

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-WFQFN Exposed Pad
Supplier Device Package	28-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb22f16a-c-qfn28r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational	—	—
Idle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Stop	 All internal power nets shut down 5 V regulator remains active (if enabled) Internal 1.8 V LDO on Pins retain state Exit on any reset source 	 Clear STOPCF bit in REG0CN Set STOP bit in PCON0 	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulators in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	1. Switch SYSCLK to HFOSC0 2. Set SNOOZE bit in PCON1	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge
Shutdown	 All internal power nets shut down 5 V regulator remains active (if enabled) Internal 1.8 V LDO off to save energy Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	 RSTb pin reset Power-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P3.0 and P3.1 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0.

The port control block offers the following features:

- Up to 22 multi-functions I/O pins, supporting digital and analog functions.
- Flexible priority crossbar decoder for digital peripheral assignment.
- · Two drive strength settings for each port.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- · Up to 20 direct-pin interrupt sources with shared interrupt vector (Port Match).

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions.
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive).
- 5, 6, 7, 8, or 9 bit data.
- Automatic start and stop generation.
- · Automatic parity generation and checking.
- · Four byte FIFO on transmit and receive.
- Auto-baud detection.
- · LIN break and sync field detection.
- CTS / RTS hardware flow control.

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes.
- · Supports external clock frequencies up to 12 Mbps in master or slave mode.
- · Support for all clock phase and polarity modes.
- · 8-bit programmable clock rate (master).
- · Programmable receive timeout (slave).
- Four byte FIFO on transmit and receive.
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte.
- Support for multiple masters on the same data lines.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Digital Core Supply Current (G-gr	ade device	es, -40 °C to +85 °C)				
Normal Mode-Full speed with code executing from flash	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	9.4	10.1	mA
		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	—	4.5	5.2	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	600	900	μA
		F _{SYSCLK} = 80 kHz ³	_	145	410	μA
Idle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	6.3	6.8	mA
erals running		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	—	2.9	3.3	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	440	750	μA
		F _{SYSCLK} = 80 kHz ³	—	130	420	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	400	μA
high frequency clocks stopped, Supply monitor off.		LFO Stopped	—	120	390	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	—	25	300	μA
high frequency clocks stopped. Regulator in low-power state, Sup- ply monitor off.		LFO Stopped		20	290	μA
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	390	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	3	μA
Digital Core Supply Current (I-gra	de or A-gra	ade devices, -40 °C to +125 °C)		1		
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	—	9.4	10.9	mA
executing from flash		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	—	4.5	5.6	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	600	1555	μA
		F _{SYSCLK} = 80 kHz ³	_	145	1070	μA
dle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	6.3	7.4	mA
erals running		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	2.9	3.9	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	440	1400	μA
		F _{SYSCLK} = 80 kHz ³	_	130	1050	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	1050	μA
nigh frequency clocks stopped, Supply monitor off.		LFO Stopped	-	120	1045	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	—	25	950	μA
high frequency clocks stopped. Regulator in low-power state, Sup- bly monitor off.		LFO Stopped	_	20	940	μA

Table 4.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	1045	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	15	μΑ
Analog Peripheral Supply Curren	ts (-40 °C to	• +125 °C)				
High-Frequency Oscillator 0	I _{HFOSC0}	Operating at 24.5 MHz,	_	105		μA
		T _A = 25 °C				
High-Frequency Oscillator 1	I _{HFOSC1}	Operating at 49 MHz,	_	865	940	μA
		T _A = 25 °C				
Low-Frequency Oscillator	I _{LFOSC}	Operating at 80 kHz,	_	4		μA
		T _A = 25 °C				
ADC0 Always-on ⁴	I _{ADC}	800 ksps, 10-bit conversions or	_	820	1200	μA
		200 ksps, 12-bit conversions				
		Normal bias settings				
		V _{DD} = 3.0 V				
		250 ksps, 10-bit conversions or	_	405	580	μA
		62.5 ksps 12-bit conversions				
		Low power bias settings				
		V _{DD} = 3.0 V				
ADC0 Burst Mode, 10-bit single conversions, external reference	I _{ADC}	200 ksps, V _{DD} = 3.0 V	_	370		μA
		100 ksps, V _{DD} = 3.0 V	_	185	_	μA
		10 ksps, V _{DD} = 3.0 V	_	20		μA
ADC0 Burst Mode, 10-bit single	I _{ADC}	200 ksps, V _{DD} = 3.0 V	—	485	—	μA
conversions, internal reference, Low power bias settings		100 ksps, V _{DD} = 3.0 V	_	245	_	μA
		10 ksps, V _{DD} = 3.0 V	-	25	_	μA
ADC0 Burst Mode, 12-bit single	I _{ADC}	100 ksps, V _{DD} = 3.0 V	_	505	_	μA
conversions, external reference		50 ksps, V _{DD} = 3.0 V	_	255	_	μA
		10 ksps, V _{DD} = 3.0 V	_	50	_	μA
ADC0 Burst Mode, 12-bit single	I _{ADC}	100 ksps, V _{DD} = 3.0 V,	_	950	_	μA
conversions, internal reference		Normal bias				
		50 ksps, V _{DD} = 3.0 V,	-	415	_	μA
		Low power bias				
		10 ksps, V _{DD} = 3.0 V,	_	80	_	μA
		Low power bias				
Internal ADC0 Reference, Always-	I _{VREFFS}	Normal Power Mode	-	680	790	μA
on ⁵		Low Power Mode	_	160	210	μA

4.1.10 Temperature Sensor

Table 4.10. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit			
Offset	V _{OFF}	T _A = 0 °C	—	757	—	mV			
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	17	_	mV			
Slope	М		_	2.85	_	mV/°C			
Slope Error ¹	E _M		_	70	_	μV/°			
Linearity			—	0.5	_	°C			
Turn-on Time			_	1.8	_	μs			
Note: 1. Represents one standard									

4.1.11 1.8 V Internal LDO Voltage Regulator

Table 4.11. 1.8V Internal LDO Voltage Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output Voltage	V _{OUT_1.8V}		1.78	1.85	1.92	V

4.1.12 5 V Voltage Regulator

Table 4.12. 5V Voltage Regulator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage Range ¹	V _{REGIN}		3.0	_	5.25	V
Output Voltage on VDD ²	utput Voltage on VDD ² V _{REGOUT} Out		3.1	3.3	3.6	V
		Regulation range (VREGIN ≥ 4.1 V)				
		Output Current = 1 to 100 mA Dropout range (VREGIN < 4.1 V)	_	V _{REGIN} – V _{DROPOUT}	_	V
Output Current ²	I _{REGOUT}			_	100	mA
Dropout Voltage	V _{DROPOUT}	Output Current = 100 mA		_	0.8	V

Note:

1. Input range to meet the Output Voltage on VDD specification. If the 5V voltage regulator is not used, VREGIN should be tied to VDD.

2. Output current is total regulator output, including any current required by the device.

4.1.13 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential, V_{CM} = 1.65 V	—	110	—	ns
(Highest Speed)		-100 mV Differential, V _{CM} = 1.65 V	_	160	—	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential, V_{CM} = 1.65 V	_	1.2	_	μs
est Power)		-100 mV Differential, V _{CM} = 1.65 V	_	4.5	_	μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	—	mV
		CPHYP = 10	_	16	_	mV
		CPHYP = 11		32	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01		-8	_	mV
		CPHYN = 10	_	-16	_	mV
		CPHYN = 11	_	-32	—	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	_	4	_	mV
		CPHYP = 10	_	8	—	mV
		CPHYP = 11	_	16	—	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	—	mV
Mode 3 (CPMD = 11)		CPHYN = 01	_	-4	—	mV
		CPHYN = 10	_	-8	—	mV
		CPHYN = 11	_	-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}		_	7.5	_	pF
Internal Reference DAC Resolution	N _{bits}			6		bits
Common-Mode Rejection Ratio	CMRR _{CP}			70	_	dB
Power Supply Rejection Ratio	PSRR _{CP}			72	_	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	_	μV/°

Table 4.13. Comparators

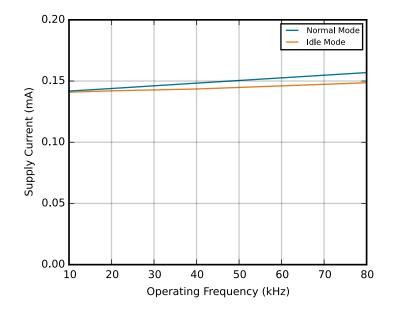


Figure 4.3. Typical Operating Supply Current using LFOSC

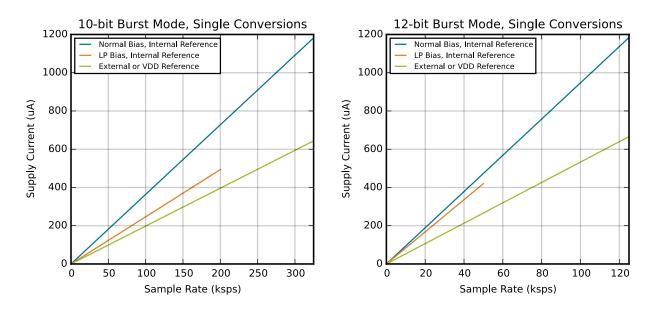


Figure 4.4. Typical ADC0 and Internal Reference Supply Current in Burst Mode

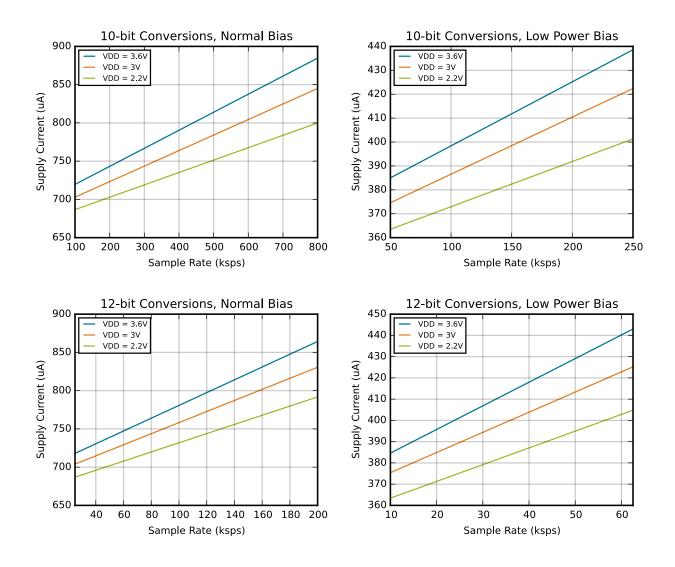


Figure 4.5. Typical ADC0 Supply Current in Normal (always-on) Mode

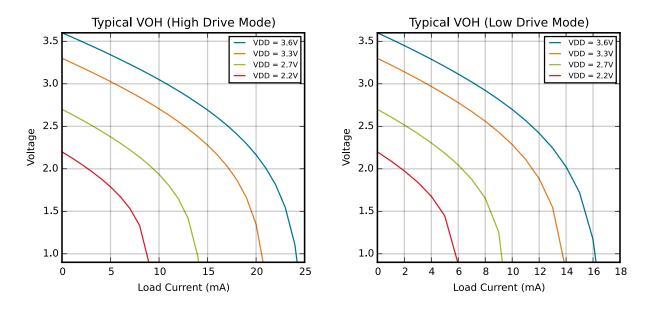


Figure 4.6. Typical V_{OH} Curves

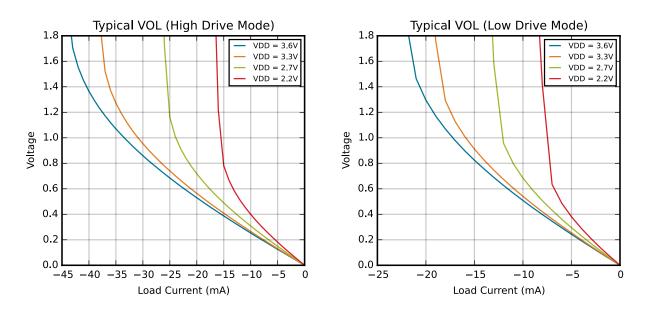


Figure 4.7. Typical V_{OL} Curves

6. Pin Definitions

6.1 EFM8BB2x-QFN28 Pin Definitions

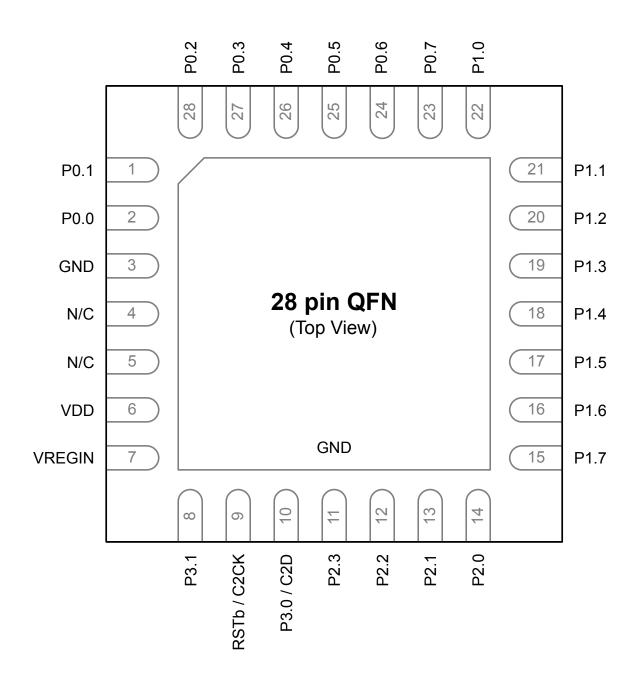


Figure 6.1. EFM8BB2x-QFN28 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
16	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				I2C0_SCL	CP1P.6
					CP1N.6
17	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				I2C0_SDA	CP1P.5
					CP1N.5
18	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
					CP1P.4
					CP1N.4
19	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
					CP1P.3
					CP1N.3
20	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
					CP1P.2
					CP1N.2
21	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
					CP1P.1
					CP1N.1
					CMP0P.10
					CMP0N.10
22	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
					CP1P.0
					CP1N.0
					CMP0P.9
					CMP0N.9
23	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	CMP0P.7
				INT1.7	CMP0N.7
24	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.6
				INT0.6	CMP0N.6
				INT1.6	
25	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0P.5
				INT1.5	CMP0N.5
				UART0_RX	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
26	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.4
				INT1.4	CMP0N.4
				UART0_TX	
27	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	CMP0P.3
				INT0.3	CMP0N.3
				INT1.3	
28	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.2
				INT1.2	CMP0N.2
Center	GND	Ground			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	CMP0P.1
				INT1.1	CMP0N.1
					AGND
4	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP0N.0
					VREF
5	GND	Ground			
6	VDD	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.23
					CMP1P.12
					CMP1N.12
10	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.22
					CMP1P.11
					CMP1N.11
11	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.21
					CMP1P.10
					CMP1N.10
12	P2.0	Multifunction I/O	Yes	P2MAT.0	ADC0.20
					CMP1P.9
					CMP1N.9
13	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.15
					CMP1P.7
					CMP1N.7
14	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				I2C0_SCL	CMP1P.6
					CMP1N.6
15	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				I2C0_SDA	CMP1P.5
					CMP1N.5

7. QFN28 Package Specifications

7.1 QFN28 Package Dimensions

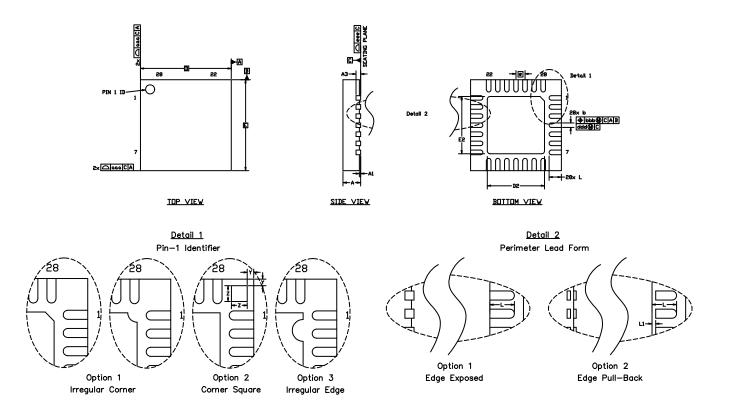


Figure 7.1. QFN28 Package Drawing

Table 7.1. QFN28 Package Dimensions

Dimension	Min	Тур	Мах		
A	0.70	0.75	0.80		
A1	0.00	—	0.05		
A3		0.20 REF			
b	0.20	0.25	0.30		
D		5.00 BSC			
D2	3.15	3.25	3.35		
e		0.50 BSC			
E		5.00 BSC			
E2	3.15	3.25	3.35		
L	0.45	0.55	0.65		
ааа	0.10				
bbb	0.10				
ddd		0.05			

Dimension	Min	Тур	Мах								
eee	0.08										
Note:											

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Figure 8.3. QSOP24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

1.60	3.00 BSC												
1.60		3.00 BSC											
	1.70	1.80											
2.50 BSC													
0.30	0.40	0.50											
0.25 REF													
0.09	0.125	0.15											
0.15													
0.10													
0.10													
0.05													
0.08													
0.10													
		0.30 0.40 0.25 REF 0.09 0.125 0.15 0.10 0.10 0.05 0.08											

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. The drawing complies with JEDEC MO-220.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.2 QFN20 PCB Land Pattern

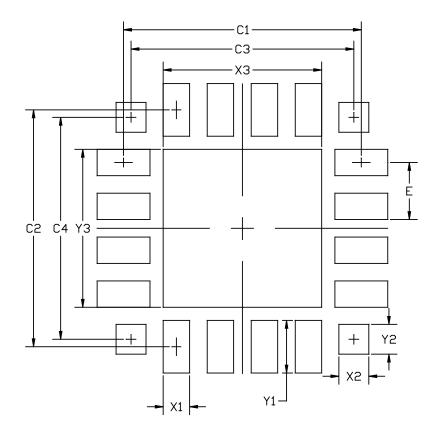


Figure 9.2. QFN20 PCB Land Pattern Drawing

Table 9.2.	QFN20 PCB Land Pattern Dimensions

Dimension	Min	Мах										
C1	3.10											
C2	3.10											
C3	2.50											
C4	2.50											
E	0.50											
X1	0.30											
X2	0.25	0.35										
Х3	1.80											
Y1	0.90											
Y2	0.25	0.35										
Y3	1.80											

10.6 Revision 0.3

Updated QFN20 packaging and landing diagram dimensions.

Updated QFN28 D and E minimum value.

Updated some characterization TBD values.

Updated the 5 V-to-3.3 V regulator Electrical Characteristics table.

Added Stop mode to the Power Modes table in 3.2 Power.

10.7 Revision 0.2

Initial release.

	6.2 EFM8BB2x-QSOP24 Pin Definitions																	.35
	6.3 EFM8BB2x-QFN20 Pin Definitions .																	.38
7.	QFN28 Package Specifications																	41
	7.1 QFN28 Package Dimensions																	.41
	7.2 QFN28 PCB Land Pattern																	.43
	7.3 QFN28 Package Marking																	.44
8.	QSOP24 Package Specifications																	45
	8.1 QSOP24 Package Dimensions .																	.45
	8.2 QSOP24 PCB Land Pattern																	
	8.3 QSOP24 Package Marking																	.48
9.	QFN20 Package Specifications																	49
	9.1 QFN20 Package Dimensions																	.49
	9.2 QFN20 PCB Land Pattern																	.51
	9.3 QFN20 Package Marking																	.52
10	Revision History.																	53
	10.1 Revision 1.31																	.53
	10.2 Revision 1.3																	.53
	10.3 Revision 1.2		-															.53
	10.4 Revision 1.1									•			•			•		.53
	10.5 Revision 1.0		-	•						•			•		•	•		.53
	10.6 Revision 0.3		•							•			•		•			.54
	10.7 Revision 0.2		-	•	•			•		•			•		•	•	•	.54
Та	ble of Contents	•	•	•	•		•		•	•	•	•	•		•	•	•	55