

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Obsolete
Core Processor	S08
Core Size	8-Bit
Speed	40MHz
Connectivity	I ² C, LINbus, SCI, SPI
Peripherals	LVD, POR, PWM, WDT
Number of I/O	69
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pc9s08ac128clke

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Package Description	Original (gold wire) package document number	Current (copper wire) package document number
MC68HC908JW32	48 QFN	98ARH99048A	98ASA00466D
MC9S08AC16			
MC9S908AC60			
MC9S08AC128			
MC9S08AW60			
MC9S08GB60A			
MC9S08GT16A			
MC9S08JM16			
MC9S08JM60			
MC9S08LL16			
MC9S08QE128			
MC9S08QE32			
MC9S08RG60			
MCF51CN128			
MC9RS08LA8	48 QFN	98ARL10606D	98ASA00466D
MC9S08GT16A	32 QFN	98ARH99035A	98ASA00473D
MC9S908QE32	32 QFN	98ARE10566D	98ASA00473D
MC9S908QE8	32 QFN	98ASA00071D	98ASA00736D
MC9S08JS16	24 QFN	98ARL10608D	98ASA00734D
MC9S08QB8			
MC9S08QG8	24 QFN	98ARL10605D	98ASA00474D
MC9S08SH8	24 QFN	98ARE10714D	98ASA00474D
MC9RS08KB12	24 QFN	98ASA00087D	98ASA00602D
MC9S08QG8	16 QFN	98ARE10614D	98ASA00671D
MC9RS08KB12	8 DFN	98ARL10557D	98ASA00672D
MC9S08QG8			
MC9RS08KA2	6 DFN	98ARL10602D	98ASA00735D

Freescale Semiconductor Data Sheet: Technical Data

Document Number: MC9S08AC128 Rev. 4, 8/2011

MC9S08AC128 8-Bit Microcontroller Data Sheet

8-Bit HCS08 Central Processor Unit (CPU)

- 40-MHz HCS08 CPU (central processor unit)
- 20-MHz internal bus frequency
- HC08 instruction set with added BGND, CALL and RTC instructions
- Memory Management Unit to support paged memory.
- Linear Address Pointer to allow direct page data
 accesses of the entire memory map

Development Support

- Background debugging system
- Breakpoint capability to allow single breakpoint setting during in-circuit debugging (plus two more breakpoints in on-chip debug module)
- On-chip in-circuit emulator (ICE) Debug module containing three comparators and nine trigger modes. Eight deep FIFO for storing change-of-flow addresses and event-only data. Supports both tag and force breakpoints.

Memory Options

- Up to 128K FLASH read/program/erase over full operating voltage and temperature
- Up to 8K Random-access memory (RAM)
- Security circuitry to prevent unauthorized access to RAM and FLASH contents

Clock Source Options

 Clock source options include crystal, resonator, external clock, or internally generated clock with precision NVM trimming using ICG module

System Protection

- Optional computer operating properly (COP) reset with option to run from independent internal clock source or bus clock
- CRC module to support fast cyclic redundancy checks on system memory
- Low-voltage detection with reset or interrupt
- Illegal opcode detection with reset
- Master reset pin and power-on reset (POR)

MC9S08AC128

917A-03

824D-02

840B-01

Power-Saving Modes

• Wait plus two stops

Peripherals

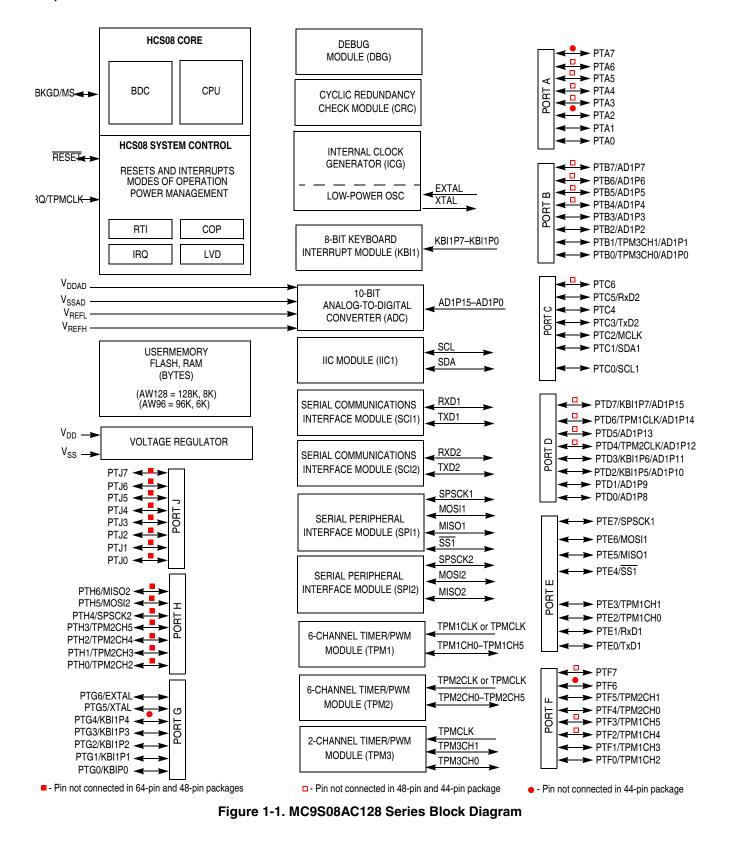
- ADC 16-channel, 10-bit resolution, 2.5 μs conversion time, automatic compare function, temperature sensor, internal bandgap reference channel
- SCIx Two serial communications interface modules supporting LIN 2.0 Protocol and SAE J2602 protocols; Full duplex non-return to zero (NRZ); Master extended break generation; Slave extended break detection; Wakeup on active edge
- **SPIx** One full and one master-only serial peripheral interface modules; Full-duplex or single-wire bidirectional; Double-buffered transmit and receive; Master or Slave mode; MSB-first or LSB-first shifting
- IIC Inter-integrated circuit bus module; Up to 100 kbps with maximum bus loading; Multi-master operation; Programmable slave address; Interrupt driven byte-by-byte data transfer; supports broadcast mode and 10 bit addressing
- TPMx One 2-channel and two 6-channel 16-bit timer/pulse-width modulator (TPM) modules: Selectable input capture, output compare, and edge-aligned PWM capability on each channel. Each timer module may be configured for buffered, centered PWM (CPWM) on all channels
- **KBI** 8-pin keyboard interrupt module

Input/Output

- Up to 70 general-purpose input/output pins
- Software selectable pullups on input port pins
- Software selectable drive strength and slew rate control on ports when used as outputs

Package Options

- 80-pin low-profile quad flat package (LQFP)
- 64-pin quad flat package (QFP)
- 48-pin quad flat no-lead package (QFN)
- 44-pin low-profile quad flat package (LQFP)


This document contains information on a new product. Specifications and information herein are subject to change without notice.

© Freescale Semiconductor, Inc., 2007-2011. All rights reserved.

Chapter 1 Device Overview

MC9S08AC128 MCU Series Data Sheet, Rev. 4

	Pin N	umber	r	Lowest <	> Highest	
80	64	48	44	Port Pin	Alt 1	Alt 2
13	—	_	_	PTJ0		
14	—	_	_	PTJ1		
15	_	_	_	PTJ2		
16	—	—	_	PTJ3		
17	13	9	8	PTE0	TxD1	
18	14	10	9	PTE1	RxD1	
19	15	11	10	PTE2	TPM1CH0	
20	16	12	11	PTE3	TPM1CH1	
21	17	13	12	PTE4	SS1	
22	18	14	13	PTE5	MISO1	
23	19	15	14	PTE6	MOSI1	
24	20	16	15	PTE7	SPSCK1	
25	21	17	16	V _{SS}		
26	22	18	17	V _{DD}		
27	—			PTJ4		
28	—			PTJ5		
29	—			PTJ6		
30	—	_	_	PTJ7		
31	23	19	18	PTG0	KBI1P0	
32	24	20	19	PTG1	KBI1P1	
33	25	21	20	PTG2	KBI1P2	
34	26	22	21	PTA0		
35	27	23	22	PTA1		
36	28	24		PTA2		
37	29	—		PTA3		
38	30	_		PTA4		
39	31	_		PTA5		
40	32	—	_	PTA6		
41	33	25	_	PTA7		
42	—	_	_	PTH0	TPM2CH2	
43	_	_	—	PTH1	TPM2CH3	
44	—	_		PTH2	TPM2CH4	
45	—	_		PTH3	TPM2CH5	
46	34	26	23	PTB0	TPM3CH0	AD1P0
47	35	27	24	PTB1	TPM3CH1	AD1P1
48	36	28	25	PTB2	AD1P2	
49	37	29	26	PTB3	AD1P3	
50	38	_	_	PTB4	AD1P4	
51	39	—	—	PTB5	AD1P5	
52	40	—	—	PTB6	AD1P6	
53	41	—	—	PTB7	AD1P7	

Table 2-4. Pin Availability by Package Pin-Count (continued)

	Pin N	umber		Lowest <	Priority	> Highest
80	64	48	44	Port Pin	Alt 1	Alt 2
54	42	30	27	PTD0	AD1P8	
55	43	31	28	PTD1	AD1P9	
56	44	32	29	V _{DDAD}		
57	45	33	30	V _{SSAD}		
58	46	34	31	PTD2	KBI1P5	AD1P10
59	47	35	32	PTD3	KBI1P6	AD1P11
60	48	36	33	PTG3	KBI1P3	
61	49	37	_	PTG4	KBI1P4	
62	50	_	_	PTD4	TPM2CLK	AD1P12
63	51	—	_	PTD5	AD1P13	
64	52	_	_	PTD6	TPM1CLK	AD1P14
65	53	_	_	PTD7	KBI1P7	AD1P15
66	54	38	34	V _{REFH}		
67	55	39	35	V _{REFL}		
68	56	40	36	BKGD	MS	
69	57	41	37	PTG5	XTAL	
70	58	42	38	PTG6	EXTAL	
71	59	43	39	V _{SS}		
72	—			V _{DD} (NC)		
73	60	44	40	PTC0	SCL1	
74	61	45	41	PTC1	SDA1	
75	—	—	—	PTH4	SPSCK2	
76	—	—		PTH5	MOSI2	
77	—	—	—	PTH6	MISO2	
78	62	46	42	PTC2	MCLK	
79	63	47	43	PTC3	TxD2	
80	64	48	44	PTC5	RxD2	

Table 2-4. Pin Availability by Package Pin-Count (continued)

¹ TPMCLK, TPM1CLK, and TPM2CLK options are configured via software; out of reset, TPM1CLK, TPM2CLK, and TPMCLK are available to TPM1, TPM2, and TPM3 respectively.

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to + 5.8	V
Input voltage	V _{In}	– 0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ¹ , ² , ³	I _D	± 25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to +150	°C

Table 3-2. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and V_{DD}

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

3.4 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. In order to take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	T _L to T _H –40 to 125	°C
Maximum junction temperature	TJ	150	°C
Thermal resistance ^{1,2,3,4}			
80-pin LQFP 1s 2s2p 64-pin QFP 48-pin QFN 1s 2s2p 44-pin LQFP 1s 2s2p	θ _{JA}	61 47 57 43 81 28 73 56	°C/W

Table 3-3	. Thermal	Characteristics

¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

² Junction to Ambient Natural Convection

³ 1s - Single Layer Board, one signal layer

⁴ 2s2p - Four Layer Board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 3-1

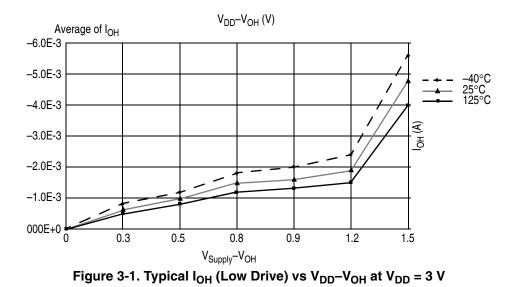
where:

 $\begin{array}{l} T_A = \text{Ambient temperature, }^\circ\text{C} \\ \theta_{JA} = \text{Package thermal resistance, junction-to-ambient, }^\circ\text{C/W} \\ P_D = P_{int} + P_{I/O} \\ P_{int} = I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} = \text{Power dissipation on input and output pins} - \text{user determined} \end{array}$

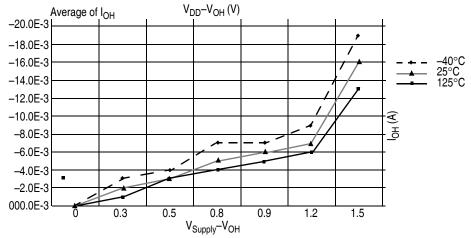
For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273^{\circ}C)$$
 Eqn. 3-2

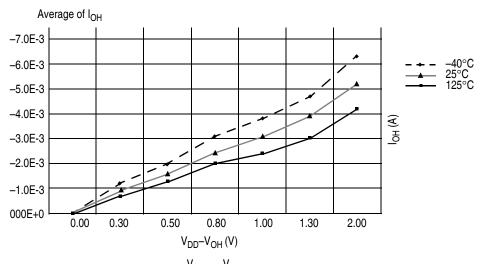
MC9S08AC128 MCU Series Data Sheet, Rev. 4

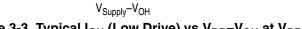


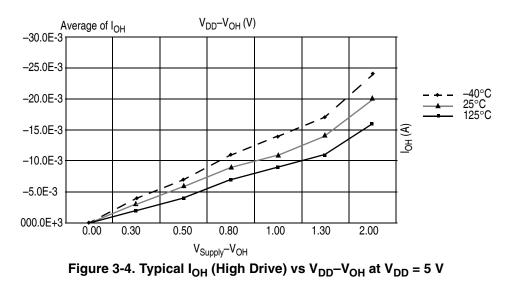
Num	С	Parameter	Symbol	Min	Typ ¹	Max	Unit
19	Ρ	Low-voltage warning threshold — high range V _{DD} falling V _{DD} rising		4.2 4.3	4.3 4.4	4.4 4.5	v
20	Ρ	Low-voltage warning threshold — low range V _{DD} falling V _{DD} rising		2.48 2.54	2.56 2.62	2.64 2.7	v
21	Ρ	Low-voltage inhibit reset/recover hysteresis 5V 3V	V _{hys}		100 60		mV
22	Ρ	Bandgap Voltage Reference ⁵	V _{BG}	1.170	1.200	1.230	V

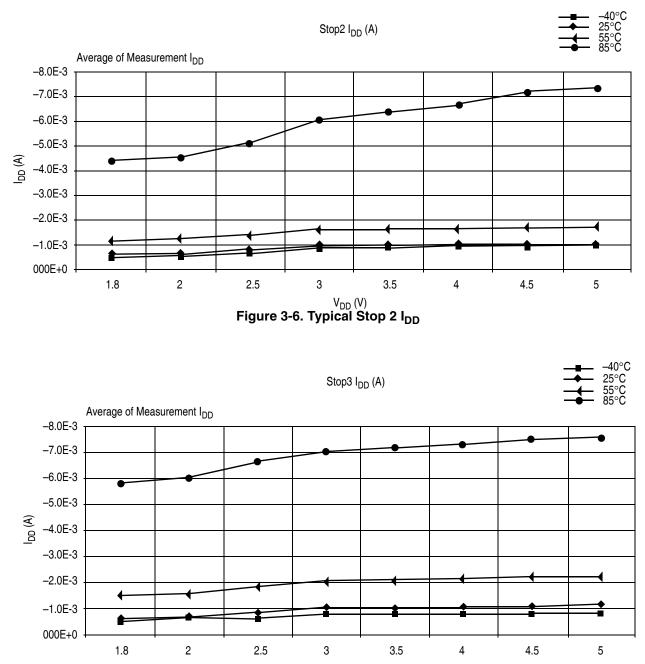

Table 3-6. DC Characteristics (continued)

Typical values are based on characterization data at 25°C unless otherwise stated. 1


- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with $V_{In} = V_{SS}$.
- ⁴ Measured with $V_{In} = V_{DD}$. ⁵ Factory trimmed at $V_{DD} = 3.0$ V, Temperature = 25 °C.







V_{DD} (V) Figure 3-7. Typical Stop3 I_{DD}

MC9S08AC128 Series Data Sheet, Rev. 4

3.8 ADC Characteristics

Table 3-8. 5 Volt 10-bit ADC	Operating Conditions
------------------------------	-----------------------------

Characteristic	Conditions	Symb	Min	Typ ¹	Max	Unit
Supply voltage	Absolute	V _{DDAD}	2.7	_	5.5	V
Supply voltage	Delta to V _{DD} (V _{DD} -V _{DDAD}) ²	ΔV_{DDAD}	-100	0	+100	mV
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSAD}) ²	ΔV _{SSAD}	-100	0	+100	mV
Ref voltage high		V _{REFH}	2.7	V _{DDAD}	V _{DDAD}	V
Ref voltage low		V _{REFL}	V _{SSAD}	V _{SSAD}	V _{SSAD}	V
Supply current	Stop, reset, module off	I _{DDAD}	_	0.011	1	μA
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V
Input capacitance		C _{ADIN}	_	4.5	5.5	pF
Input resistance		R _{ADIN}	_	3	5	kΩ
Analog source resistance External to MCU	10-bit mode f _{ADCK} > 4MHz f _{ADCK} < 4MHz	R _{AS}			5 10	kΩ
	8-bit mode (all valid f _{ADCK})			_	10	
	High speed (ADLPC = 0)	4	0.4		8.0	N 41 1-
ADC conversion clock frequency	Low power (ADLPC = 1)	f _{ADCK}	0.4	_	4.0	MHz
Temp Sensor	-40°C to 25°C	m		3.266	—	mV/∘
Slope	25°C to 125°C		_	3.638	—	С
Temp Sensor Voltage	25°C	V _{TEMP25}	_	1.396	_	V

¹ Typical values assume V_{DDAD} = 5.0 V, Temp = 25°C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² dc potential difference.

Chapter 3 Electrical Characteristics and Timing Specifications

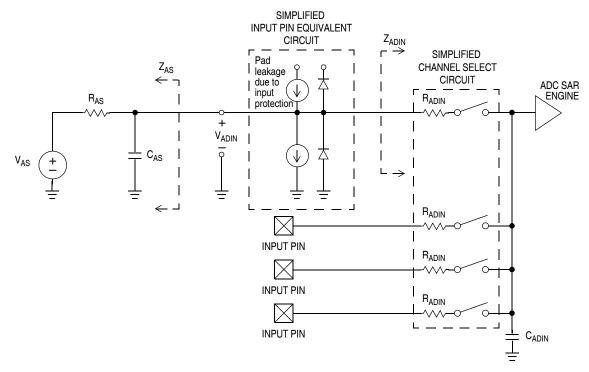


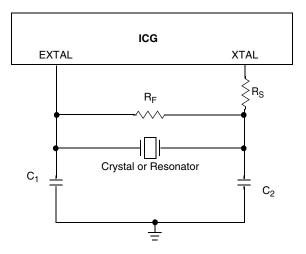
Figure 3-8. ADC Input Impedance Equivalency Diagram

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current ADLPC = 1 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}		133		μΑ
Supply current ADLPC = 1 ADLSMP = 0 ADCO = 1		Т	I _{DDAD}	_	218	_	μΑ
Supply current ADLPC = 0 ADLSMP = 1 ADCO = 1		Т	I _{DDAD}	_	327	_	μΑ
Supply current		Т	I _{DDAD}	—	582	_	μA
ADLPC = 0 ADLSMP = 0 ADCO = 1	$V_{DDAD} \le 5.5 V$	Р		_	_	1	mA
ADC asynchronous clock source	High speed (ADLPC = 0)	Р	f _{ADACK}	2	3.3	5	MHz
$t_{ADACK} = 1/f_{ADACK}$	Low power (ADLPC = 1)			1.25	2	3.3	
Conversion time (Including sample time)	Short sample (ADLSMP = 0)	Р	t _{ADC}	—	20	_	ADCK
	Long sample (ADLSMP = 1)			_	40	_	cycles
Sample time	Short sample (ADLSMP = 0)	Р	t _{ADS}	_	3.5	_	ADCK
	Long sample (ADLSMP = 1)				23.5	_	cycles
Total unadjusted error	10-bit mode	Р	E _{TUE}		±1	±2.5	LSB ²
Includes quantization	8-bit mode			_	±0.5	±1.0	
	10-bit mode	Р	DNL	—	±0.5	±1.0	LSB ²
Differential non-linearity	8-bit mode			_	±0.3	±0.5	
	Monotoni	city and	d no-missing	g-codes gu	aranteed		
Integral non-linearity	10-bit mode	С	INL	—	±0.5	±1.0	LSB ²
Integral non-intearity	8-bit mode			_	±0.3	±0.5	
Zero-scale error	10-bit mode	Р	E _{ZS}	—	±0.5	±1.5	LSB ²
$V_{ADIN} = V_{SSA}$	8-bit mode			_	±0.5	±0.5	
Full-scale error	10-bit mode	Р	E _{FS}	_	±0.5	±1.5	LSB ²
$V_{ADIN} = V_{DDA}$	8-bit mode			_	±0.5	±0.5	
Quantization error	10-bit mode	D	EQ	_	—	±0.5	LSB ²
	8-bit mode					±0.5	

Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

Chapter 3 Electrical Characteristics and Timing Specifications

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Input leakage error	10-bit mode	D	E _{IL}	_	±0.2	±2.5	LSB ²
Pad leakage ³ * R _{AS}	8-bit mode			_	±0.1	±1	


Table 3-9. 5 Volt 10-bit ADC Characteristics ($V_{REFH} = V_{DDAD}$, $V_{REFL} = V_{SSAD}$)

¹ Typical values assume V_{DDAD} = 5.0V, Temp = 25C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Based on input pad leakage current. Refer to pad electricals.

3.9 Internal Clock Generation Module Characteristics

Characteristic	Symbol	Min	Typ ¹	Max	Unit
Load capacitors	C ₁ C ₂	See Note ²			
Feedback resistor Low range (32k to 100 kHz) High range (1M – 16 MHz)	R _F		10 1		ΜΩ ΜΩ
Series resistor Low range Low Gain (HGO = 0) High Gain (HGO = 1) High range Low Gain (HGO = 0) High Gain (HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S	 	0 100 0 10 20		kΩ

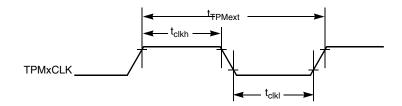
¹ Typical values are based on characterization data at V_{DD} = 5.0V, 25°C or is typical recommended value.

² See crystal or resonator manufacturer's recommendation.

3.9.1 ICG Frequency Specifications

Table 3-11. ICG Frequency Specifications

$(V_{DDA} = V_{DDA} \text{ (min) to } V_{DDA} \text{ (max)}, \text{ Temperature Range} = -40 \text{ to } 125^{\circ}\text{C} \text{ Ambient})$


Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
		Oscillator crystal or resonator (REFS = 1) (Fundamental mode crystal or ceramic resonator) Low range High range	flo	32	_	100	kHz
1		High Gain, FBE (HGO = 1,CLKS = 10) High Gain, FEE (HGO = 1,CLKS = 11) Low Power, FBE (HGO = 0, CLKS = 10) Low Power, FEE (HGO = 0, CLKS = 11)		1 2 1 2	_	16 10 8 8	MHz MHz MHz MHz
2		Input clock frequency (CLKS = 11, REFS = 0) Low range High range	f _{lo} f _{hi_eng}	32 2	_	100 10	kHz MHz
3		Input clock frequency (CLKS = 10, REFS = 0)	f _{Extal}	0	_	40	MHz
4		Internal reference frequency (untrimmed)	f _{ICGIRCLK}	182.25	243	303.75	kHz
5		Duty cycle of input clock (REFS = 0)	t _{dc}	40	_	60	%
6		Output clock ICGOUT frequency CLKS = 10, REFS = 0 All other cases	ficgout	f _{Extal} (min) f _{lo} (min)		f _{Extal} (max) f _{ICGDCLKmax} (max)	MHz
7		Minimum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmin}	3	_		MHz
8		Maximum DCO clock (ICGDCLK) frequency	f _{ICGDCLKmax}		_	40	MHz
9		Self-clock mode (ICGOUT) frequency ²	f _{Self}	f _{ICGDCLKmin}		f _{ICGDCLKmax}	MHz
10		Self-clock mode reset (ICGOUT) frequency	f _{Self_reset}	5.5	8	10.5	MHz
11		Loss of reference frequency ³ Low range High range	f _{LOR}	5 50		25 500	kHz
12		Loss of DCO frequency ⁴	f _{LOD}	0.5		1.5	MHz
13		Crystal start-up time ^{5, 6} Low range High range	^t CSTL ^t CSTH	_	430 4	_	ms
14		FLL lock time ^{, 7} Low range High range	t _{Lockl} t _{Lockh}			2 2	ms
15		FLL frequency unlock range	n _{Unlock}	-4*N		4*N	counts
16		FLL frequency lock range	n _{Lock}	–2*N		2*N	counts
17		ICGOUT period jitter, ^{, 8} measured at f _{ICGOUT} Max Long term jitter (averaged over 2 ms interval)	C _{Jitter}	_		0.2	% f _{ICG}
18		Internal oscillator deviation from trimmed frequency ⁹ $V_{DD} = 2.7 - 5.5 V$, (constant temperature) $V_{DD} = 5.0 V \pm 10\%$, -40° C to 125°C	ACC _{int}		±0.5 ±0.5	±2 ±2	%

¹ Typical values are based on characterization data at $V_{DD} = 5.0V$, 25°C unless otherwise stated.

² Self-clocked mode frequency is the frequency that the DCO generates when the FLL is open-loop.

Chapter 3 Electrical Characteristics and Timing Specifications

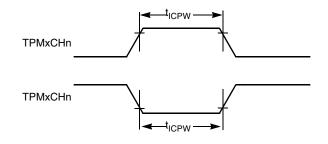


Figure 3-14. Timer Input Capture Pulse

3.12 FLASH Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply.

Num	С	Characteristic	Symbol	Min	Typ ¹	Max	Unit
1	Р	Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2	Р	Supply voltage for read operation	V _{Read}	2.7		5.5	V
3	Р	Internal FCLK frequency ²	f _{FCLK}	150 200		200	kHz
4	Р	Internal FCLK period (1/FCLK)	t _{Fcyc}	5 6.67		μs	
5	Р	Byte program time (random location) ⁽²⁾	t _{prog}	9		t _{Fcyc}	
6	С	Byte program time (burst mode) ⁽²⁾	t _{Burst}	4		t _{Fcyc}	
7	Р	Page erase time ³	t _{Page}	4000		t _{Fcyc}	
8	Р	Mass erase time ⁽²⁾	t _{Mass}	20,000		t _{Fcyc}	
9	с	Program/erase endurance ⁴ T _L to T _H = -40° C to + 125°C T = 25°C		10,000	 100,000		cycles
10	С	Data retention ⁵	t _{D_ret}	15 100 —		years	

¹ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25°C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

⁴ Typical endurance for Flash was evaluated for this product family on the 9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*

⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

Chapter 3 Electrical Characteristics and Timing Specifications

3.13 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

3.13.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal to the reported emissions levels.

Parameter	Symbol	Conditions	Frequency	f _{OSC} /f _{BUS}	Level ¹ (Max)	Unit
Radiated emissions, electric field and magnetic field	V _{RE_TEM}	$V_{DD} = 5.0 V$	0.15 – 50 MHz	32kHz crystal 20MHz Bus	30	dBμV
		T _A = +25°C package type 80 LQFP	50 – 150 MHz		32	
			150 – 500 MHz		19	
			500 – 1000 MHz		7	
			IEC Level		l ²	—
			SAE Level		l ²	—

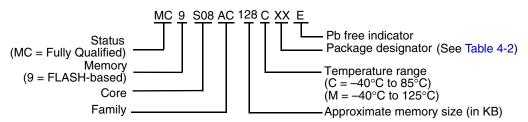
Table 3-16. Radiated Emissions

¹ Data based on laboratory test results.

² IEC and SAE Level Maximums: I=36 dBuV.

Chapter 4 Ordering Information and Mechanical Drawings

4.1 Ordering Information


This section contains ordering numbers for MC9S08AC128 Series devices. See below for an example of the device numbering system.

Device Number	Mer	mory	Available Packages ¹
Device Number	FLASH	RAM	Туре
MC9S08AC128	128K	8K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP
MC9S08AC96	96K	6K	80 LQFP, 64 QFP, 48-QFN, 44-LQFP

Table 4-1. Device Numbering System

¹ See Table 4-2 for package information.

4.2 Orderable Part Numbering System

4.3 Mechanical Drawings

Table 4-2 provides the available package types and their document numbers. The latest package outline/mechanical drawings are available on the MC9S08AC128 Series Product Summary pages at http://www.freescale.com.

To view the latest drawing, either:

- Click on the appropriate link in Table 4-2, or
- Open a browser to the Freescale[®] website (http://www.freescale.com), and enter the appropriate document number (from Table 4-2) in the "Enter Keyword" search box at the top of the page.

Pin Count	Туре	Designator	Document No.
80	LQFP	LK	98ASS23237W
64	QFP	FU	98ASB42844B
48	QFN	FT	98ARH99048A
44	LQFP	FG	98ASS23225W

Table 4-2. Package Information

