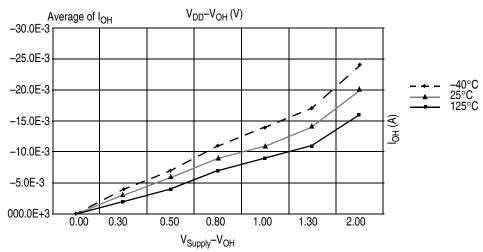


Figure 3-4. Typical I_{OH} (High Drive) vs V_{DD} – V_{OH} at V_{DD} = 5 V

MC9S08AC128 MCU Series Data Sheet, Rev. 4

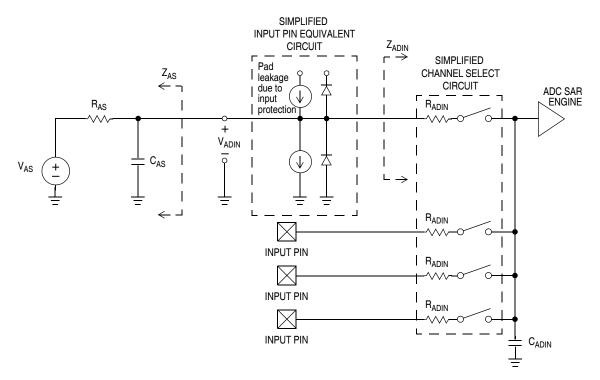


Figure 3-8. ADC Input Impedance Equivalency Diagram

3.9.1 ICG Frequency Specifications

Table 3-11. ICG Frequency Specifications

 $(V_{DDA} = V_{DDA} \text{ (min) to } V_{DDA} \text{ (max)}, \text{ Temperature Range} = -40 \text{ to } 125^{\circ}\text{C Ambient})$

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
		Oscillator crystal or resonator (REFS = 1) (Fundamental mode crystal or ceramic resonator) Low range High range	flo	32	_	100	kHz
1		High Gain, FBE (HGO = 1,CLKS = 10) High Gain, FEE (HGO = 1,CLKS = 11) Low Power, FBE (HGO = 0, CLKS = 10) Low Power, FEE (HGO = 0, CLKS = 11)	fhi_byp fhi_eng flp_byp flp_eng	1 2 1 2	_	16 10 8 8	MHz MHz MHz MHz
2		Input clock frequency (CLKS = 11, REFS = 0) Low range High range	f _{lo} f _{hi_eng}	32 2		100 10	kHz MHz
3		Input clock frequency (CLKS = 10, REFS = 0)	f _{Extal}	0	_	40	MHz
4		Internal reference frequency (untrimmed)	ficgirclk	182.25	243	303.75	kHz
5		Duty cycle of input clock (REFS = 0)	t _{dc}	40	_	60	%
6		Output clock ICGOUT frequency CLKS = 10, REFS = 0 All other cases	fісдоит	f _{Extal} (min) f _{lo} (min)	_	f _{Extal} (max) f _{ICGDCLKmax} (max)	MHz
7		Minimum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmin}	3	_		MHz
8		Maximum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmax}		_	40	MHz
9		Self-clock mode (ICGOUT) frequency ²	f _{Self}	f _{ICGDCLKmin}		f _{ICGDCLKmax}	MHz
10		Self-clock mode reset (ICGOUT) frequency	f _{Self_reset}	5.5	8	10.5	MHz
11		Loss of reference frequency ³ Low range High range	f _{LOR}	5 50		25 500	kHz
12		Loss of DCO frequency ⁴	f _{LOD}	0.5		1.5	MHz
13		Crystal start-up time ^{5, 6} Low range High range	t CSTL t CSTH		430 4		ms
14		FLL lock time ^{, 7} Low range High range	t _{Lockl} t _{Lockh}			2 2	ms
15		FLL frequency unlock range	n _{Unlock}	-4*N		4*N	counts
16		FLL frequency lock range	n _{Lock}	−2*N		2*N	counts
17		ICGOUT period jitter, ^{, 8} measured at f _{ICGOUT} Max Long term jitter (averaged over 2 ms interval)	C _{Jitter}	_		0.2	% f _{ICG}
18		Internal oscillator deviation from trimmed frequency ⁹ $V_{DD} = 2.7 - 5.5 \text{ V, (constant temperature)}$ $V_{DD} = 5.0 \text{ V} \pm 10\%, -40^{\circ} \text{ C to } 125^{\circ}\text{C}$	ACC _{int}		±0.5 ±0.5	±2 ±2	%

 $V_{DD} = 5.0 \text{ V} \pm 10\%$, -40° C to 125° C $V_{DD} = 5.0$ V, $V_{DD} = 5.0$ V, V

MC9S08AC128 MCU Series Data Sheet, Rev. 4

² Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.

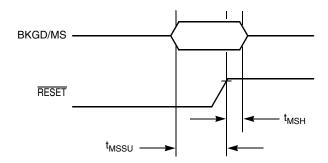


Figure 3-11. Active Background Debug Mode Latch Timing

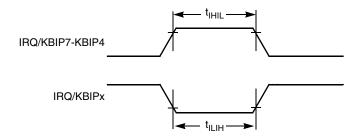


Figure 3-12. IRQ/KBIPx Timing

3.10.2 Timer/PWM (TPM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

Function	Symbol	Min	Max	Unit
External clock frequency	f _{TPMext}	dc	f _{Bus} /4	MHz
External clock period	t _{TPMext}	4	_	t _{cyc}
External clock high time	t _{clkh}	1.5	_	t _{cyc}
External clock low time	t _{clkl}	1.5	_	t _{cyc}
Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 3-13. TPM Input Timing

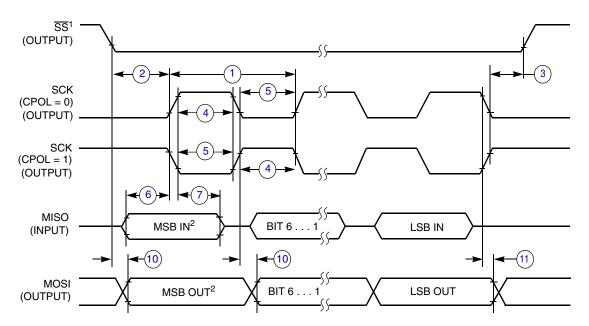
3.11 SPI Characteristics

Table 3-14 and Figure 3-15 through Figure 3-18 describe the timing requirements for the SPI system.

Table 3-14. SPI Electrical Characteristic

Num ¹	С	Characteristic ²		Symbol	Min	Max	Unit
		Operating frequency ³	Master Slave	f _{op} f _{op}	f _{Bus} /2048 dc	f _{Bus} /2 f _{Bus} /4	Hz
1		Cycle time	Master Slave	t _{SCK}	2 4	2048 —	t _{cyc}
2		Enable lead time	Master Slave	t _{Lead} t _{Lead}	 1/2	1/2 —	t _{SCK}
3		Enable lag time	Master Slave	t _{Lag} t _{Lag}	_ 1/2	1/2 —	t _{SCK}
4		Clock (SPSCK) high time Master and Slave	1	t _{sckh}	1/2 t _{SCK} – 25	_	ns
5		Clock (SPSCK) low time I and Slave	Master	t _{SCKL}	1/2 t _{SCK} – 25	_	ns
6		Data setup time (inputs)	Master Slave	t _{SI(M)} t _{SI(S)}	30 30		ns ns
7		Data hold time (inputs)	Master Slave	t _{HI(M)} t _{HI(S)}	30 30		ns ns
8		Access time, slave ⁴		t _A	0	40	ns
9		Disable time, slave ⁵		t _{dis}	_	40	ns
10		Data setup time (outputs)	Master Slave	t _{SO} t _{SO}	25 25		ns ns
11		Data hold time (outputs)	Master Slave	t _{HO}	-10 -10		ns ns

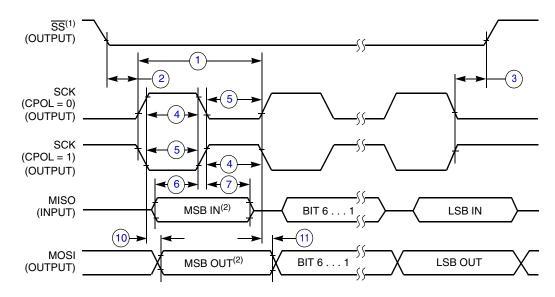
¹ Refer to Figure 3-15 through Figure 3-18.


All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

³ Maximum baud rate must be limited to 5 MHz due to pad input characteristics.

⁴ Time to data active from high-impedance state.

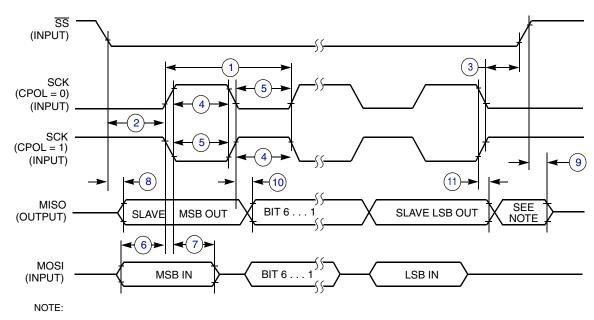
⁵ Hold time to high-impedance state.



NOTES:

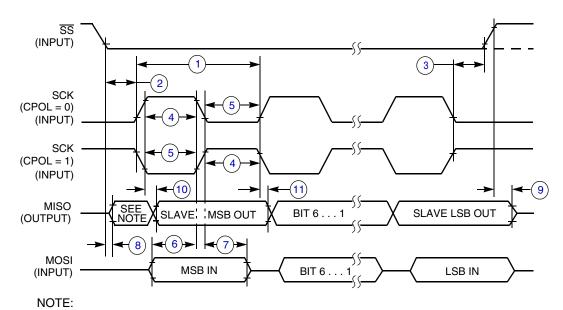
- 1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 3-15. SPI Master Timing (CPHA = 0)


NOTES:

- 1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 3-16. SPI Master Timing (CPHA = 1)



Chapter 3 Electrical Characteristics and Timing Specifications

1. Not defined but normally MSB of character just received

Figure 3-17. SPI Slave Timing (CPHA = 0)

1. Not defined but normally LSB of character just received

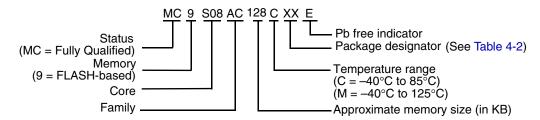
Figure 3-18. SPI Slave Timing (CPHA = 1)

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information

This section contains ordering numbers for MC9S08AC128 Series devices. See below for an example of the device numbering system.

 Device Number
 Memory
 Available Packages¹


 FLASH
 RAM
 Type

 MC9S08AC128
 128K
 8K
 80 LQFP, 64 QFP, 48-QFN, 44-LQFP

 MC9S08AC96
 96K
 6K
 80 LQFP, 64 QFP, 48-QFN, 44-LQFP

Table 4-1. Device Numbering System

4.2 Orderable Part Numbering System

4.3 Mechanical Drawings

Table 4-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08AC128 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 4-2, or
- Open a browser to the Freescale® website (http://www.freescale.com), and enter the appropriate document number (from Table 4-2) in the "Enter Keyword" search box at the top of the page.

Pin Count	Туре	Designator	Document No.
80	LQFP	LK	98ASS23237W
64	QFP	FU	98ASB42844B
48	QFN	FT	98ARH99048A
44	LQFP	FG	98ASS23225W

Table 4-2. Package Information

MC9S08AC128 Series Data Sheet, Rev. 4

¹ See Table 4-2 for package information.

Chapter 4 Ordering Information and Mechanical Drawings

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

 $\label{eq:Freescale} \textit{Freescale} \ \textit{Iogo} \ \textit{are trademarks of Freescale Semiconductor},$

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2009, All rights reserved.

MC9S08AC128, Rev. 4 08/2011