
E. Lattice Semiconductor Corporation - ISPLSI 3256A-70LQI Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - CPLDs (Complex</u> <u>Programmable Logic Devices)</u>

Embedded - CPLDs, or Complex Programmable Logic Devices, are highly versatile digital logic devices used in electronic systems. These programmable components are designed to perform complex logical operations and can be customized for specific applications. Unlike fixedfunction ICs, CPLDs offer the flexibility to reprogram their configuration, making them an ideal choice for various embedded systems. They consist of a set of logic gates and programmable interconnects, allowing designers to implement complex logic circuits without needing custom hardware.

Applications of Embedded - CPLDs

Details

Product Status	Obsolete
Programmable Type	In System Programmable
Delay Time tpd(1) Max	15 ns
Voltage Supply - Internal	4.5V ~ 5.5V
Number of Logic Elements/Blocks	32
Number of Macrocells	256
Number of Gates	11000
Number of I/O	128
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	160-BQFP
Supplier Device Package	160-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/lattice-semiconductor/isplsi-3256a-70lqi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ispLSI[®] 3256A Device Datasheet

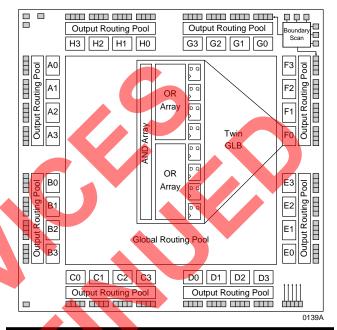
June 2010

All Devices Discontinued!

Product Change Notification (PCN) #09-10 has been issued to discontinue all devices in this data sheet.

The original datasheet pages have not been modified and do not reflect those changes. Please refer to the table below for reference PCN and current product status.

Product Line	Ordering Part Number	Product Status	Reference PCN
	ispLSI 3256A-70LQ		
ispLSI 3256A	ispLSI 3256A-90LQ	Discontinued	PCN#09-10
	ispLSI 3256A-70LQI		


ispLSI® 3256A

In-System Programmable High Density PLD

Features

- HIGH-DENSITY PROGRAMMABLE LOGIC
- 128 I/O Pins
- 11000 PLD Gates
- 384 Registers
- High Speed Global Interconnect
- Wide Input Gating for Fast Counters, State Machines, Address Decoders, etc.
- Small Logic Block Size for Random Logic
- HIGH-PERFORMANCE E²CMOS[®] TECHNOLOGY
- fmax = 90 MHz Maximum Operating Frequency
- tpd = 12 ns Propagation Delay
- TTL Compatible Inputs and Outputs
- Electrically Erasable and Reprogrammable
- Non-Volatile
- 100% Tested at Time of Manufacture
- Unused Product Term Shutdown Saves Power
- IN-SYSTEM PROGRAMMABLE
 - 5V In-System Programmable (ISP[™]) using Lattice ISP or Boundary Scan Test (IEEE 1149.1) Protocol
 - Increased Manufacturing Yields, Reduced Time-to-Market, and Improved Product Quality
 Reprogram Soldered Devices for Faster Debugging
- 100% IEEE 1149.1 BOUNDARY SCAN COMPATIBLE
- OFFERS THE EASE OF USE AND FAST SYSTEM SPEED OF PLDs WITH THE DENSITY AND FLEXIBILITY OF FIELD PROGRAMMABLE GATE ARRAYS
 - Complete Programmable Device Can Combine Glue Logic and Structured Designs
 - Enhanced Pin Locking Capability
 - Five Dedicated Clock Input Pins
 - Synchronous and Asynchronous Clocks
 - Programmable Output Slew Rate Control to Minimize Switching Noise
 - Flexible Pin Placement
 - Optimized Global Routing Pool Provides Global Interconnectivity
- ispDesignEXPERT™ LOGIC COMPILER AND COM-PLETE ISP DEVICE DESIGN SYSTEMS FROM HDL SYNTHESIS THROUGH IN-SYSTEM PROGRAMMING
 - Superior Quality of Results
 - Tightly Integrated with Leading CAE Vendor Tools
 - Productivity Enhancing Timing Analyzer, Explore Tools, Timing Simulator and ispANALYZER™
 - PC and UNIX Platforms

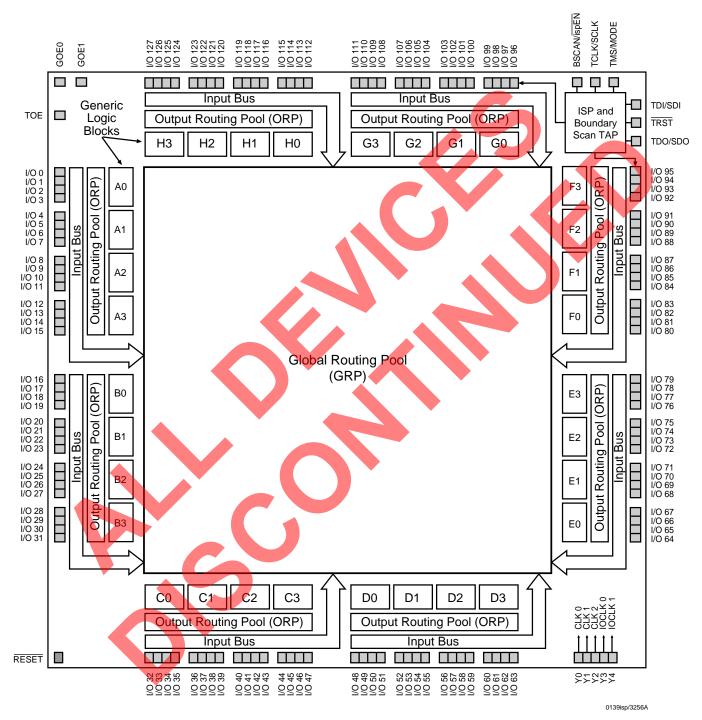
Functional Block Diagram

Description

The ispLSI 3256A is a High-Density Programmable Logic Device containing 384 Registers, 128 Universal I/O pins, five Dedicated Clock Input Pins, eight Output Routing Pools (ORP) and a Global Routing Pool (GRP) which allows complete inter-connectivity between all of these elements. The ispLSI 3256A features 5V in-system programmability and in-system diagnostic capabilities. The ispLSI 3256A offers non-volatile reprogrammability of the logic, as well as the interconnect to provide truly reconfigurable systems.

The basic unit of logic on the ispLSI 3256A device is the Twin Generic Logic Block (Twin GLB) labelled A0, A1...H3. There are a total of 32 Twin GLBs in the ispLSI 3256A device. Each Twin GLB has 24 inputs, a programmable AND array and two OR/Exclusive-OR Arrays, and eight outputs which can be configured to be either combinatorial or registered. All Twin GLB inputs come from the GRP.

May 1999


LATTICE SEMICONDUCTOR CORP., 5555 Northeast Moore Ct., Hillsboro, Oregon 97124, U.S.A. Tel. (503) 268-8000; 1-800-LATTICE; FAX (503) 268-8556; http://www.latticesemi.com

Copyright © 1999 Lattice Semiconductor Corp. All brand or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

Functional Block Diagram

Figure 1. ispLSI 3256A Functional Block Diagram

Description (continued)

All local logic block outputs are brought back into the GRP so they can be connected to the inputs of any other logic block on the device. The device also has 128 I/O cells, each of which is directly connected to an I/O pin. Each I/O cell can be individually programmed to be a combinatorial input, a registered input, a latched input, an output or a bidirectional I/O pin with 3-state control. The signal levels are TTL compatible voltages and the output drivers can source 4 mA or sink 8 mA. Each output can be programmed independently for fast or slow output slew rate to minimize overall output switching noise.

The 128 I/O cells are grouped into eight sets of 16 bits. Each of these I/O groups is associated with a logic Megablock through the use of the ORP. These groups of 16 I/O cells share one Product Term Output Enable which is associated with a specific pair of Megablocks and two Global Output Enables.

Four Twin GLBs, 16 I/O cells and one ORP are connected together to make a logic Megablock. The Megablock is defined by the resources that it shares. The outputs of the four Twin GLBs are connected to a set of 16 I/O cells by the ORP. The ispLSI 3256A device contains eight of these Megablocks.

The GRP has as its inputs the outputs from all of the Twin GLBs and all of the inputs from the bidirectional I/O cells. All of these signals are made available to the inputs of the Twin GLBs. Delays through the GRP have been equalized to minimize timing skew and logic glitching.

Clocks in the ispLSI 3256A device are provided through five dedicated clock pins. The five pins provide three clocks to the Twin GLBs and two clocks to the I/O cells.

The table at right lists key attributes of the device along with the number of resources available.

An additional feature of the ispLSI 3256A is its Boundary Scan capability, which is composed of cells connected between the on-chip system logic and the device's input and output pins. All I/O pins have associated boundary scan registers, with 3-state I/O using three boundary scan registers and inputs using one.

The ispLSI 3256A supports the full boundary scan IEEE 1149.1 specification for ISP programming and boardlevel tests via the TAP controller port. It is also fully backward compatible to the Lattice ISP interface. While fully JEDEC file and functionally compatible with the earlier ispLSI 3256 devices, the 3256A requires a modified Boundary Scan Description Library (BSDL) model to support boundary scan test and programming. As a result, existing 3256 test programs that use the boundary scan test feature must be updated to use the 3256A. Please contact Lattice Applications for the new model.

The ispLSI 3256A supports all IEEE 1149.1 mandatory instructions, which include BYPASS, EXTEST and SAMPLE.

Key Attributes of the ispLSI 3256A

Attribute	Quantity
Twin GLBs	32
Registers	384
I/O Pins	128
Global Clocks	5
Global OE	2
Test OE	1
	·

Table 1-0003A/3256

Absolute Maximum Ratings ¹

Supply Voltage V _{cc} 0.5 to +7.0V	
Input Voltage Applied2.5 to V _{CC} +1.0V	
Off-State Output Voltage Applied2.5 to V _{CC} +1.0V	
Storage Temperature65 to 150°C	
Case Temp. with Power Applied55 to 125°C	

Max. Junction Temp. (T_J) with Power Applied ... 150°C

1. Stresses above those listed under the "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation of the device at these or at any other conditions above those indicated in the operational sections of this specification is not implied (while programming, follow the programming specifications).

DC Recommended Operating Condition

SYMBOL		PA	RAMETER			MIN.	MAX.	UNITS
Vcc	Supply Voltage		Commercial	$T_A = 0^\circ C$ to	+ 70°C	4.75	5.25	V
VCC	Supply Voltage		Industrial	T _A = -40°℃	to + 85°C	4.5	5.5	V
VIL	Input Low Voltage					0	0.8	V
VIH	Input High Voltage					2.0	V _{cc} +1	V

Table 2-0005/3256A

Capacitance (T_A=25°C,f=1.0 MHz)

SYMBOL		Р					TYPICAL	UNITS	TEST CONDITIONS
C ₁	I/O Capac	itance (Co	mmercial/Ind	ustrial)		•	9	pf	$V_{CC} = 5.0V, V_{I/O} = 2.0V$
	Clock Cap	acitance					11	pf	$V_{CC} = 5.0V, V_{Y} = 2.0V$
									Table 2-0006/3256A

Data Retention Specifications

		UNITS		
Data Retention 20	_	Years		
ispLSI Erase/Reprogram Cycles 10000	-	Cycles		

Table 2-0008/3256A

Switching Test Conditions

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Time	\leq 3ns 10% to 90%
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
Output Load	See Figure 2
3-state levels are measured 0.51/ from	Table 2-0003/3256A

3-state levels are measured 0.5V from steady-state active level.

TEST CONDITION

Active High

А

_

Figure 2. Test Load Figure 2. Test Load Powice Device Output Point R2 CL CL * CL * CL includes Test Fixture and Probe Capacitance. Device CL includes Test Fixture and Probe Capacitance. Device Point * CL SpF SpF SpF SpF S2-0004A

Output Load conditions (See Figure 2)

			Та	ble 2 - 00
C	Active Low to Z at V_{OL} +0.5V	470Ω	390Ω	5pF
С	Active High to Z at V _{OH} -0.5V	8	390Ω	5pF
В	Active Low	470Ω	390Ω	35pF

R1

470Ω

 ∞

R2

390Ω

390Ω

DC Electrical Characteristics

Over Recommended Operating Conditions

SYMBOL	PARAMETER		CONDITIO	N	MIN.	TYP. ³	MAX.	UNITS
VOL	Output Low Voltage	I _{OL} = 8 mA	•		Ι	-	0.4	V
V он	Output High Voltage	I _{он} = -4 mA			2.4	Ι	Ι	V
lı∟	Input or I/O Low Leakage Current	$0V \le V_{IN} \le V_{IL}$ (Max.)			Ι	Ι	-10	μΑ
Iн	Input or I/O High Leakage Current	$3.5V \le V_{IN} \le V_{CC}$			-	-	10	μA
IL-isp	ispEN Input Low Leakage Current	$0V \le V_{IN} \le V_{IL}$			-	-	-150	μA
IIL-PU	I/O Active Pull-Up Current	$0V \le V_{IN} \le V_{IN}$	$0V \le V_{IN} \le V_{IL}$			-	-150	μA
los ¹	Output Short Circuit Current	$V_{\rm CC} = 5V, V_{\rm C}$	_{OUT} = 0.5V		-	-	-200	mA
ICC ^{2, 4}	Operating Power Supply Current	V _{IL} = 0.0V, V	V _{IH} = 3.0V	Commercial	_	200	_	mA
	operating i ower ouppry ourrent	f _{CLOCK} = 1 MHz Industrial		_	200	-	mA	
								-0007/3256A

 One output at a time for a maximum duration of one second. V_{OUT} = 0.5V was selected to avoid test problems by tester ground degradation. Characterized but not 100% tested.

2. Measured using 16 16-bit counters.

3. Typical values are at V_{CC}= 5V and T_A= 25°C.

 Maximum I_{CC} varies widely with specific device configuration and operating frequency. Refer to the Power Consumption section of this data sheet and Thermal Management section of the Lattice Semiconductor Data Book or CD-ROM to estimate maximum I_{CC}.

External Switching Characteristics^{1, 2, 3}

Over Recommended Operating Conditions

		DECODIDION ¹				70	-5		
COND.	#-	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
А	1	Data Prop. Delay, 4PT Bypass, ORP Bypass	_	12.0	_	15.0	_	20.0	ns
А	2	Data Prop. Delay	_	15.0	-	18.0	_	24.5	ns
А	3	Clk Frequency with Internal Feedback ³	90.0		77.0	_	57.0	_	MHz
-	4	Clk Frequency with Ext. Feedback $\left(\frac{1}{tsu2 + tco1}\right)$	61.0		50.0	-	37.0	_	MHz
-	5		125	1	83.0	-	63.0	-	MHz
-	6	GLB Reg. Setup Time before Clk, 4 PT Bypass	8.0	-	9.5	_	12.5	-	ns
А	7	GLB Reg. Clk to Output Delay, ORP Bypass	X	7.5	-	9.0	-1	12.0	ns
-	8	GLB Reg. Hold Time after Clk, 4 PT Byp <mark>as</mark> s	0.0	-	0.0	-	0.0	-	ns
-	9	GLB Reg. Setup Time before Clk	9.0	-	11.0		15.0	Y	ns
-	10	GLB Reg. Clk to Output Delay	_	9.0	-	10.5		14.0	ns
-	11	GLB Reg. Hold Time after Clk	0.0		0.0		0.0	۲.	ns
А	12	Ext. Reset Pin to Output Delay	_ (13.5		15 .0	5	20.0	ns
-	13	Ext. Reset Pulse Duration	6.5	T	10.0	-	13.5	N	ns
В	14	Input to Output Enable		16.0		18.0		24.5	ns
С	15	Input to Output Disable	- 1	16.0	-	18.0	2	24.5	ns
В	16	Global OE Output Enable	-	10.0	_	11.0	5	13.5	ns
С	17	Global OE Output Disable	-	10.0	-	11.0	-	13.5	ns
В	18	Test OE Output Enable	-	10.0	_	17.0	_	23.0	ns
С	19	Test OE Output Disable	_	10.0	_	17.0	-	23.0	ns
_	20	Ext. Synchronous Clk Pulse Duration, High	4.0	-	6.0	_	8.0	_	ns
	21	Ext. Synchronous Clk Pulse Duration, Low	4.0	-	6.0	_	8.0	_	ns
-	22	I/O Reg Setup Time before Ext. Sync Clk (Y3, Y4)	5.0	-	5.0	_	7.0	_	ns
-	23	I/O Reg Hold Time after Ext. Sync Clk (Y3, Y4)	0.0	-	0.0	_	0.0	-	ns
	COND. A A A - - A - - A - - A - B C B C B C B C	COND. # A 1 A 2 A 3 - 4 - 5 - 6 A 7 - 8 - 9 - 10 - 11 A 12 - 13 B 14 C 15 B 16 C 17 B 18 C 19 - 20 - 22	COND.#DESCRIPTIONA1Data Prop. Delay, 4PT Bypass, ORP BypassA2Data Prop. DelayA3Clk Frequency with Internal Feedback ³ -4Clk Frequency with Ext. Feedback ($\frac{1}{tsu2 + tco1}$)-5Clk Frequency, Max. Toggle ⁴ -6GLB Reg. Setup Time before Clk, 4 PT BypassA7GLB Reg. Clk to Output Delay, ORP Bypass-8GLB Reg. Hold Time after Clk, 4 PT Bypass-9GLB Reg. Setup Time before Clk-10GLB Reg. Clk to Output Delay-11GLB Reg. Clk to Output Delay-11GLB Reg. Hold Time after ClkA12Ext. Reset Pin to Output Delay-13Ext. Reset Pulse DurationB14Input to Output EnableC15Input to Output DisableB16Global OE Output DisableB18Test OE Output DisableC19Test OE Output Disable-20Ext. Synchronous Clk Pulse Duration, High	COND.#DESCRIPTIONMIN.A1Data Prop. Delay, 4PT Bypass, ORP Bypass-A2Data Prop. Delay-A3Clk Frequency with Internal Feedback ³ 90.0-4Clk Frequency with Ext. Feedback ($\frac{1}{15U2+1co1}$)61.0-5Clk Frequency, Max. Toggle ⁴ 125-6GLB Reg. Setup Time before Clk, 4 PT Bypass8.0A7GLB Reg. Clk to Output Delay, ORP Bypass8GLB Reg. Hold Time after Clk, 4 PT Bypass0.0-9GLB Reg. Setup Time before Clk9.0-10GLB Reg. Clk to Output Delay11GLB Reg. Clk to Output Delay11GLB Reg. Clk to Output Delay11GLB Reg. Hold Time after Clk0.0A12Ext. Reset Pin to Output Delay13Ext. Reset Pulse Duration6.5B14Input to Output Enable-C15Input to Output Disable-B18Test OE Output Enable-C19Test OE Output Disable20Ext. Synchronous Clk Pulse Duration, High4.0-21Ext. Synchronous Clk Pulse Duration, Low4.0-22I/O Reg Setup Time before Ext. Sync Clk (Y3, Y4)5.0	COND.#DESCRIPTIONMIN.MAX.A1Data Prop. Delay, 4PT Bypass, ORP Bypass-12.0A2Data Prop. Delay-15.0A3Clk Frequency with Internal Feedback ³ 90.0/-4Clk Frequency with Ext. Feedback ($\frac{1}{1502+1co1}$)61.0/-5Clk Frequency, Max. Toggle ⁴ 125/-6GLB Reg. Setup Time before Clk, 4 PT Bypass8.0/A7GLB Reg. Clk to Output Delay, ORP Bypass0.0/-8GLB Reg. Hold Time after Clk, 4 PT Bypass0.0/-9GLB Reg. Clk to Output Delay0.0/-10GLB Reg. Clk to Output Delay-9.0-11GLB Reg. Hold Time after Clk0.0/A12Ext. Reset Pin to Output Delay-13.5-13Ext. Reset Pulse Duration6.5/B14Input to Output Enable-10.0C17Global OE Output Enable-10.0C17Global OE Output Disable-10.0C19Test OE Output Disable-10.0-20Ext. Synchronous Clk Pulse Duration, High4.021Ext. Synchronous Clk Pulse Duration, High4.022I/O Reg Setup Time before Ext. Sync Clk (Y3, Y4)5.0-	COND. # DESCRIPTION MIN. MAX. MIN. A 1 Data Prop. Delay, 4PT Bypass, ORP Bypass - 12.0 - A 2 Data Prop. Delay - 15.0 - A 3 Clk Frequency with Internal Feedback ³ 90.0 - 77.0 - 4 Clk Frequency with Ext. Feedback (¹ /(tsu2+tco1)) 61.0 - 50.0 - 5 Clk Frequency, Max. Toggle ⁴ 125 - 83.0 - 6 GLB Reg. Setup Time before Clk, 4 PT Bypass 8.0 - 9.5 A 7 GLB Reg. Clk to Output Delay, ORP Bypass 0.0 - 11.0 - 8 GLB Reg. Clk to Output Delay - 9.0 - 11.0 - 10 GLB Reg. Clk to Output Delay - 9.0 - 11.0 - 11 GLB Reg. Hold Time after Clk 0.0 - 9.0 - - 11 GLB Reg. Clk to Output Delay - <	COND. # DESCRIPTION MIN. MAX. MIN. MAX. A 1 Data Prop. Delay, 4PT Bypass, ORP Bypass - 12.0 - 15.0 A 2 Data Prop. Delay, 4PT Bypass, ORP Bypass - 12.0 - 18.0 A 3 Clk Frequency with Internal Feedback ³ 90.0 - 77.0 - - 4 Clk Frequency with Ext. Feedback ($\frac{1}{1502+1co1}$) 61.0 - 80.0 - - 6 GLB Reg. Setup Time before Clk, 4 PT Bypass 80.0 - 9.0 - A 7 GLB Reg. Clk to Output Delay, ORP Bypass 0.0 - 9.0 - - 8 GLB Reg. Setup Time before Clk, 4 PT Bypass 9.0 - 11.0 - - 10 GLB Reg. Setup Time before Clk 9.0 - 11.0 - - 11 GLB Reg. Clk to Output Delay - 13.0 - 15.0 - 11 GLB Reg. Clk to Output Delay	COND.**DESCRIPTIONMIN.MAX.MIN.MAX.MIN.A1Data Prop. Delay, 4PT Bypass, ORP Bypass-12.0-15.0-A2Data Prop. Delay, 4PT Bypass, ORP Bypass-15.0-15.0-5.0A3Clk Frequency Delay-15.0-15.0-57.0-4Clk Frequency with Ext. Feedback (1 su2+toor)61.0-80.0-63.0-5Clk Frequency, Max. Toggle4125-8.0-63.0-6GLB Reg. Setup Time before Clk, 4 PT Bypass0.0-10.0-12.0-8GLB Reg. Clk to Output Delay, ORP Bypass0.0-10.0-10.0-9GLB Reg. Clk to Output Delay9.0-11.0-10.010GLB Reg. Clk to Output Delay-9.0-10.0-10.011GLB Reg. Clk to Output Delay-13.5-15.010.0-13.5-11GLB Reg. Clk to Output Delay-13.5-10.0-13.5-13Ext. Reset Plise Duration6.5-10.0-13.5-14Iput to Output Enable-10.0-11.013Ext. Reset Plise Duration-10.0-11.014Iput to Output Disable<	COND.#DescriptionMIN.MAX.MIN.MAX.MIN.MAX.MIN.MAX.A1Data Prop. Delay, 4PT Bypass, ORP Bypass12.015.020.0A2Data Prop. Delay15.015.018.024.5A3Clk Frequency with Internal Feedback ³ 90.050.057.04Clk Frequency with Ext. Feedback ($\frac{1}{1502+1001}$)61.083.063.05Clk Frequency, Max. Toggle ⁴ 12583.012.56GLB Reg. Setup Time before Clk, 4 PT Bypass9.09.012.68GLB Reg. Clk to Output Delay, ORP Bypass9.011.012.610GLB Reg. Setup Time before Clk9.011.012.610GLB Reg. Clk to Output Delay9.010.014.0-11GLB Reg. Hold Time after Clk0.013.010.520.0-11GLB Reg. Hold Time after Clk0.013.010.520.0-11GLB Reg. Hold Time after Clk0.013.010.520.0-13Ext. Reset Pin to Output Delay13.013.520.0 </td

Unless noted otherwise, all parameters use 20 PTXOR path and ORP.
Refer to Timing Model in this data sheet for further details.

3. Standard 16-bit counter using GRP feedback.

4. fmax (Toggle) may be less than 1/(twh + twl). This is to allow for a clock duty cycle of other than 50%.

5. Reference Switching Test Conditions section.

Internal Timing Parameters¹

Over Recommended Operating Conditions

	# ²		-9) 0	-7	' 0	-5		
PARAMETER	ETER # ² DESCRIPTION		MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
Inputs	1		1		1				
t iobp	24	I/O Register Bypass	-	1.9	_	2.4	-	3.3	ns
t iolat	25	I/O Latch Delay	-	10.9	-	12.4	-	15.8	ns
tiosu	26	I/O Register Setup Time before Clock	5.7	-	6.2	_	8.6	9	ns
t ioh	27	I/O Register Hold Time after Clock	-3.7		-5.2	-	-7.0	Z	ns
tioco	28	I/O Register Clock to Out Delay	-	4.2		4.2	_	5.3	ns
tior	29	I/O Register Reset to Out Delay		2.8	-	3.6		4.9	ns
GRP									
t grp	30	GRP Delay	-	2.4	- (3.0	-	4.1	ns
GLB				•				3	
t 4ptbp	31	4 Product Term Bypass Path Delay (Comb.)	-	4.8	_	5.9		7.6	ns
t 4ptbp	32	4 Product Term Bypass Path Delay (Reg.)	-	4.8	-	5.9	_ 1	7.6	ns
t 1ptxor	33	1 Product Term/XOR Path Delay	-	5.4	-	6.4	-	8.8	ns
t 20ptxor	34	20 Product Term/XOR Path Delay	-	6.4	-	7.4	- (10.1	ns
t xoradj	35	XOR Adjacent Path Delay ³	-	6.9	-	8.1	- 1	11.1	ns
t gbp	36	GLB Register Bypass Delay		0.1	_	0.1	-0	0.1	ns
t gsu	37	GLB Register Setup Time before Clock	1.0	-	1.8	_	2.4	-	ns
t gh	38	GLB Register Hold Time after Clock	4.8	_	6.0	_	8.2	ť -	ns
t gco	39	GLB Register Clock to Output Delay	-	1.6	_	1.8		2.2	ns
t gro	40	GLB Register Reset to Output Delay	_	2.6	_	2.8	5	3.8	ns
t ptre	41	GLB Product Term Reset to Register Delay	-	8.6	_	10.5	e e	14.2	ns
t ptoe	42	GLB Product Term Output Enable to I/O Cell Delay	-	4.9	_	5.4	ы	7.3	ns
t ptck	43	GLB Product Term Clock Delay	2.8	5.3	3.2	6.3	4.3	8.5	ns
ORP			•	•	•	•	D	+	+
torp	44	ORP Delay	-	2.3	_	2.7	-	3.6	ns
torpbp	45	ORP Bypass Delay	_	0.9	_	1.2	_	1.6	ns

1. Internal Timing Parameters are not tested and are for reference only.

2. Refer to Timing Model in this data sheet for further details.

3. The XOR adjacent path can only be used by hard macros.

Internal Timing Parameters¹

Over Recommended Operating Conditions

PARAMETER	2		-90		-70		-50		
	# ²	DESCRIPTION	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	UNITS
Outputs						•	0		
t ob	46	Output Buffer Delay	_	1.9	_	2.4	-C	3.3	ns
t obs	47	Output Buffer Delay, Slew Limited Adder	_	11.9	-	12.4	_	13.3	ns
t oen	48	I/O Cell OE to Output Enabled	_	6.8		7.2	-0	9.8	ns
t odis	49	I/O Cell OE to Output Disabled		6.8		7.2		9.8	ns
Clocks								T	
t gy0/1/2	50	Clock Delay, Y0 or Y1 or Y2 to Global GLB Clock Line	2.7	2.7	3.6	3.6	4.9	4.9	ns
t ioy3/4	51	Clock Delay, Y3 or Y4 to I/O Cell Global Clock Line	0.7	3.7	1.2	5.2	1.6	7.0	ns
Global Reset					•		0	i.	
t gr	52	Global Reset to GLB and I/O Registers	-	6.7		7.1	U	9.6	ns
tgoe	53	Global OE Pad Buffer	-	2.3	_	2.8	0	3.7	ns
ttoe	54	Test OE Pad Buffer	_	3.2	-	9.8	2	13.2	ns

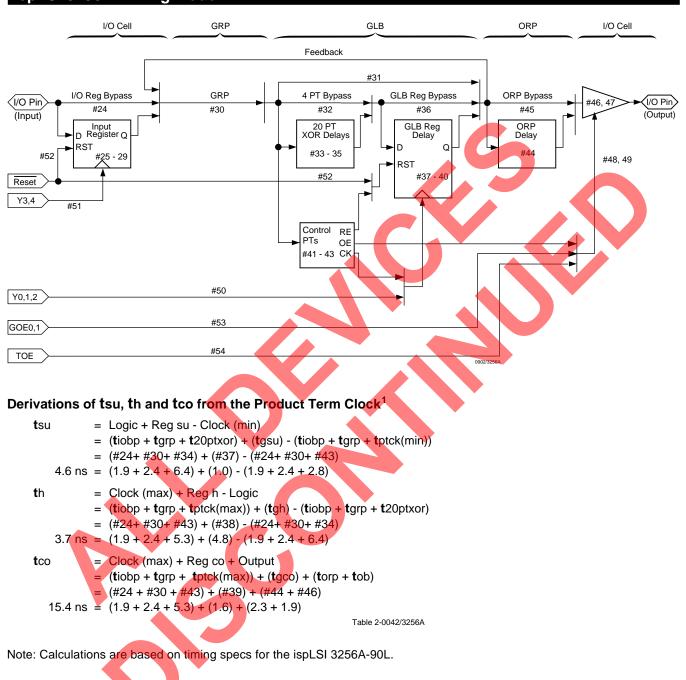
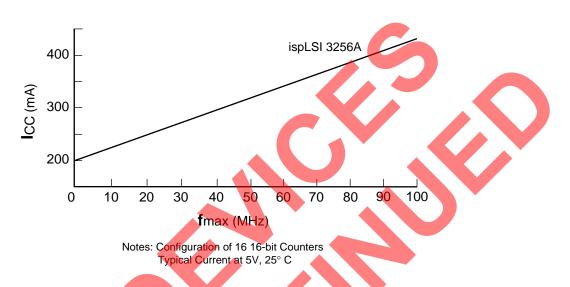

Internal Timing Parameters are not tested and are for reference only.
Refer to Timing Model in this data sheet for further details.

Table 2-0037C/3256A

Specifications ispLSI 3256A

ispLSI 3256A Timing Model



Power Consumption

Power consumption in the ispLSI 3256A device depends on two primary factors: the speed at which the device is operating and the number of product terms used. Figure 3 shows the relationship between power and operating speed.

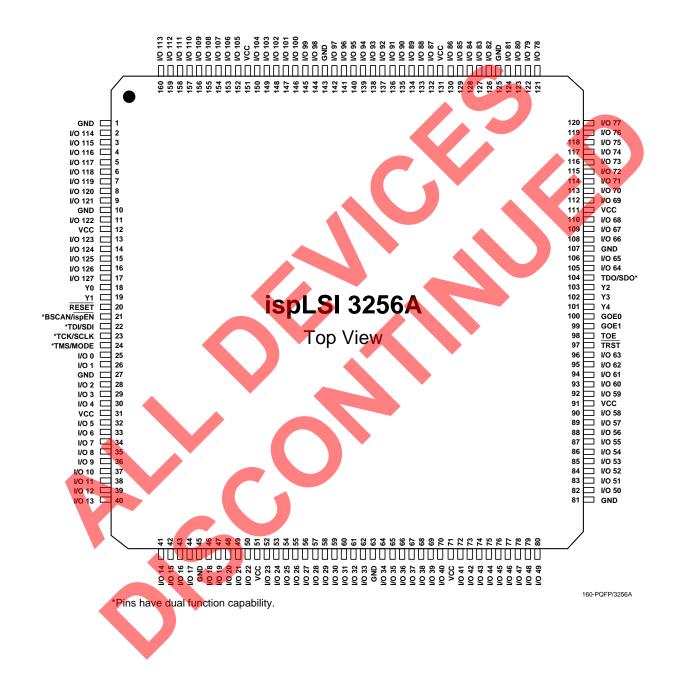
Figure 3. Typical Device Power Consumption vs fmax

ICC can be estimated for the ispLSI 3256A using the following equation:

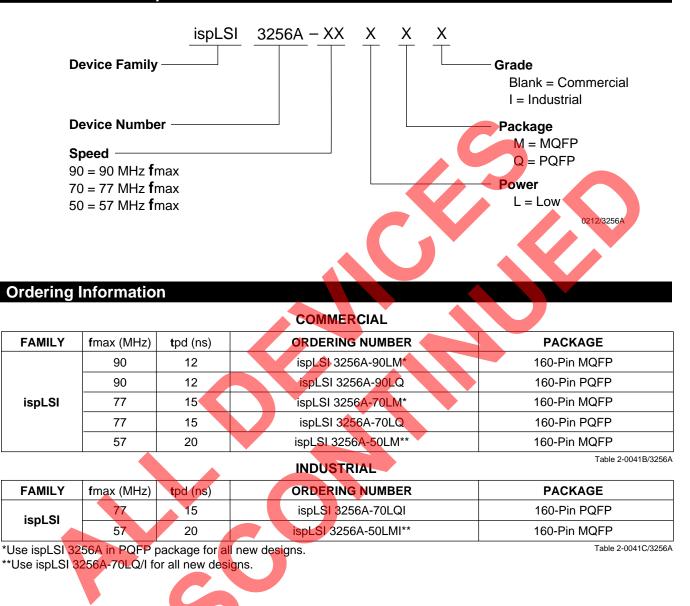
ICC = 40 + (# of PTs * 0.31) + (# of nets * Max. freq * 0.0094) where: # of PTs = Number of Product Terms used in design # of nets = Number of Signals used in device Max. freq = Highest Clock Frequency to the device

The I_{CC} estimate is based on typical conditions ($V_{CC} = 5.0V$, room temperature) and an assumption of two GLB loads on average exists. These values are for estimates only. Since the value of I_{CC} is sensitive to operating conditions and the program in the device, the actual I_{CC} should be verified.

0127A-16-80-isp/3256A


Pin Description

NAME	PQ	FP/MQI	FP PIN	NUMBE	ERS	DESCRIPTION
$\begin{array}{c} /0\ 0\ -\ /0\ 4\\ /0\ 5\ -\ /0\ 9\\ /0\ 10\ -\ /0\ 14\\ /0\ 15\ -\ /0\ 19\\ /0\ 20\ -\ /0\ 24\\ /0\ 25\ -\ /0\ 29\\ /0\ 30\ -\ /0\ 34\\ /0\ 35\ -\ /0\ 39\\ /0\ 40\ -\ /0\ 44\\ /0\ 45\ -\ /0\ 44\\ /0\ 45\ -\ /0\ 44\\ /0\ 45\ -\ /0\ 44\\ /0\ 45\ -\ /0\ 44\\ /0\ 55\ -\ /0\ 59\\ /0\ 60\ -\ /0\ 64\\ /0\ 65\ -\ /0\ 69\\ /0\ 70\ -\ /0\ 74\\ /0\ 75\ -\ /0\ 79\\ /0\ 80\ -\ /0\ 84\\ /0\ 85\ -\ /0\ 89\\ /0\ 90\ -\ /0\ 94\\ /0\ 95\ -\ /0\ 99\\ /0\ 100\ -\ /0\ 104\\ /0\ 105\ -\ /0\ 109\\ /0\ 100\ -\ /0\ 114\\ /0\ 115\ -\ /0\ 119\\ /0\ 120\ -\ /0\ 124\\ /0\ 125\ -\ /0\ 127\\ \end{array}$	25, 32, 37, 42, 48, 59, 70, 76, 82, 70, 76, 82, 113, 118, 123, 140, 146, 157, 3, 8, 15,	26, 33, 38, 43, 49, 55, 60, 66, 72, 77, 83, 88, 94, 108, 114, 119, 124, 130, 136, 141, 147, 153, 158, 4, 9, 16,	28, 34, 39, 44, 50, 56, 61, 67, 73, 78, 84, 89, 95, 109, 115, 120, 126, 132, 137, 142, 148, 154, 154, 155, 5, 11, 17	29, 35, 40, 46, 52, 57, 62, 68, 74, 79, 85, 90, 96, 110, 116, 121, 121, 133, 138, 144, 149, 155, 160, 6, 13,	30, 36, 41, 47, 53, 58, 64, 69, 75, 80, 86, 92, 105, 112, 117, 122, 128, 139, 145, 150, 2, 7, 14,	Input/Output Pins - These are the general purpose I/O pins used by the logic array.
GOE0 and GOE1 TOE	100 a 98	ind 99				Global Output Enable input pins. Test output enable pin - This pin tristates all I/O pins when a logic low is driven
RESET	20					Active Low (0) Reset pin which resets all of the GLB and I/O registers in the device.
Y0, Y1 and Y2	18, 19), 103				Dedicated Clock inputs. These clock inputs are connected to one of the clock inputs of all the GLBs on the device.
Y3 and Y4	102, 1	101				Dedicated Clock inputs. These clock inputs are connected to one of the clock inputs of all the I/O cells in the device.
BSCAN/ispEN	21 22				C	Input – Dedicated in-system programming enable input pin. When this pin is high, the BSCAN TAP controller pins TMS, TDI, TDO and TCK are enabled. When this pin is brought low, the ISP state machine control pins MODE, SDI, SDO and SLCK are enabled. High-to-low transition of this pin will put the device in the programming mode and put all I/O pins in high-Z state. Input – This pin performs two functions depending on the state of the BSCAN/ispEN pin. It is the Test Data input to the TAP Controller when the ispEN
						is logic high. TDI is used to load BSCAN test data or programming data. When ispEN is logic low, it functions as an input pin to load programming data into the ISP state machine.
TCK/SCLK	23		2			Input – This pin performs two functions, depending on the state of the BSCAN/ispEN pin. It is the Test Clock input pin when BSCAN/ispEN is logic high. When BSCAN/ispEN is logic low, it functions as the clock for the ISP state machine.
TMS/MODE	24					Input – This pin performs two functions, depending on the state of the BSCAN/ispEN pin. It is the Test Mode Select input pin when BSCAN/ispEN is logic high. When BSCAN/ispEN is logic low, it functions to control the operation of the ISP state machine.
TRST	97					Input – Test Reset, active low to reset the Boundary Scan state machine.
TDO/SDO	104					Output – This pin performs two functions, depending on the state of the BSCAN/ispEN pin. It is the Test Data Output pin when BSCAN/ispEN is logic high, and either BSCAN test data or programming data is shifted out. When BSCAN/ispEN is logic low, it is the Serial Data Output of the ISP state machine.
GND	1,	10,	27, 125,	45, 143	63,	Ground (GND)
OND	81,	107,	120,			


Pin Configuration

ispLSI 3256A 160-Pin MQFP and 160-Pin PQFP Pinout Diagram

Part Number Description

