

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da106t-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance CPU

- Modified Harvard Architecture
- Up to 16 MIPS Operation at 32 MHz
- 8 MHz Internal Oscillator
- 17-Bit x 17-Bit Single-Cycle Hardware Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture with Flexible Addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Data Memory Addressing, up to 16 Mbytes:
 - 2K SFR space
 - 30K linear data memory
 - 66K extended data memory
 - Remaining (from 16 Mbytes) memory (external) can be accessed using extended data Memory (EDS) and EPMP (EDS is divided into 32-Kbyte pages)
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Power Management:

- On-Chip Voltage Regulator of 1.8V
- Switch between Clock Sources in Real Time
- Idle, Sleep and Doze modes with Fast Wake-up and Two-Speed Start-up
- + Run Mode: 800 $\mu\text{A}/\text{MIPS},$ 3.3V Typical
- + Sleep mode Current Down to 20 $\mu\text{A},$ 3.3V Typical
- Standby Current with 32 kHz Oscillator: 22 $\mu\text{A},$ 3.3V Typical

Analog Features:

- 10-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter at 500 ksps:
 - Operation is possible in Sleep mode
 - Band gap reference input feature
- Three Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
 - Supports capacitive touch sensing for touch screens and capacitive switches
 - Minimum time measurement setting at 100 ps
- Available LVD Interrupt VLVD Level

Special Microcontroller Features:

- Operating Voltage Range of 2.2V to 3.6V
- 5.5V Tolerant Input (digital pins only)
- Configurable Open-Drain Outputs on Digital I/O
 Ports
- High-Current Sink/Source (18 mA/18 mA) on all I/O Ports
- Selectable Power Management modes:
 Sleep, Idle and Doze modes with fast wake-up
- Fail-Safe Clock Monitor (FSCM) Operation:
- Detects clock failure and switches to on-chip, FRC oscillator
- On-Chip LDO Regulator
- Power-on Reset (POR) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Flexible Watchdog Timer (WDT) with On-Chip Low-Power RC Oscillator for Reliable Operation
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support
- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
 - Self-reprogrammable under software control
 - Write protection option for Configuration Words

TABLE	4-9:	OUT	ГРИТ С	OMPA	RE REG	ISTER I	MAP											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0190	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV		DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0194								Output Comp	are 1 Seconda	ny Register							0000
OC1R	0196								Output	Compare 1 Re	gister							0000
OC1TMR	0198								Output Compa	are 1 Timer Va	ue Register							xxxx
OC2CON1	019A	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E								Output Comp	are 2 Seconda	ny Register							0000
OC2R	01A0								Output	Compare 2 Re	gister							0000
OC2TMR	01A2								Output Compa	are 2 Timer Va	ue Register							xxxx
OC3CON1	01A4	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8								Output Comp	are 3 Seconda	ny Register							0000
OC3R	01AA								Output	Compare 3 Re	gister							0000
OC3TMR	01AC	Output Compare 3 Timer Value Register					xxxx											
OC4CON1	01AE	—	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	01B0	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	01B2								Output Comp	are 4 Seconda	ny Register							0000
OC4R	01B4								Output	Compare 4 Re	gister							0000
OC4TMR	01B6								Output Compa	are 4 Timer Va	ue Register							xxxx
OC5CON1	01B8	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT1	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	01BA	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	01BC								Output Comp	are 5 Seconda	ny Register							0000
OC5R	01BE								Output	Compare 5 Re	gister							0000
OC5TMR	01C0								Output Compa	are 5 Timer Va	ue Register							xxxx
OC6CON1	01C2	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	01C4	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	01C6								Output Comp	are 6 Seconda	ny Register							0000
OC6R	01C8								Output	Compare 6 Re	gister							0000
OC6TMR	01CA								Output Compa	are 6 Timer Va	ue Register							xxxx
OC7CON1	01CC	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC7CON2	01CE	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC7RS	01D0								Output Comp	are 7 Seconda	ry Register							0000
OC7R	01D2								Output	Compare 7 Re	gister							0000
OC7TMR	01D4								Output Compa	are 7 Timer Va	ue Register							xxxx

DS39969B-page 55

TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0	_	—	—	—	_	_	—	_	3F00
RPINR1	0682	_	_	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0	_		INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0	3F3F
RPINR2	0684	_		_					_	_		INT4R5	INT4R4	INT4R3	INT4R2	INT4R1	INT4R0	003F
RPINR3	0686	—	_	T3CKR5	T3CKR4	T3CKR3	T3CKR2	T3CKR1	T3CKR0	—	—	T2CKR5	T2CKR4	T2CKR3	T2CKR2	T2CKR1	T2CKR0	3F3F
RPINR4	0688	_	_	T5CKR5	T5CKR4	T5CKR3	T5CKR2	T5CKR1	T5CKR0	_	_	T4CKR5	T4CKR4	T4CKR3	T4CKR2	T4CKR1	T4CKR0	3F3F
RPINR7	068E	_	_	IC2R5	IC2R4	IC2R3	IC2R2	IC2R1	IC2R0	_	_	IC1R5	IC1R4	IC1R3	IC1R2	IC1R1	IC1R0	3F3F
RPINR8	0690	_	_	IC4R5	IC4R4	IC4R3	IC4R2	IC4R1	IC4R0	_	_	IC3R5	IC3R4	IC3R3	IC3R2	IC3R1	IC3R0	3F3F
RPINR9	0692	_	_	IC6R5	IC6R4	IC6R3	IC6R2	IC6R1	IC6R0	_	_	IC5R5	IC5R4	IC5R3	IC5R2	IC5R1	IC5R0	3F3F
RPINR10	0694	—	_	IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0	—	_	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0	3F3F
RPINR11	0696	—	_	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0	—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0	3F3F
RPINR15	069E	_		IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0		_	_	_	_	—	—	—	3F00
RPINR17	06A2	_		U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0		_	—	—	—	—	—	—	3F00
RPINR18	06A4	_	_	U1CTSR5	U1CTSR4	U1CTSR3	U1CTSR2	U1CTSR1	U1CTSR0	_	_	U1RXR5	U1RXR4	U1RXR3	U1RXR2	U1RXR1	U1RXR0	3F3F
RPINR19	06A6	_		U2CTSR5	U2CTSR4	U2CTSR3	U2CTSR2	U2CTSR1	U2CTSR0		_	U2RXR5	U2RXR4	U2RXR3	U2RXR2	U2RXR1	U2RXR0	3F3F
RPINR20	06A8	_		SCK1R5	SCK1R4	SCK1R3	SCK1R2	SCK1R1	SCK1R0		_	SDI1R5	SDI1R4	SDI1R3	SDI1R2	SDI1R1	SDI1R0	3F3F
RPINR21	06AA	_	_	U3CTSR5	U3CTSR4	U3CTSR3	U3CTSR2	U3CTSR1	U3CTSR0	_	_	SS1R5	SS1R4	SS1R3	SS1R2	SS1R1	SS1R0	3F3F
RPINR22	06AC	—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0	—	_	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0	3F3F
RPINR23	06AE	_	_	—	_	_	—	—	—			SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0	003F
RPINR27	06B6	—	_	U4CTSR5	U4CTSR4	U4CTSR3	U4CTSR2	U4CTSR1	U4CTSR0		—	U4RXR5	U4RXR4	U4RXR3	U4RXR2	U4RXR1	U4RXR0	3F3F
RPINR28	06B8	_	_	SCK3R5	SCK3R4	SCK3R3	SCK3R2	SCK3R1	SCK3R0			SDI3R5	SDI3R4	SDI3R3	SDI3R2	SDI3R1	SDI3R0	3F3F
RPINR29	06BA	_	_	_	_	_	_	_	_	_	_	SS3R5	SS3R4	SS3R3	SS3R2	SS3R1	SS3R0	003F

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Bits are unimplemented in 64-pin devices; read as '0'.

TABLE 4-31: GRAPHICS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
G1CMDL	0700							Graph	ics Command F	Register<15:0>	,							0000
G1CMDH	0702							Graphi	cs Command F	Register<31:16	>							0000
G1CON1	0704	G1EN	_	G1SIDL	GCMDWMK4	GCMDWMK3	GCMDWMK2	GCMDWMK1	GCMDWMK0	PUBPP2	PUBPP1	PUBPP0	GCMDCNT4	GCMDCNT3	GCMDCNT2	GCMDCNT1	GCMDCNT0	0000
G1STAT	0706	PUBUSY	_		_	_	-	_	_	IPUBUSY	RCCBUSY	CHRBUSY	VMRGN	HMRGN	CMDLV	CMDFUL	CMDMPT	0000
G1IE	0708	PUIE			_	_		_	_	IPUIE	RCCIE	CHRIE	VMRGNIE	HMRGNIE	CMDLVIE	CMDFULIE	CMDMPTIE	0000
G1IR	070A	PUIF	-		—	—		—	—	IPUIF	RCCIF	CHRIF	VMRGNIF	HMRGNIF	CMDLVIF	CMDFULIF	CMDMPTIF	0000
G1W1ADRL	070C							GPU Work A	Area 1 Start Ado	dress Register∙	<15:0>							0000
G1W1ADRH	070E	—	—	-	-	- <u> </u>							0000					
G1W2ADRL	0710	GPU Work Area 2 Start Address Register<15:0> 00								0000								
G1W2ADRH	0712	—	_	—	—	—	_	_	—			GPU Wo	rk Area 2 Star	Address Regi	ster<23:16>			0000
G1PUW	0714	—	_	—	—	—					GPU Wor	k Area Width	Register					0000
G1PUH	0716	_	—	_	_	_					GPU Wor	k Area Heigh	t Register					0000
G1DPADRL	0718				Display Buffer Start Address Register<15:0>							0000						
G1DPADRH	071A	_	—	_	—	_	— — Display Buffer Start Address Register<23:16>						0000					
G1DPW	071C	—	_	_	—	—					Display F	Frame Width	Register					0000
G1DPH	071E	—	_	_	—	—					Display F	rame Height	Register					0000
G1DPWT	0720	—	_	_	—	—					Display	Total Width F	Register					0000
G1DPHT	0722	—	—	—	—	—					Display	Total Height F	Register					0000
G1CON2	0724	DPGWDTH1	DPGWDTH0	DPSTGER1	DPSTGER0	_	_	DPTEST1	DPTEST0	DPBPP2	DPBPP1	DPBPP0	—	—	DPMODE2	DPMODE1	DPMODE0	0000
G1CON3	0726	—	—	—	—	—	—	DPPINOE	DPPOWER	DPCLKPOL	DPENPOL	DPVSPOL	DPHSPOL	DPPWROE	DPENOE	DPVSOE	DPHSOE	0000
G1ACTDA	0728			Number of	Lines Before th	ne First Active L	ine Register					Number of	Pixels Before t	he First Active	Plxel Register			0000
G1HSYNC	072A			HSYN	IC Pulse-Width	Configuration F	Register					HSYN	IC Start Delay	Configuration	Register			0000
G1VSYNC	072C			VSYN	IC Pulse-Width	Configuration F	Register					VSYN	IC Start Delay	Configuration	Register			0000
G1DBLCON	072E			ical Blanking S	Start to First Dis	played Line Co	nfiguration Reg		1		Horizo	ntal Blanking	Start to First D	Displayed Line	Configuration F	Regsiter		0000
G1CLUT	0730	CLUTEN	CLUTBUSY	—	_	_	—	CLUTTRD	CLUTRWEN			Color Lo	ook-Up Table N	Memory Addres	ss Register			0000
G1CLUTWR	0732								p Table Memor		•							0000
G1CLUTRD	0734							Color Look-u	p Table Memor	y Read Data R	Register							0000
G1MRGN	0736			V	ertical Blanking	Advance Regis	ster					Но	rizontal Blanki	ng Advance Re	egister			0000
G1CHRX	0738	-	—	—	-	_				Curre	ent Character	X-Coordinate	Position Reg	ister				0000
G1CHRY	073A	_	_	_	_	_				Curre	ent Character	Y-Coordinate	Position Regi	ster				0000
G1IPU	073C	_	_	_	_	_	_	_	_	_	_	HUFFERR	BLCKERR	LENERR	WRAPERR	IPUDONE	BFINAL	0000
G1DBEN	073E	GDBEN15	GDBEN14	GDBEN13	GDBEN12	GDBEN11	GDBEN10	GDBEN9	GDBEN8	GDBEN7	GDBEN6	GDBEN5	GDBEN4	GDBEN3	GDBEN2	GDBEN1	GDBEN0	0000

Legend:

DS39969B-page 69

: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

EXAMPLE 5-2: ERASING A PROGRAM MEMORY BLOCK ('C' LANGUAGE CODE)

<pre>// C example using MPLAB C30 unsigned long progAddr = 0xXXXXXX; unsigned int offset;</pre>	// Address of row to write
//Set up pointer to the first memory location t	o be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	<pre>// Initialize lower word of address</pre>
<pre>builtin_tblwtl(offset, 0x0000);</pre>	// Set base address of erase block
	// with dummy latch write
NVMCON = 0×4042 ;	// Initialize NVMCON
asm("DISI #5");	<pre>// Block all interrupts with priority <7</pre>
	// for next 5 instructions
builtin_write_NVM();	// check function to perform unlock
	// sequence and set WR

EXAMPLE 5-3: LOADING THE WRITE BUFFERS

; Set up NVMCON for row programming operation	22
MOV #0x4001, W0	;
MOV W0, NVMCON	, ; Initialize NVMCON
; Set up a pointer to the first program memo	
; program memory selected, and writes enable	
MOV #0x0000, W0	;
MOV W0, TBLPAG	, ; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to write th	
; Oth program word	
MOV #LOW_WORD_0, W2	i
MOV #HIGH_BYTE_0, W3	;
TBLWTL W2, [W0]	, ; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; lst_program_word	, write in high byte into program faton
MOV #LOW_WORD_1, W2	i
MOV #HIGH BYTE 1, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd program word	
MOV #LOW_WORD_2, W2	i
MOV #HIGH_BYTE_2, W3	i
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_63, W2	;
MOV #HIGH_BYTE_63, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0]	; Write PM high byte into program latch

EXAMPLE 5-4: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority <7
		; for next 5 instructions
MOV.B	#0x55, W0	
MOV	W0, NVMKEY	; Write the 0x55 key
MOV.B	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the OxAA key
BSET	NVMCON, #WR	; Start the programming sequence
NOP		; Required delays
NOP		
BTSC	NVMCON, #15	; and wait for it to be
BRA	\$-2	; completed

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 5	Unimplemented: Read as '0'
bit 4	INT1IF: External Interrupt 1 Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 3	CNIF: Input Change Notification Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: Master I2C1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 0	SI2C1IF: Slave I2C1 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
—		PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF
bit 15							bit 8

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS
IC5IF	IC4IF	IC3IF	—	—	—	SPI2IF	SPF2IF
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	PMPIF: Parallel Master Port Interrupt Flag Status bit ⁽¹⁾
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 12	OC8IF: Output Compare Channel 8 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 11	OC7IF: Output Compare Channel 7 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 10	OC6IF: Output Compare Channel 6 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 9	OC5IF: Output Compare Channel 5 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
Note 1:	Not available in PIC24FJXXXDAX06 devices.

REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	—	—
bit 7							bit 0

Legend:								
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15-11	Unimpleme	ented: Read as '0'						
bit 10-8	MI2C2IP<2	:0>: Master I2C2 Event In	terrupt Priority bits					
	111 = Interrupt is priority 7 (highest priority interrupt)							
	•							
	• 001 = Interrupt is priority 1							
		rupt source is disabled						
bit 7		ented: Read as '0'						
bit 6-4	SI2C2IP<2:	0>: Slave I2C2 Event Inte	errupt Priority bits					
	111 = Interrupt is priority 7 (highest priority interrupt)							
	•							
	•							
	• 001 = Intor	rupt is priority 1						
		rupt source is disabled						
bit 3-0		ented: Read as '0'						
511 0-0	Sumpleme							

10.4 Peripheral Pin Select (PPS)

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. In an application that needs to use more than one peripheral multiplexed on a single pin, inconvenient work arounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) feature provides an alternative to these choices by enabling the user's peripheral set selection and its placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The Peripheral Pin Select feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

10.4.1 AVAILABLE PINS

The PPS feature is used with a range of up to 44 pins, depending on the particular device and its pin count. Pins that support the Peripheral Pin Select feature include the designation, "RPn" or "RPIn", in their full pin designation, where "n" is the remappable pin number. "RP" is used to designate pins that support both remappable input and output functions, while "RPI" indicates pins that support remappable input functions only.

PIC24FJ256DA210 family devices support a larger number of remappable input only pins than remappable input/output pins. In this device family, there are up to 32 remappable input/output pins, depending on the pin count of the particular device selected; these are numbered, RP0 through RP31. Remappable input only pins are numbered above this range, from RPI32 to RPI43 (or the upper limit for that particular device).

See Table 1-1 for a summary of pinout options in each package offering.

10.4.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digital only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer related peripherals (input capture and output compare) and external interrupt inputs. Also included are the outputs of the comparator module, since these are discrete digital signals.

PPS is not available for l^2C^{TM} , change notification inputs, RTCC alarm outputs, EPMP signals, graphics controller signals or peripherals with analog inputs.

A key difference between pin select and non-pin select peripherals is that pin select peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non pin select peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

10.4.2.1 Peripheral Pin Select Function Priority

Pin-selectable peripheral outputs (e.g., OC, UART transmit) will take priority over general purpose digital functions on a pin, such as EPMP and port I/O. Specialized digital outputs, such as USB functionality, will take priority over PPS outputs on the same pin. The pin diagrams list peripheral outputs in the order of priority. Refer to them for priority concerns on a particular pin.

Unlike PIC24F devices with fixed peripherals, pin selectable peripheral inputs will never take ownership of a pin. The pin's output buffer will be controlled by the TRISx setting or by a fixed peripheral on the pin. If the pin is configured in digital mode then the PPS input will operate correctly. If an analog function is enabled on the pin the PPS input will be disabled.

10.4.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of Special Function Registers (SFRs): one to map peripheral inputs and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on if an input or an output is being mapped.

10.4.3.1 Input Mapping

The inputs of the Peripheral Pin Select options are mapped on the basis of the peripheral; that is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-8 through Register 10-28). Each register contains two sets of 6-bit fields, with each set associated with one of the pin-selectable peripherals. Programming a given peripheral's bit field with an appropriate 6-bit value maps the RPn/RPIn pin with that value to that peripheral. For any given device, the valid range of values for any of the bit fields corresponds to the maximum number of Peripheral Pin Selections supported by the device.

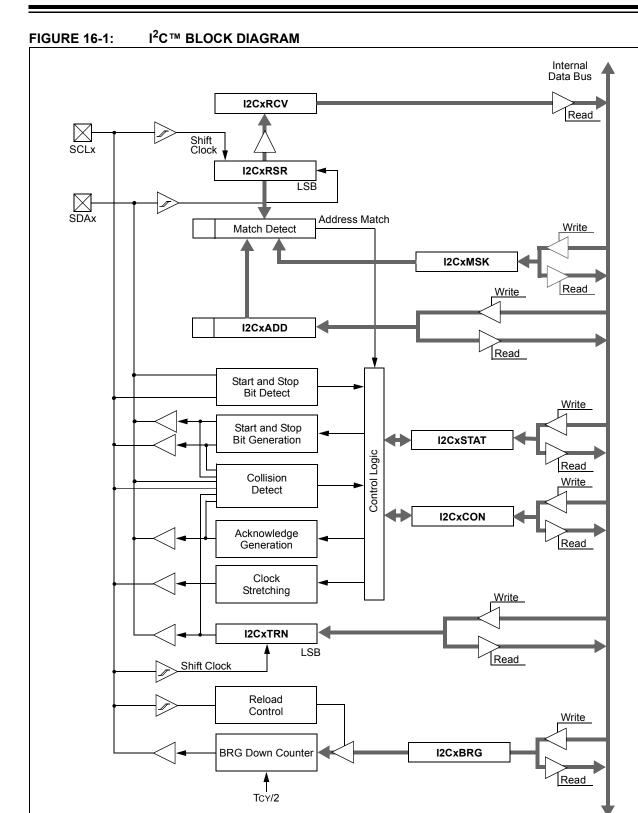
REGISTER 10-18: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	IC9R5	IC9R4	IC9R3	IC9R2	IC9R1	IC9R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	—	—	_
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	ented bit, read	read as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is clea	ired	x = Bit is unkr	iown	

bit 13-8 IC9R<5:0>: Assign Input Capture 9 (IC9) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

REGISTER 10-19: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17


U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	U3RXR5	U3RXR4	U3RXR3	U3RXR2	U3RXR1	U3RXR0
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-14 **Unimplemented:** Read as '0'

bit 13-8 U3RXR<5:0>: Assign UART3 Receive (U3RX) to Corresponding RPn or RPIn Pin bits

bit 7-0 Unimplemented: Read as '0'

NOTES:

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (4 BRG clock cycles per bit)
 - 0 = Standard-Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receiver buffer and the RSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	Value of bit only affects the transmit properties of the module when the $IrDA^{\textcircled{R}}$ encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

18.7.1 USB OTG MODULE CONTROL REGISTERS

REGISTER 18-3: U10TGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	U = Unimplemented b	U = Unimplemented bit, read as '0'			
R = Readable bit	W = Writable bit	HSC = Hardware Setta	ble/Clearable bit		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached, or a type B cable has been plugged into the USB receptacle 0 = A type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the USB OTG Specification) on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	1 = The VBUS voltage is below VB_SESS_END (as defined in the USB OTG Specification) on the B-device
	0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the USB OTG Specification) on the A-device
	0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM				
oit 15							bi				
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
ACKP	PTSZ1	PTSZ0	—	—		_	—				
bit 7							bi				
Legend:											
R = Readable	bit	W = Writable b	oit	U = Unimp	lemented bit, re	ad as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is		x = Bit is unkno	own				
bit 15	CSDIS: Chi	p Select x Disab	le bit								
	1 = Disable	the Chip Select	x functionality	1							
		the Chip Select	,								
bit 14	•	Select x Polarity	bit								
		nigh <u>(PMCS</u> x) ow (PMCSx)									
bit 13		. ,	hla hit								
		CSPTEN: PMCSx Port Enable bit 1 = PMCSx port is enabled									
		port is disabled									
oit 12		Select x Nibble/E		plarity bit							
	1 = Nibble/I	1 = Nibble/Byte enable active-high (PMBE0, PMBE1)									
	0 = Nibble/	Byte enable acti	ve-low (PMBE	0, PMBE1)							
bit 11	Unimpleme	ented: Read as '	0'								
bit 10	WRSP: Chip Select x Write Strobe Polarity bit										
		odes and Maste		<u>SM = 0:</u>							
	 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR) 										
		For Master mode when $SM = 1$:									
	1 = Enable strobe active-high (PMENB)										
		strobe active-lo	. ,								
bit 9	-	Select x Read	-								
	For Slave modes and Master mode when $SM = 0$:										
	1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)										
	For Master mode when SM = 1:										
	1 = Read/write strobe active-high (PMRD/PMWR)										
		Vrite strobe activ	,	PMWR)							
bit 8	-	SM: Chip Select x Strobe Mode bit									
	1 = Read/Write and enable strobes (PMRD/PMWR and PMENB) 0 = Read and write strobes (PMRD and PMWR)										
bit 7	0 = Read and write strobes (PMRD and PMWR)										
	-	ACKP: Chip Select x Acknowledge Polarity bit 1 = ACK active-high (PMACK1)									
		tive-low (PMAC									
bit 6-5	PTSZ<1:0>	: Chip Select x F	Port Size bits								
	PTSZ<1:0>: Chip Select x Port Size bits 11 = Reserved										
	11 = Reserved 10 = 16-bit port size (PMD<15:0>)										
	01 = 4-bit p	port size (PMD oort size (PMD<3 oort size (PMD<3	3:0>)								

REGISTER 20-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾

bit 7-0	CAL<7:0>: RTC Drift Calibration bits								
	01111111 =	Maximum positive adjustment; adds 508 RTC clock pulses every one minute							
	:								
	11111111 = 00000001 =	Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute Minimum positive adjustment; adds 4 RTC clock pulses every one minute No adjustment							
	10000000 =	Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute							

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 20-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-2	Unimplemented: Read as '0'
bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: EPMP Module TTL Input Buffer Select bit
	 1 = EPMP module inputs (PMDx, PMCS1) use TTL input buffers 0 = EPMP module inputs use Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL<10>) bit must also be set.

REGISTER 22-28: G1MRGN: INTERRUPT ADVANCE REGISTER

_								
	R/W-0							
Γ	VBAMGN7	VBAMGN6	VBAMGN5	VBAMGN4	VBAMGN3	VBAMGN2	VBAMGN1	VBAMGN0
	bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| HBAMGN7 | HBAMGN6 | HBAMGN5 | HBAMGN4 | HBAMGN3 | HBAMGN2 | HBAMGN1 | HBAMGN0 |
| bit 7 | | | | | | | bit 0 |

Legend:				
R = Readable bit	W = Writable bit	<i>N</i> = Writable bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

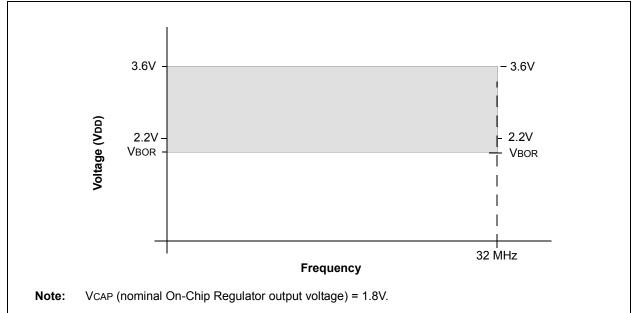
bit 15-8	VBAMGN<7:0>: Vertical Blanking Advance bits
	The number of DISPCLK cycles in advance that the vertical blanking interrupt will assert ahead of the
	actual start of the vertical blanking.
bit 7-0	HBAMGN<7:0>: Horizontal Blanking Advance bits

The number of DISPCLK cycles in advance that the horizontal blanking interrupt will assert ahead of the actual start of the horizontal blanking.

REGISTER 22-29: G1CHRX: CHARACTER-X COORDINATE PRINT POSITION REGISTER

U-0	U-0	U-0	U-0 U-0		U-0 R-0, HSC R-0,		R-0, HSC
_	—	—			CURPOSX10	CURPOSX9	CURPOSX8
bit 15							bit 8

R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
CURPOSX7	CURPOSX6	CURPOSX5	CURPOSX4	CURPOSX3	CURPOSX2	CURPOSX1	CURPOSX0		
bit 7 bit									


Legend:	HSC = Hardware Settable	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-11 Unimplemented: Read as '0'

bit 10-0 CURPOSX<10:0>: Current Character Position in the X-Coordinate bits

30.1 DC Characteristics

TABLE 30-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
PIC24FJ256DA210 family:					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation (with ENVREG = 1): Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PINT + PI/0 V		W	
I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(Тјмах – Та)/θја			W

TABLE 30-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Note
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	—	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm QFN	θJA	28.0	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1.1 mm BGA	θJA	40.2		°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CH/	ARACTER	RISTICS	S: I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)				V (unless otherwise
		1	Operating tempe	erature	$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No.	Symbo I	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage ⁽³⁾					
DI10		I/O Pins with ST Buffer	Vss	—	0.2 VDD	V	
DI11		I/O Pins with TTL Buffer	Vss	—	0.15 VDD	V	
DI15		MCLR	Vss	_	0.2 VDD	V	
DI16		OSCI (XT mode)	Vss		0.2 VDD	V	
DI17		OSCI (HS mode)	Vss	_	0.2 VDD	V	
DI18		I/O Pins with I ² C™ Buffer:	Vss		0.3 VDD	V	
DI19		I/O Pins with SMBus Buffer:	Vss	_	0.8	V	SMBus enabled
	Vih	Input High Voltage ⁽³⁾					
DI20		I/O Pins with ST Buffer: with Analog Functions, Digital Only	0.8 Vdd 0.8 Vdd	—	Vdd 5.5	V V	
DI21		I/O Pins with TTL Buffer: with Analog Functions, Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	Vdd 5.5	V V	
DI25		MCLR	0.8 VDD		Vdd	V	
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V	
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V	
DI28		I/O Pins with I ² C™ Buffer: with Analog Functions, Digital Only	0.7 Vdd 0.7 Vdd		Vdd 5.5	V V	
DI29		I/O Pins with SMBus Buffer: with Analog Functions, Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \le VPIN \le VDD$
DI30	ICNPU	CNxx Pull-up Current	150	350	550	μA	VDD = 3.3V, VPIN = VSS
DI30A	ICNPD	CNxx Pull-down Current	15	70	150	μA	VDD = 3.3V, VPIN = VDD
DI50	lı∟	Input Leakage Current ⁽²⁾ I/O Ports	_	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance
DI51		Analog Input Pins	—	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance
DI55		MCLR	—	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$
DI56		OSCI/CLKI	—	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V\text{SS} \leq V\text{PIN} \leq V\text{DD}, \\ & \text{EC}, \text{XT} \text{ and } \text{HS modes} \end{split}$

TABLE 30-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-1 for I/O pins buffer types.

$\cap T$	- 11/1	
C I	IVIU	

Measuring Capacitance	
Measuring Time	
Pulse Delay and Generation	
Customer Change Notification Service	
Customer Notification Service	
Customer Support	

D

Data Memory	
Address Space	
Memory Map	
Near Data Space	
SFR Space	
Software Stack	75
Space Organization, Alignment	
DC Characteristics	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Program Memory	
Development Support	
Device Features	
100/121Pin	
64-Pin	
Doze Mode	156

Е

EDS	
Electrical Characteristics	
A/D Specifications	384
Absolute Maximum Ratings	
Capacitive Loading on Output Pin	
External Clock Timing	
Idle Current	
Load Conditions and Requirements for	
Specifications	379
Operating Current	
PLL Clock Timing Specifications	381
Power-Down Current	
RC Oscillator Start-up Time	
Reset and Brown-out Reset Requirements	382
Temperature and Voltage Specifications	
Thermal Conditions	
V/F Graph	
Voltage Regulator Specifications	
Enhanced Parallel Master Port. See EPMP	
ENVREG Pin	354
EPMP	
Alternative Master	
Key Features	
Master Port Pins	
Equations	
16-Bit, 32-Bit CRC Polynomials	
A/D Conversion Clock Period	332
Baud Rate Reload Calculation	225
Calculating the PWM Period	204
Calculation for Maximum PWM Resolution	205
Estimating USB Transceiver Current	
Consumption	243
Relationship Between Device and SPI	
Clock Speed	
RTCC Calibration	
UART Baud Rate with BRGH = 0	
UART Baud Rate with BRGH = 1	
Errata	14

F

Flash Configuration Words	46, 347
Flash Program Memory	81
and Table Instructions	
Enhanced ICSP Operation	82
JTAG Operation	82
Programming Algorithm	84
RTSP Operation	82
Single-Word Programming	

G

Graphics Controller (GFX) Key Features	
Graphics Controller Module (GFX)	
Graphics Display Module	
Display Clock (GCLK) Source	324
Display Configuration	324
Memory Locations	324
Memory Requirements	324
Module Registers	. 306
Graphics Display Module (GFX)	. 305

I

I/O Ports	
Analog Port Pins Configuration	158
Analog/Digital Function of an I/O Pin	158
Input Change Notification	163
Open-Drain Configuration	158
Parallel (PIO)	157
Peripheral Pin Select	164
Pull-ups and Pull-downs	163
Selectable Input Sources	165
l ² C	
Clock Rates	225
Reserved Addresses	
Setting Baud Rate as Bus Master	225
Slave Address Masking	225
Idle Mode	156
Input Capture	
32-Bit Mode	198
Operations	
Synchronous and Trigger Modes	197
Input Capture with Dedicated Timers	197
Input Voltage Levels for Port or Pin	
Tolerated Description Input	158
Instruction Set	
Overview	
Summary	
Instruction-Based Power-Saving Modes 1	
Interfacing Program and Data Spaces	
Inter-Integrated Circuit. See I ² C.	
Internet Address	
Interrupt Vector Table (IVT)	93
Interrupts	
Control and Status Registers	
Implemented Vectors	
Reset Sequence	
Setup and Service Procedures	
Trap Vectors	
Vector Table	94
J	
JTAG Interface	358