E·XFL

Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	54
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-QFP
Supplier Device Package	64-QFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pc9s08ac128cfue

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor Data Sheet: Technical Data

Document Number: MC9S08AC128 Rev. 4, 8/2011

MC9S08AC128 8-Bit Microcontroller Data Sheet

8-Bit HCS08 Central Processor Unit (CPU)

- 40-MHz HCS08 CPU (central processor unit)
- 20-MHz internal bus frequency
- HC08 instruction set with added BGND, CALL and RTC instructions
- Memory Management Unit to support paged memory.
- Linear Address Pointer to allow direct page data
 accesses of the entire memory map

Development Support

- Background debugging system
- Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module)
- On-chip in-circuit emulator (ICE) Debug module containing three comparators and nine trigger modes. Eight deep FIFO for storing change-of-flow addresses and event-only data. Supports both tag and force breakpoints.

Memory Options

- Up to 128K FLASH read/program/erase over full operating voltage and temperature
- Up to 8K Random-access memory (RAM)
- Security circuitry to prevent unauthorized access to RAM and FLASH contents

Clock Source Options

 Clock source options include crystal, resonator, external clock, or internally generated clock with precision NVM trimming using ICG module

System Protection

- Optional computer operating properly (COP) reset with option to run from independent internal clock source or bus clock
- CRC module to support fast cyclic redundancy checks on system memory
- Low-voltage detection with reset or interrupt
- Illegal opcode detection with reset
- Master reset pin and power-on reset (POR)

MC9S08AC128

917A-03

824D-02

840B-01

Power-Saving Modes

• Wait plus two stops

Peripherals

- ADC 16-channel, 10-bit resolution, 2.5 μs conversion time, automatic compare function, temperature sensor, internal bandgap reference channel
- SCIx Two serial communications interface modules supporting LIN 2.0 Protocol and SAE J2602 protocols; Full duplex non-return to zero (NRZ); Master extended break generation; Slave extended break detection; Wakeup on active edge
- **SPIx** One full and one master-only serial peripheral interface modules; Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; Master or Slave mode; MSB-first or LSB-first shifting
- IIC Inter-integrated circuit bus module; Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10 bit addressing
- TPMx One 2-channel and two 6-channel 16-bit timer/pulse-width modulator (TPM) modules: Selectable input capture, output compare, and edge-aligned PWM capability on each channel. Each timer module may be configured for buffered, centered PWM (CPWM) on all channels
- **KBI** 8-pin keyboard interrupt module

Input/Output

- Up to 70 general-purpose input/output pins
- Software selectable pullups on input port pins
- Software selectable drive strength and slew rate control on ports when used as outputs

Package Options

- 80-pin low-profile quad flat package (LQFP)
- 64-pin quad flat package (QFP)
- 48-pin quad flat no-lead package (QFN)
- 44-pin low-profile quad flat package (LQFP)

This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2007-2011. All rights reserved.

Chapter 1 Device Overview

The MC9S08AC128 is a member of the low-cost, high-performance HCS08 Family of 8-bit microcontroller units (MCUs). The MC9S08AC128 uses the enhanced HCS08 core.

1.1 MCU Block Diagram

The block diagram in Figure 1-1 shows the structure of the MC9S08AC128 Series MCU.

Chapter 2 Pins and Connections

Figure 2-2 shows the 64-pin package assignments for the MC9S08AC128 Series devices.

Figure 2-2. MC9S08AC128 Series in 64-Pin QFP Package

Chapter 2 Pins and Connections

	Pin N	umbei	r	Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
1	1	1	1	PTC4		
2	2	2	2	IRQ	TPMCLK ¹	
3	3	3	3	RESET		
4	4	4	4	PTF0	TPM1CH2	
5	5	5	5	PTF1	TPM1CH3	
6	6	_	_	PTF2	TPM1CH4	
7	7	—	—	PTF3	TPM1CH5	
8	8	6	6	PTF4	TPM2CH0	
9	9	_	_	PTC6		
10	10	—	—	PTF7		
11	11	7	7	PTF5	TPM2CH1	
12	12	8	_	PTF6		

Table 2-4. Pin Availability by Package Pin-Count

MC9S08AC128 MCU Series Data Sheet, Rev. 4

	Pin N	umber		Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Port Pin Alt 1	
13	—	_	_	PTJ0		
14		_	_	PTJ1		
15	_	—	_	PTJ2		
16	—	—	_	PTJ3		
17	13	9	8	PTE0	TxD1	
18	14	10	9	PTE1	RxD1	
19	15	11	10	PTE2	TPM1CH0	
20	16	12	11	PTE3	TPM1CH1	
21	17	13	12	PTE4	SS1	
22	18	14	13	PTE5	MISO1	
23	19	15	14	PTE6	MOSI1	
24	20	16	15	PTE7	SPSCK1	
25	21	17	16	V _{SS}		
26	22	18	17	V _{DD}		
27	—	_	_	PTJ4		
28	_	_	_	PTJ5		
29	—	—	_	PTJ6		
30	—	—	_	PTJ7	PTJ7	
31	23	19	18	PTG0	KBI1P0	
32	24	20	19	PTG1	KBI1P1	
33	25	21	20	PTG2	KBI1P2	
34	26	22	21	PTA0		
35	27	23	22	PTA1		
36	28	24		PTA2		
37	29	_	_	PTA3		
38	30	_	_	PTA4		
39	31	_	_	PTA5		
40	32	_	_	PTA6		
41	33	25		PTA7		
42	—	_		PTH0	TPM2CH2	
43	—			PTH1	TPM2CH3	
44	_	_	_	PTH2	TPM2CH4	
45	_	_	_	PTH3	TPM2CH5	
46	34	26	23	PTB0	TPM3CH0	AD1P0
47	35	27	24	PTB1	TPM3CH1	AD1P1
48	36	28	25	PTB2	AD1P2	
49	37	29	26	PTB3	AD1P3	
50	38	—	_	PTB4	AD1P4	
51	39	—	_	PTB5	AD1P5	
52	40	—		PTB6	AD1P6	
53	41	—	—	PTB7	AD1P7	

Table 2-4. Pin Availability by Package Pin-Count (continued)

Solving equations 1 and 2 for K gives:

$$K = P_D \times (T_A + 273^{\circ}C) + \theta_{JA} \times (P_D)^2$$
 Eqn. 3-3

where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving equations 1 and 2 iteratively for any value of T_A .

3.5 ESD Protection and Latch-Up Immunity

Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits and JEDEC Standard for Non-Automotive Grade Integrated Circuits. During the device qualification ESD stresses were performed for the Human Body Model (HBM), the Machine Model (MM) and the Charge Device Model (CDM).

A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Model	Description	Symbol	Value	Unit
	Series Resistance	R1	1500	Ω
Human Body	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	
	Series Resistance	R1	0	Ω
Machine	Storage Capacitance	С	200	pF
	Number of Pulse per pin	-	3	
Latebup	Minimum input voltage limit		- 2.5	V
Laton-up	Maximum input voltage limit		7.5	V

Table 3-4. ESD and Latch-up Test Conditions

Table 3-5. ESD and Latch-Up Protection Characteristics

Num	С	Rating	Symbol	Min	Max	Unit
1	С	Human Body Model (HBM)	V _{HBM}	±2000	-	V
2	С	Machine Model (MM)	V _{MM}	±200	-	V
3	С	Charge Device Model (CDM)	V _{CDM}	± 500	-	V
4	С	Latch-up Current at T _A = 125°C	I _{LAT}	± 100	_	mA

3.6 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typ ¹	Мах	Unit
1	—	Operating Voltage	V _{DD}	2.7	—	5.5	V
2	Ρ	Output high voltage — Low Drive (PTxDSn = 0) 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.6 mA 5 V, I _{Load} = -0.4 mA 3 V, I _{Load} = -0.24 mA		$V_{DD} - 1.5$ $V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.8$		 	V
	Ρ	Output high voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = -10 mA 3 V, I _{Load} = -3 mA 5 V, I _{Load} = -2 mA 3 V, I _{Load} = -0.4 mA	⊻ОН	V _{DD} - 1.5 V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.8		 	v
3	Ρ	Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{\text{Load}} = 2 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.6 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 0.4 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 0.24 \text{ mA}$	М		 	1.5 1.5 0.8 0.8	V
	Р	Output low voltage — High Drive (PTxDSn = 1) 5 V, I _{Load} = 10 mA 3 V, I _{Load} = 3 mA 5 V, I _{Load} = 2 mA 3 V, I _{Load} = 0.4 mA	VOL			1.5 1.5 0.8 0.8	V
4	Ρ	Output high current — Max total I _{OH} for all ports 5V 3V	I _{ОНТ}			100 60	mA
5	Ρ	Output low current — Max total I _{OL} for all ports 5V 3V	I _{OLT}		_	100 60	mA
6	Ρ	Input high $2.7v \le V_{DD} 4.5v$	V_{H}	$0.70 \mathrm{xV}_{\mathrm{DD}}$	—	—	
		voltage; all $4.5v \le V_{DD} \le 5.5v$	V _{IH}	0.65xV _{DD}	—	—	V
7	Ρ	Input low voltage; all digital inputs	V _{IL}			$0.35 \times V_{DD}$	
8	Ρ	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$			mV
9	Ρ	Input leakage current; input only pins ²	_{In}	_	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ²	I _{OZ}	—	0.1	1	μA
11	Ρ	Internal pullup resistors ³	R _{PU}	20	45	65	kΩ
12	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input Capacitance; all non-supply pins	C _{In}		_	8	pF
14	D	RAM retention voltage	V _{RAM}	_	0.6	1.0	V
15	P	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
16	D	POR rearm time	t _{POR}	10	—	—	μs
17	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVDH}	4.2 4.3	4.3 4.4	4.4 4.5	v
18	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVDL}	2.48 2.54	2.56 2.62	2.64 2.7	V

Table 3-6. DC Characteristics

MC9S08AC128 MCU Series Data Sheet, Rev. 4

Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
19	Ρ	Low-voltage warning threshold — high range V _{DD} falling V _{DD} rising	V _{LVWH}	4.2 4.3	4.3 4.4	4.4 4.5	V
20	Ρ	Low-voltage warning threshold — low range V _{DD} falling V _{DD} rising	V _{LVWL}	2.48 2.54	2.56 2.62	2.64 2.7	V
21	Ρ	Low-voltage inhibit reset/recover hysteresis 5V 3V	V _{hys}	_	100 60	_	mV
22	Ρ	Bandgap Voltage Reference ⁵	V _{BG}	1.170	1.200	1.230	V

Table 3-6. DC Characteristics (continued)

Typical values are based on characterization data at 25°C unless otherwise stated. 1

- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with $V_{In} = V_{SS}$.
- ⁴ Measured with $V_{In} = V_{DD}$. ⁵ Factory trimmed at $V_{DD} = 3.0$ V, Temperature = 25 °C.

V_{DD} (V) Figure 3-7. Typical Stop3 I_{DD}

MC9S08AC128 Series Data Sheet, Rev. 4

3.8 ADC Characteristics

Characteristic	Conditions	Symb	Min	Typ ¹	Мах	Unit
Cumply voltage	Absolute	V _{DDAD}	2.7	_	5.5	V
Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV_{SSAD}	-100	0	+100	mV
Ref voltage high		V _{REFH}	2.7	V _{DDAD}	V _{DDAD}	V
Ref voltage low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V
Supply current	Stop, reset, module off	I _{DDAD}	—	0.011	1	μA
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V
Input capacitance		C _{ADIN}	—	4.5	5.5	pF
Input resistance		R _{ADIN}	—	3	5	kΩ
Analog source resistance External to MCU	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ
	8-bit mode (all valid f _{ADCK})		_	—	10	
	High speed (ADLPC = 0)	f	0.4	—	8.0	Muə
ADC conversion clock frequency	Low power (ADLPC = 1)	'ADCK	0.4	—	4.0	
Temp Sensor	-40°C to 25°C	m		3.266	_	mV/°
Slope	25°C to 125°C		_	3.638	_	С
Temp Sensor Voltage	25°C	V _{TEMP25}	_	1.396		V

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² dc potential difference.

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit		
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		133	_	μΑ		
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		Т	I _{DDAD}	_	218	_	μΑ		
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		327	—	μΑ		
Supply current		Т	I _{DDAD}	—	582	—	μA		
ADLPC = 0 ADLSMP = 0 ADCO = 1	$V_{DDAD} \le 5.5 V$	Р		_	—	1	mA		
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz		
$t_{ADACK} = 1/f_{ADACK}$	Low power (ADLPC = 1)			1.25	2	3.3			
Conversion time	Short sample (ADLSMP = 0)	Р	t _{ADC}	—	20	—	ADCK		
(including sample time)	Long sample (ADLSMP = 1)			—	40	_	cycles		
Sample time	Short sample (ADLSMP = 0)	Р	t _{ADS}	—	3.5	_	ADCK		
	Long sample (ADLSMP = 1)			—	23.5	—	cycles		
Total unadjusted error	10-bit mode	Р	E _{TUE}	—	±1	±2.5	LSB ²		
Includes quantization	8-bit mode			—	±0.5	±1.0			
	10-bit mode	Р	DNL	—	±0.5	±1.0	LSB ²		
Differential non-linearity	8-bit mode			—	±0.3	±0.5			
	Monotonicity and no-missing-codes guaranteed								
Integral non-linearity	10-bit mode	С	INL	_	±0.5	±1.0	LSB ²		
	8-bit mode			—	±0.3	±0.5			
Zero-scale error	10-bit mode	Р	E _{ZS}	_	±0.5	±1.5	LSB ²		
V _{ADIN} = V _{SSA}	8-bit mode			—	±0.5	±0.5			
Full-scale error	10-bit mode	Р	E _{FS}	_	±0.5	±1.5	LSB ²		
$V_{ADIN} = V_{DDA}$	8-bit mode				±0.5	±0.5			
Quantization error	10-bit mode	D	EQ			±0.5	LSB ²		
	8-bit mode					±0.5			

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Input leakage error	10-bit mode	D	E _{IL}	—	±0.2	±2.5	LSB ²
Pad leakage ³ * R _{AS}	8-bit mode			—	±0.1	±1	

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

¹ Typical values assume V_{DDAD} = 5.0V, Temp = 25C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Based on input pad leakage current. Refer to pad electricals.

3.9 Internal Clock Generation Module Characteristics

Table 3-10. ICG DC Electrical Specifications	(Temperature Range = -40 to 125°C Ambient)
--	--

Characteristic	Symbol	Min	Typ ¹	Max	Unit
Load capacitors	C ₁ C ₂	See Note ²			
Feedback resistor Low range (32k to 100 kHz) High range (1M – 16 MHz)	R _F		10 1		ΜΩ ΜΩ
Series resistor Low range Low Gain (HGO = 0) High Gain (HGO = 1) High range Low Gain (HGO = 0) High Gain (HGO = 1) $\geq 8 \text{ MHz}$ 4 MHz 1 MHz	R _S		0 100 0 10 20		kΩ

¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C or is typical recommended value.

² See crystal or resonator manufacturer's recommendation.

3.9.1 ICG Frequency Specifications

Table 3-11. ICG Frequency Specifications

$(V_{DDA} = V_{DDA} \text{ (min) to } V_{DDA} \text{ (max)}, \text{ Temperature Range} = -40 \text{ to } 125^{\circ}\text{C} \text{ Ambient})$

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1		Oscillator crystal or resonator (REFS = 1) (Fundamental mode crystal or ceramic resonator) Low range High range High Gain, FBE (HGO = 1,CLKS = 10) High Gain, FEE (HGO = 1,CLKS = 11) Low Power, FBE (HGO = 0, CLKS = 10) Low Power, FEE (HGO = 0, CLKS = 11)	flo fhi_byp fhi_eng flp_byp flp_eng	32 1 2 1 2		100 16 10 8 8	kHz MHz MHz MHz MHz
2		Input clock frequency (CLKS = 11, REFS = 0) Low range High range	f _{lo} f _{hi_eng}	32 2		100 10	kHz MHz
3		Input clock frequency (CLKS = 10, REFS = 0)	f _{Extal}	0		40	MHz
4		Internal reference frequency (untrimmed)	f _{ICGIRCLK}	182.25	243	303.75	kHz
5		Duty cycle of input clock (REFS = 0)	t _{dc}	40	—	60	%
6		Output clock ICGOUT frequency CLKS = 10, REFS = 0 All other cases	ficgout	f _{Extal} (min) f _{lo} (min)		f _{Extal} (max) f _{ICGDCLKmax} (max)	MHz
7		Minimum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmin}	3	—		MHz
8		Maximum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmax}		_	40	MHz
9		Self-clock mode (ICGOUT) frequency ²	f _{Self}	f _{ICGDCLKmin}		f _{ICGDCLKmax}	MHz
10		Self-clock mode reset (ICGOUT) frequency	f _{Self_reset}	5.5	8	10.5	MHz
11		Loss of reference frequency ³ Low range High range	f _{LOR}	5 50		25 500	kHz
12		Loss of DCO frequency ⁴	f _{LOD}	0.5		1.5	MHz
13		Crystal start-up time ^{5, 6} Low range High range	^t CSTL ^t CSTH		430 4		ms
14		FLL lock time ^{, 7} Low range High range	t _{Lockl} t _{Lockh}			2 2	ms
15		FLL frequency unlock range	n _{Unlock}	-4*N		4*N	counts
16		FLL frequency lock range	n _{Lock}	-2*N		2*N	counts
17		ICGOUT period jitter, ^{, 8} measured at f _{ICGOUT} Max Long term jitter (averaged over 2 ms interval)	C _{Jitter}	_		0.2	% f _{ICG}
18		Internal oscillator deviation from trimmed frequency ⁹ $V_{DD} = 2.7 - 5.5 V$, (constant temperature) $V_{DD} = 5.0 V \pm 10\%$, -40° C to 125°C	ACC _{int}		±0.5 ±0.5	±2 ±2	%

¹ Typical values are based on characterization data at $V_{DD} = 5.0V$, 25°C unless otherwise stated.

² Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.

Chapter 3 Electrical Characteristics and Timing Specifications

Figure 3-14. Timer Input Capture Pulse

3.11 SPI Characteristics

Table 3-14 and Figure 3-15 through Figure 3-18 describe the timing requirements for the SPI system.

Num ¹	С	Characteristic ²		Symbol	Min	Мах	Unit
		Operating frequency ³	Master Slave	f _{op} f _{op}	f _{Bus} /2048 dc	f _{Bus} /2 f _{Bus} /4	Hz
1		Cycle time	Master Slave	t _{SCK} t _{SCK}	2 4	2048 —	t _{cyc} t _{cyc}
2		Enable lead time	Master Slave	t _{Lead} t _{Lead}	 1/2	1/2	t _{SCK} t _{SCK}
3		Enable lag time	Master Slave	t _{Lag} t _{Lag}		1/2	t _{scк} t _{scк}
4		Clock (SPSCK) high time Master and Slave	e	t _{scкн}	1/2 t _{SCK} – 25	_	ns
5		Clock (SPSCK) low time and Slave	Master	t _{SCKL}	1/2 t _{SCK} – 25	_	ns
6		Data setup time (inputs)	Master Slave	t _{SI(M)} t _{SI(S)}	30 30		ns ns
7		Data hold time (inputs)	Master Slave	t _{HI(M)} t _{HI(S)}	30 30		ns ns
8		Access time, slave ⁴		t _A	0	40	ns
9		Disable time, slave ⁵		t _{dis}	—	40	ns
10		Data setup time (outputs	s) Master Slave	t _{SO} t _{SO}	25 25	—	ns ns
11		Data hold time (outputs)	Master Slave	t _{HO} t _{HO}	-10 -10		ns ns

 Table 3-14. SPI Electrical Characteristic

¹ Refer to Figure 3-15 through Figure 3-18.

³ Maximum baud rate must be limited to 5 MHz due to pad input characteristics.

- ⁴ Time to data active from high-impedance state.
- ⁵ Hold time to high-impedance state.

 $^{^2\,}$ All timing is shown with respect to 20% V_{DD} and 70% V_{DD}, unless noted; 100 pF load on all SPI pins. All timing assumes slew rate control disabled and high drive strength enabled for SPI output pins.

Chapter 3 Electrical Characteristics and Timing Specifications

NOTES:

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 3-15. SPI Master Timing (CPHA = 0)

1. \overline{SS} output mode (MODFEN = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 3-16. SPI Master Timing (CPHA = 1)

MC9S08AC128 MCU Series Data Sheet, Rev. 4

3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
	V_{RE_TEM}	$V_{DD} = 5.0 V$ $T_A = +25^{\circ}C$ package type 80 LQFP	0.15 – 50 MHz	32kHz crystal 20MHz Bus	30	dBμV
	eld		50 – 150 MHz		32	
Radiated emissions,			150 – 500 MHz		19	
electric field and magnetic field			500 – 1000 MHz		7	
			IEC Level		l ²	—
			SAE Level		l ²	—

Table 3-16. Radiated Emissions

¹ Data based on laboratory test results.

² IEC and SAE Level Maximums: I=36 dBuV.

Chapter 4 Ordering Information and Mechanical Drawings

