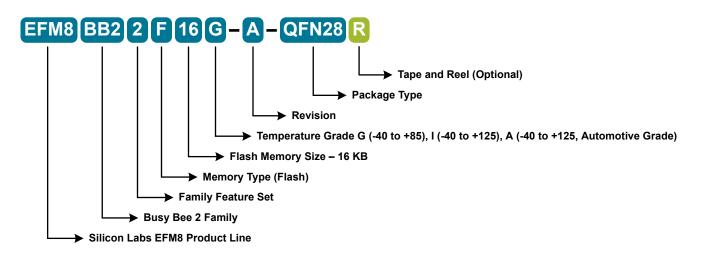


Welcome to <u>E-XFL.COM</u>

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 15x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-WFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb21f16a-c-qfn20r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8BB2 Part Numbering

All EFM8B2 family members have the following features:

- CIP-51 Core running up to 50 MHz
- Three Internal Oscillators (49 MHz, 24.5 MHz and 80 kHz)
- SMBus
- I2C Slave
- SPI
- 2 UARTs
- · 3-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 5 16-bit Timers
- 2 Analog Comparators
- · 12-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- 16-bit CRC Unit
- AEC-Q100 qualified
- · Pre-loaded UART bootloader

In addition to these features, each part number in the EFM8BB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (KB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	5-to-3.3 V Regulator	Temperature Range	Package
EFM8BB22F16G-C-QFN28	16	2304	22	20	10	12	Yes	Yes	-40 to +85 °C	QFN28
EFM8BB21F16G-C-QSOP24	16	2304	21	20	10	12	Yes	—	-40 to +85 °C	QSOP24
EFM8BB21F16G-C-QFN20	16	2304	16	15	10	7	Yes	_	-40 to +85 °C	QFN20
EFM8BB22F16I-C-QFN28	16	2304	22	20	10	12	Yes	Yes	-40 to +125 °C	QFN28
EFM8BB21F16I-C-QSOP24	16	2304	21	20	10	12	Yes	—	-40 to +125 °C	QSOP24

Ordering Part Number	Flash Memory (KB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	5-to-3.3 V Regulator	Temperature Range	Package
EFM8BB21F16I-C-QFN20	16	2304	16	15	10	7	Yes	_	-40 to +125 °C	QFN20
EFM8BB22F16A-C-QFN28	16	2304	22	20	10	12	Yes	Yes	-40 to +125 °C	QFN28
EFM8BB21F16A-C-QFN20	16	2304	16	15	10	7	Yes		-40 to +125 °C	QFN20

The A-grade (i.e. EFM8BB21F16A-C-QFN20) devices receive full automotive quality production status, including AEC-Q100 qualification, registration with International Material Data System (IMDS), and Part Production Approval Process (PPAP) documentation. PPAP documentation is available at www.silabs.com with a registered and NDA approved user account.

3. System Overview

3.1 Introduction

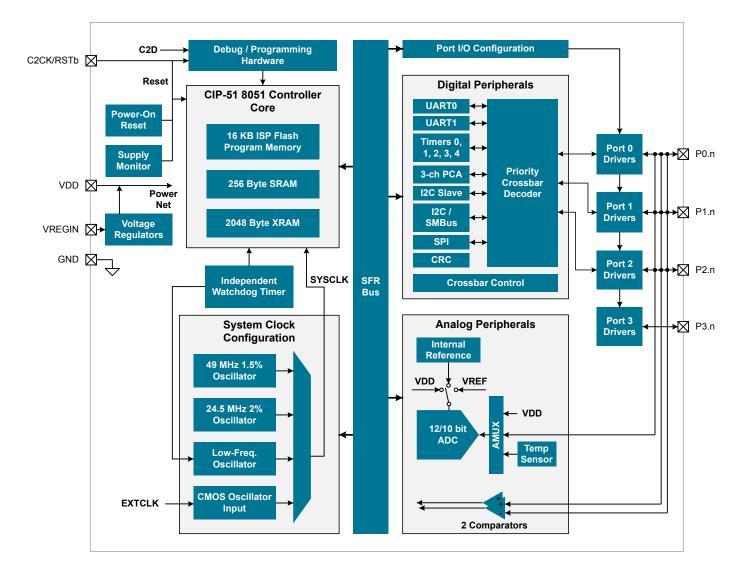


Figure 3.1. Detailed EFM8BB2 Block Diagram

This section describes the EFM8BB2 family at a high level. For more information on each module including register definitions, see the EFM8BB2 Reference Manual.

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Stop	 All internal power nets shut down 5 V regulator remains active (if enabled) Internal 1.8 V LDO on Pins retain state Exit on any reset source 	 Clear STOPCF bit in REG0CN Set STOP bit in PCON0 	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	1. Switch SYSCLK to HFOSC0 2. Set SNOOZE bit in PCON1	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Shutdown	 All internal power nets shut down 5 V regulator remains active (if enabled) Internal 1.8 V LDO off to save energy Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin resetPower-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P3.0 and P3.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0.

The port control block offers the following features:

- Up to 22 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 20 direct-pin interrupt sources with shared interrupt vector (Port Match).

Timers (Timer 0, Timer 1, Timer 2, Timer 3, and Timer 4)

Several counter/timers are included in the device: two are 16-bit counter/timers compatible with those found in the standard 8051, and the rest are 16-bit auto-reload timers for timing peripherals or for general purpose use. These timers can be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0 and Timer 1 are nearly identical and have four primary modes of operation. The other timers offer both 16-bit and split 8-bit timer functionality with auto-reload and capture capabilities.

Timer 0 and Timer 1 include the following features:

- Standard 8051 timers, supporting backwards-compatibility with firmware and hardware.
- Clock sources include SYSCLK, SYSCLK divided by 12, 4, or 48, the External Clock divided by 8, or an external pin.
- · 8-bit auto-reload counter/timer mode
- 13-bit counter/timer mode
- 16-bit counter/timer mode
- Dual 8-bit counter/timer mode (Timer 0)

Timer 2, Timer 3 and Timer 4 are 16-bit timers including the following features:

- · Clock sources for all timers include SYSCLK, SYSCLK divided by 12, or the External Clock divided by 8.
- LFOSC0 divided by 8 may be used to clock Timer 3 and Timer 4 in active or suspend/snooze power modes.
- Timer 4 is a low-power wake source, and can be chained together with Timer 3
- 16-bit auto-reload timer mode
- Dual 8-bit auto-reload timer mode
- · External pin capture
- · LFOSC0 capture
- · Comparator 0 capture

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) running off the low-frequency oscillator. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software or locked on to prevent accidental disabling. Once locked, the WDT cannot be disabled until the next system reset. The state of the RST pin is unaffected by this reset.

The Watchdog Timer has the following features:

- · Programmable timeout interval
- Runs from the low-frequency oscillator
- · Lock-out feature to prevent any modification until a system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- · Asynchronous transmissions and receptions.
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 8- or 9-bit data.
- Automatic start and stop generation.
- Single-byte FIFO on transmit and receive.

I2C Slave (I2CSLAVE0)

The I2C Slave interface is a 2-wire, bidirectional serial bus that is compatible with the I2C Bus Specification 3.0. It is capable of transferring in high-speed mode (HS-mode) at speeds of up to 3.4 Mbps. Firmware can write to the I2C interface, and the I2C interface can autonomously control the serial transfer of data. The interface also supports clock stretching for cases where the core may be temporarily prohibited from transmitting a byte or processing a received byte during an I2C transaction. This module operates only as an I2C slave device.

The I2C module includes the following features:

- Standard (up to 100 kbps), Fast (400 kbps), Fast Plus (1 Mbps), and High-speed (3.4 Mbps) transfer speeds
- · Support for slave mode only
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave address recognition
- · Transmit and receive FIFOs (two bytes) to help increase throughput in faster applications

16-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:

- Support for CCITT-16 polynomial
- · Byte-level bit reversal
- · Automatic CRC of flash contents on one or more 256-byte blocks
- · Initial seed selection of 0x0000 or 0xFFFF

3.7 Analog

12-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 12-, 10-, and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- · Up to 20 external inputs.
- Single-ended 12-bit and 10-bit modes.
- Supports an output update rate of 200 ksps samples per second in 12-bit mode or 800 ksps samples per second in 10-bit mode.
- Operation in low power modes at lower conversion speeds.
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- · Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- Flexible output data formatting.
- Includes an internal fast-settling reference with two levels (1.65 V and 2.4 V) and support for external reference and signal ground.
- Integrated temperature sensor.

3.10 Bootloader

All devices come pre-programmed with a UART bootloader. This bootloader resides in the code security page and last page of code flash; it can be erased if it is not needed.

The byte before the Lock Byte is the Bootloader Signature Byte. Setting this byte to a value of 0xA5 indicates the presence of the bootloader in the system. Any other value in this location indicates that the bootloader is not present in flash.

When a bootloader is present, the device will jump to the bootloader vector after any reset, allowing the bootloader to run. The bootloader then determines if the device should stay in bootload mode or jump to the reset vector located at 0x0000. When the bootloader is not present, the device will jump to the reset vector of 0x0000 after any reset.

More information about the bootloader protocol and usage can be found in *AN945: EFM8 Factory Bootloader User Guide*. Application notes can be found on the Silicon Labs website (www.silabs.com/8bit-appnotes) or within Simplicity Studio by using the [Application Notes] tile.

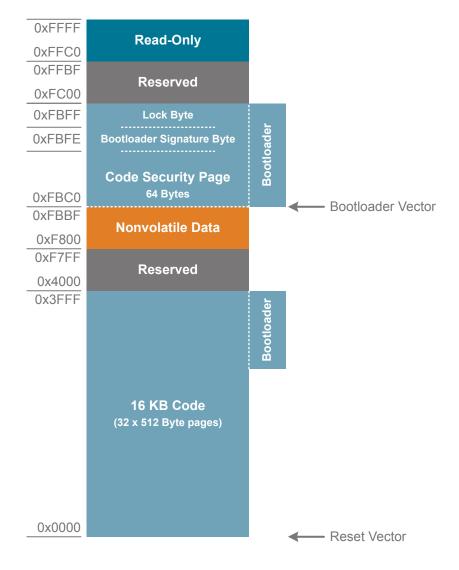


Figure 3.2. Flash Memory Map with Bootloader—16 KB Devices

4.1.3 Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
VDD Supply Monitor Threshold	V _{VDDM}		1.95	2.05	2.15	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on VDD	_	1.2	_	V
		Falling Voltage on VDD	0.75	—	1.36	V
VDD Ramp Time	t _{RMP}	Time to V _{DD} > 2.2 V	10	_	_	μs
Reset Delay from POR	t _{POR}	Relative to V _{DD} > V _{POR}	3	10	31	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	_	50	_	μs
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} >1 MHz	_	0.625	1.2	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		_	7.5	13.5	kHz
VDD Supply Monitor Turn-On Time	t _{MON}		_	2	—	μs

Table 4.3. Reset and Supply Monitor

4.1.4 Flash Memory

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ^{1,2}	t _{WRITE}	One Byte,		20	21	μs
		F _{SYSCLK} = 24.5 MHz				
Erase Time ^{1,2}	t _{ERASE}	One Page,	5.2	5.35	5.5	ms
		F _{SYSCLK} = 24.5 MHz				
V _{DD} Voltage During Programming ³	V _{PROG}		2.2		3.6	V
Endurance (Write/Erase Cycles)	N _{WE}		20k	100k	—	Cycles

Note:

1. Does not include sequencing time before and after the write/erase operation, which may be multiple SYSCLK cycles.

2. The internal High-Frequency Oscillator 0 has a programmable output frequency, which is factory programmed to 24.5 MHz. If user firmware adjusts the oscillator speed, it must be between 22 and 25 MHz during any flash write or erase operation. It is recommended to write the HFO0CAL register back to its reset value when writing or erasing flash.

3. Flash can be safely programmed at any voltage above the supply monitor threshold (V_{VDDM}).

4. Data Retention Information is published in the Quarterly Quality and Reliability Report.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Slope Error	E _M	12 Bit Mode	_	±0.02	±0.1	%
		10 Bit Mode		±0.06	±0.24	%
Dynamic Performance 10 kHz Si	ne Wave Inp	out 1 dB below full scale, Max throug	ghput, using	g AGND pin		
Signal-to-Noise	SNR	12 Bit Mode	61	66		dB
		10 Bit Mode	53	60		dB
Signal-to-Noise Plus Distortion	SNDR	12 Bit Mode	61	66		dB
		10 Bit Mode	53	60		dB
Total Harmonic Distortion (Up to	THD	12 Bit Mode		71		dB
5th Harmonic)		10 Bit Mode		70		dB
Spurious-Free Dynamic Range	SFDR	12 Bit Mode		-79		dB
		10 Bit Mode	_	-70		dB

4.1.9 Voltage Reference

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Internal Fast Settling Reference						
Output Voltage	V _{REFFS}	1.65 V Setting	1.62	1.65	1.68	V
(Full Temperature and Supply Range)		2.4 V Setting, V _{DD} > 2.6 V	2.35	2.4	2.45	V
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C
Turn-on Time	t _{REFFS}		_	_	1.5	μs
Power Supply Rejection	PSRR _{REF} FS		_	400		ppm/V
External Reference	I		1	1	1	1
Input Current	I _{EXTREF}	Sample Rate = 800 ksps; VREF = 3.0 V	_	8	_	μΑ

Table 4.9. Voltage Reference

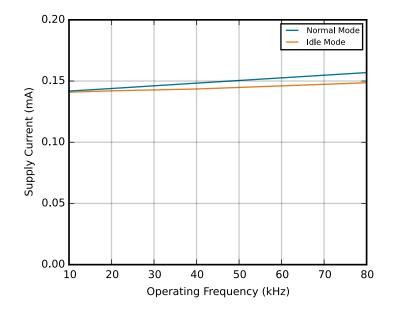


Figure 4.3. Typical Operating Supply Current using LFOSC

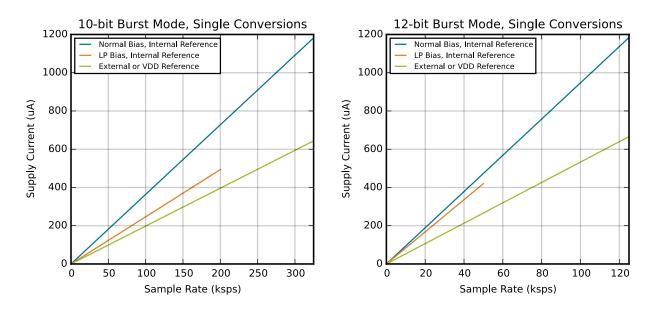


Figure 4.4. Typical ADC0 and Internal Reference Supply Current in Burst Mode

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Connection Diagram with Voltage Regulator Used on page 29 shows a typical connection diagram for the power pins of the EFM8BB2 devices when the 5 V-to-3.3 V regulator is in use.

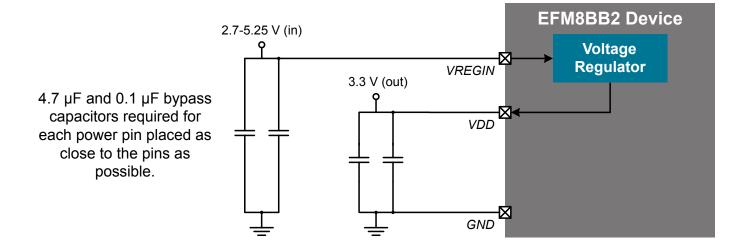


Figure 5.1. Connection Diagram with Voltage Regulator Used

Figure 5.2 Connection Diagram with Voltage Regulator Not Used on page 29 shows a typical connection diagram for the power pins of the EFM8BB2 devices when the internal 5 V-to-3.3 V regulator is not used.

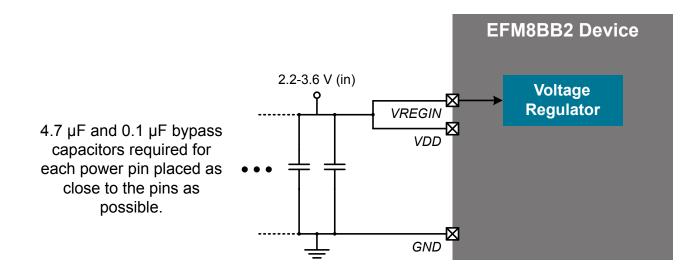


Figure 5.2. Connection Diagram with Voltage Regulator Not Used

6. Pin Definitions

6.1 EFM8BB2x-QFN28 Pin Definitions

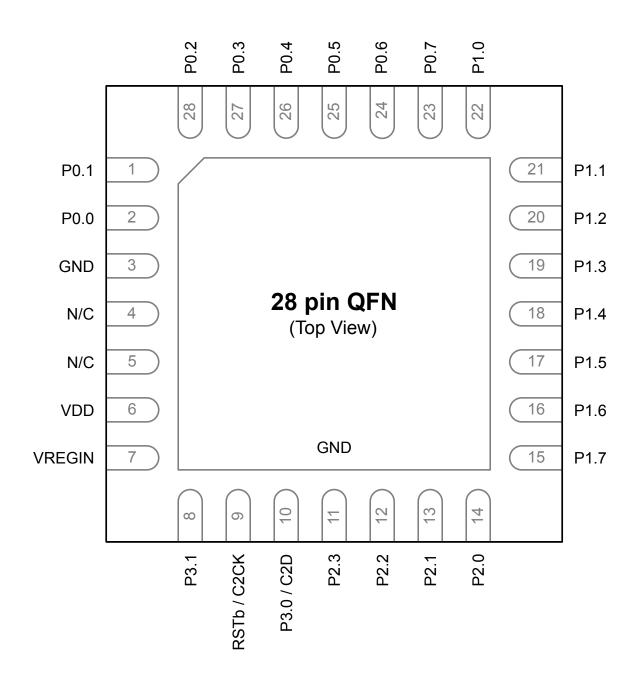
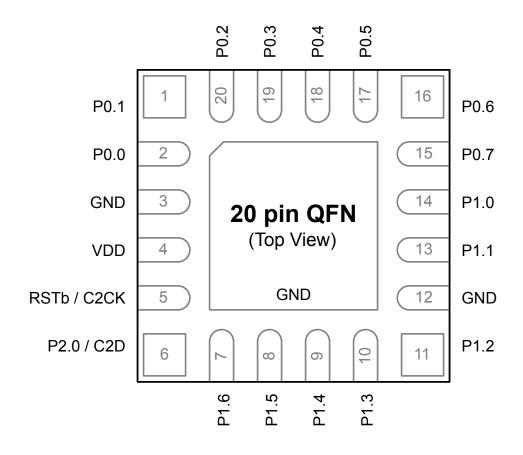



Figure 6.1. EFM8BB2x-QFN28 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
16	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				I2C0_SCL	CP1P.6
					CP1N.6
17	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				I2C0_SDA	CP1P.5
					CP1N.5
18	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CP1P.4
					CP1N.4
19	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CP1P.3
					CP1N.3
20	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CP1P.2
					CP1N.2
21	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
					CP1P.1
					CP1N.1
					CMP0P.10
					CMP0N.10
22	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CP1P.0
					CP1N.0
					CMP0P.9
					CMP0N.9
23	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP0P.7
				INT1.7	CMP0N.7
24	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.6
				INT0.6	CMP0N.6
				INT1.6	
25	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	

Table 6.3.	Pin Definitions for EFM8BB2x-QFN20
------------	------------------------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CMP0P.1
				INT1.1	CMP0N.1
					AGND
2	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF

7.2 QFN28 PCB Land Pattern

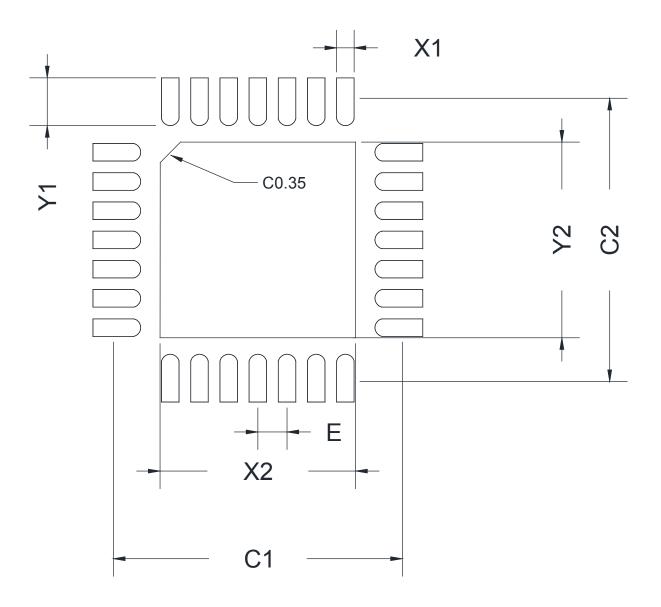


Figure 7.2. QFN28 PCB Land Pattern Drawing

Table 7.2.	QFN28 PCB Land Pattern Dimensions
------------	-----------------------------------

Dimension	Min	Мах
C1	4.8	30
C2	4.8	30
E	0.6	50
X1	0.3	30
X2	3.3	35
Y1	0.9	95

Dimension	Min	Тур	Мах
ааа		0.20	
bbb		0.18	
ссс		0.10	
ddd		0.10	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.2 QSOP24 PCB Land Pattern

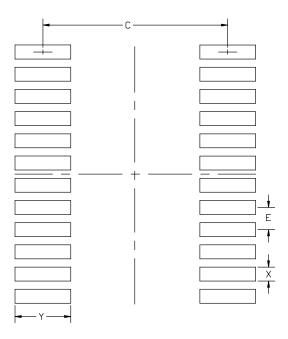


Figure 8.2. QSOP24 PCB Land Pattern Drawing

Table 8.2.	QSOP24 PCB Land Pattern Dimen	sions
------------	-------------------------------	-------

Dimension	Min	Мах								
С	5.20	5.30								
E	0.635 BSC									
X	0.30	0.40								
Y	1.50	1.60								

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 8.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9.2 QFN20 PCB Land Pattern

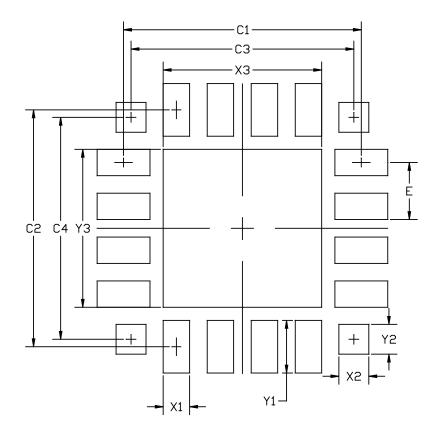


Figure 9.2. QFN20 PCB Land Pattern Drawing

Table 9.2.	QFN20 PCB Land Pattern Dimensions

Dimension	Min	Мах								
C1	3.10									
C2	3.10									
C3	2.50									
C4	2.5	50								
E	0.50									
X1	0.30									
X2	0.25	0.35								
Х3	1.8	30								
Y1	0.90									
Y2	0.25	0.35								
Y3	1.80									

	6.2 EFM8BB2x-QSOP24 Pin Definitions																	.35
	6.3 EFM8BB2x-QFN20 Pin Definitions .																	.38
7.	QFN28 Package Specifications																	41
	7.1 QFN28 Package Dimensions																	.41
	7.2 QFN28 PCB Land Pattern																	.43
	7.3 QFN28 Package Marking																	.44
8.	QSOP24 Package Specifications																	45
	8.1 QSOP24 Package Dimensions .																	.45
	8.2 QSOP24 PCB Land Pattern																	
	8.3 QSOP24 Package Marking																	.48
9.	QFN20 Package Specifications																	49
	9.1 QFN20 Package Dimensions																	.49
	9.2 QFN20 PCB Land Pattern																	.51
	9.3 QFN20 Package Marking																	.52
10	Revision History.																	53
	10.1 Revision 1.31																	.53
	10.2 Revision 1.3																	.53
	10.3 Revision 1.2		-															.53
	10.4 Revision 1.1									•			•			•		.53
	10.5 Revision 1.0		-	•						•			•		•	•		.53
	10.6 Revision 0.3		•							•			•		•			.54
	10.7 Revision 0.2		-	•	•			•		•			•		•	•	•	.54
Та	ble of Contents	•	•	•	•		•		•	•	•	•	•		•	•	•	55