

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Decans	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da106t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2 CPU Control Registers

REGISTER 3-1: SR: ALU STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0, HSC
—	—	—	—	—	—	—	DC
bit 15							bit 8

R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R/W-0, HSC ⁽¹⁾	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С
bit 7							bit 0

Legend:	HSC = Hardware Settable	/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-9	Unimplemented: Read as '0'
bit 8	DC: ALU Half Carry/Borrow bit
	 1 = A carry out from the 4th low-order bit (for byte-sized data) or 8th low-order bit (for word-sized data) of the result occurred
	0 = No carry out from the 4 th or 8 th low-order bit of the result has occurred
bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(1,2)
	111 = CPU interrupt priority level is 7 (15); user interrupts are disabled
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13) 100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress
	0 = REPEAT loop not in progress
bit 3	N: ALU Negative bit
	1 = Result was negative
h:+ 0	0 = Result was not negative (zero or positive)
bit 2	OV: ALU Overflow bit
	 1 = Overflow occurred for signed (2's complement) arithmetic in this arithmetic operation 0 = No overflow has occurred
bit 1	Z: ALU Zero bit
	 1 = An operation, which affects the Z bit, has set it at some time in the past 0 = The most recent operation, which affects the Z bit, has cleared it (i.e., a non-zero result)
bit 0	C: ALU Carry/Borrow bit
DILU	1 = A carry out from the Most Significant bit of the result occurred
	0 = No carry out from the Most Significant bit of the result occurred
No.4	
Note 1:	
2:	The IPL Status bits are concatenated with the IPL3 (CORCON< 3) bit to form the CPU Interrupt Priority Level (IPL). The value in parentheses indicates the IPL when IPL3 = 1.
	E = 1 and $E = 1$.

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 45. "Data Memory with Extended Data Space" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range.

The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 64 Kbytes or 32K words. The lower 32 Kbytes (0x0000 to 0x7FFF) of DS is compatible with the PIC24F microcontrollers without EDS.

The upper 32 Kbytes of data memory address space (0x8000 - 0xFFFF) are used as an EDS window.

The EDS window is used to access all memory region implemented in EDS, as shown in Figure 4-4.

The EDS includes any additional internal data memory not accessible by the lower 32-Kbyte data address space and any external memory through EPMP. For more details on accessing internal extended data memory, refer to the "*PIC24F Family Reference Manual*", Section 45. "Data Memory with Extended Data Space (EDS)" (DS39733). For more details on accessing external memory using EPMP, refer to the "*PIC24F Family Reference Manual*", Section 42. "Enhanced Parallel Master Port (EPMP)" (DS39730). In PIC24F microcontrollers with EDS, the program memory can also be read from EDS. This is called Program Space Visibility (PSV). Table 4-2 lists the total memory accessible by each of the devices in this family.

The EDS is organized as pages, with a single page called an EDS page that equals the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). For more information on EDS, refer to **Section 4.3.3 "Reading Data from Program Memory Using EDS"**.

Devices	Internal RAM	External RAM Access Using EPMP	Program Memory Access Using EDS
PIC24FJXXXDA210	96 Kbytes (30K + 66K ⁽¹⁾)	Yes (up to 16 MB)	Yes
PIC24FJXXXDA206	96 Kbytes (30K + 66K ⁽¹⁾)	No	Yes
PIC24FJXXXDA110	24 Kbytes	Yes (up to 16 MB)	Yes
PIC24FJXXXDA106	24 Kbytes	No	Yes

TABLE 4-2:TOTAL MEMORY ACCESSIBLE BY THE DEVICE

Note 1: The internal RAM above 30 Kbytes can be accessed through EDS window.

TABLE 4-28: COMPARATORS REGISTER MAP

	File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C	MSTAT	0630	CMIDL	_	_	_		C3EVT	C2EVT	C1EVT	_	_	_	_	_	C3OUT	C2OUT	C10UT	0000
C	VRCON	0632	_	_	_	_	_	CVREFP	CVREFM1	CVREFM0	CVREN	CVROE	CVRR	CVRSS	CVR3	CVR2	CVR1	CVR0	0000
C	M1CON	0634	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPOL1	EVPOL0		CREF	_	_	CCH1	CCH0	0000
C	M2CON	0636	CON	COE	CPOL	_		_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	_	_	CCH1	CCH0	0000
C	M3CON	0638	CON	COE	CPOL	—	_	_	CEVT	COUT	EVPOL1	EVPOL0	_	CREF	-	_	CCH1	CCH0	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-29: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	_	CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0	CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	_	_		0040
CRCCON2	0642	_	_	_	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0				PLEN4	PLEN3	PLEN2	PLEN1	PLEN0	0000
CRCXORL	0644	X15	X14	X13	X12	X11	X10	X9	X8	X7	X6	X5	X4	X3	X2	X1	_	0000
CRCXORH	0646	X31	X30	X29	X28	X27	X26	X25	X24	X23	X22	X21	X20	X19	X18	X17	X16	0000
CRCDATL	0648								CRC Data Inp	out Register	Low							0000
CRCDATH	064A							(CRC Data Inp	ut Register I	High							0000
CRCWDATL	064C								CRC Result	t Register Lo	w							0000
CRCWDATH	064E								CRC Result	Register Hig	gh							0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

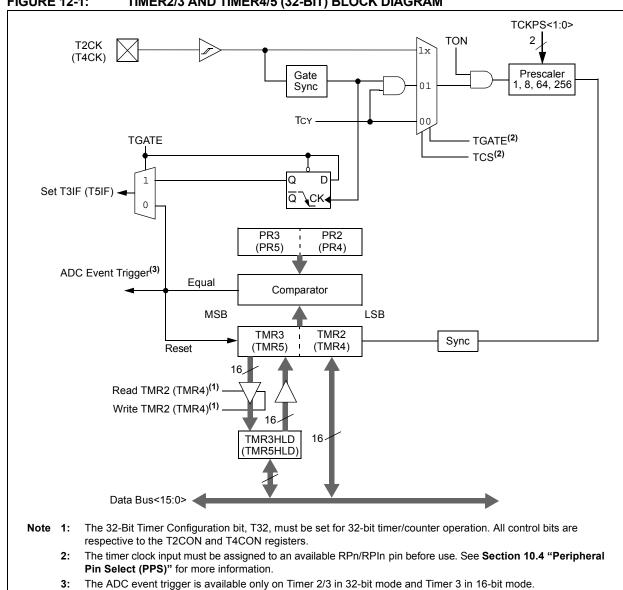
REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

U-0	U-0	R/W-0, HS					
—	—	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF
bit 15							bit 8

R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
T2IF	OC2IF	IC2IF	—	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit 0

Legend:		HS = Hardware Settable	e bit	
R = Readab	ole bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value a	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-14	-	ented: Read as '0'		
bit 13		Conversion Complete Inte	errupt Flag Status bit	
		pt request has occurred pt request has not occurred	4	
bit 12	-	ART1 Transmitter Interrupt		
		pt request has occurred	ridg oldido bit	
		pt request has not occurred	ł	
bit 11	U1RXIF: U	ART1 Receiver Interrupt Flag	ag Status bit	
		pt request has occurred		
	0 = Interru	pt request has not occurred	1	
bit 10	SPI1IF: SP	I1 Event Interrupt Flag Stat	tus bit	
	•	pt request has occurred	4	
L:1 0	-	pt request has not occurred		
bit 9		PI1 Fault Interrupt Flag Stat	tus dit	
		pt request has occurred pt request has not occurred	ł	
bit 8	-	3 Interrupt Flag Status bit	-	
		ot request has occurred		
		ot request has not occurred		
bit 7	T2IF: Timer	2 Interrupt Flag Status bit		
		pt request has occurred		
	0 = Interru	pt request has not occurred	1	
bit 6		tput Compare Channel 2 In	terrupt Flag Status bit	
		ot request has occurred ot request has not occurred		
bit 5	-	t Capture Channel 2 Interru		
DIL J	•	pt request has occurred	ipi i lag Status bit	
		pt request has not occurred	ł	
bit 4	-	ented: Read as '0'		
bit 3	T1IF: Timer	1 Interrupt Flag Status bit		
		pt request has occurred		
	0 = Interru	pt request has not occurred	ł	
bit 2	OC1IF: Out	tput Compare Channel 1 In	terrupt Flag Status bit	
	•	pt request has occurred		
	0 = Interru	pt request has not occurred	1	

	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—	U3TXIP2	U3TXIP1	U3TXIP0		U3RXIP2	U3RXIP1	U3RXIP0			
bit 15				·			bit			
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
_	U3ERIP2	U3ERIP1	U3ERIP0		_	_				
bit 7							bit			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
	• • • • 001 = Interru		abled							
	000 = Interrupt source is disabled									
	IInimplomon									
bit 11	-	ted: Read as '		Deigerite (hite						
	U3RXIP<2:0> 111 = Interru	IUART3 Reception Definition of the second	iver Interrupt I nighest priority	•						
bit 10-8 bit 7	U3RXIP<2:0> 111 = Interru	: UART3 Rece pt is priority 7 (I pt is priority 1	iver Interrupt I nighest priority abled	•						
bit 10-8	U3RXIP<2:0> 111 = Interru	 UART3 Recept is priority 7 (1) pt is priority 1 pt source is dis ted: Read as '0 UART3 Error pt is priority 7 (1) 	iver Interrupt I nighest priority abled o' Interrupt Prior nighest priority	rity bits						


REGISTER 7-37: IPC20: INTERRUPT PRIORITY CONTROL REGISTER 20

Input Name	Function Name	Register	Function Mapping Bits
External Interrupt 1	INT1	RPINR0	INT1R<5:0>
External Interrupt 2	INT2	RPINR1	INT2R<5:0>
External Interrupt 3	INT3	RPINR1	INT3R<5:0>
External Interrupt 4	INT4	RPINR2	INT4R<5:0>
Input Capture 1	IC1	RPINR7	IC1R<5:0>
Input Capture 2	IC2	RPINR7	IC2R<5:0>
Input Capture 3	IC3	RPINR8	IC3R<5:0>
Input Capture 4	IC4	RPINR8	IC4R<5:0>
Input Capture 5	IC5	RPINR9	IC5R<5:0>
Input Capture 6	IC6	RPINR9	IC6R<5:0>
Input Capture 7	IC7	RPINR10	IC7R<5:0>
Input Capture 8	IC8	RPINR10	IC8R<5:0>
Input Capture 9	IC9	RPINR15	IC9R<5:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<5:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<5:0>
SPI1 Clock Input	SCK1IN	RPINR20	SCK1R<5:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<5:0>
SPI1 Slave Select Input	SS1IN	RPINR21	SS1R<5:0>
SPI2 Clock Input	SCK2IN	RPINR22	SCK2R<5:0>
SPI2 Data Input	SDI2	RPINR22	SDI2R<5:0>
SPI2 Slave Select Input	SS2IN	RPINR23	SS2R<5:0>
SPI3 Clock Input	SCK3IN	RPINR28	SCK3R<5:0>
SPI3 Data Input	SDI3	RPINR28	SDI3R<5:0>
SPI3 Slave Select Input	SS3IN	RPINR29	SS3R<5:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<5:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<5:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<5:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<5:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<5:0>
UART1 Receive	U1RX	RPINR18	U1RXR<5:0>
UART2 Clear To Send	U2CTS	RPINR19	U2CTSR<5:0>
UART2 Receive	U2RX	RPINR19	U2RXR<5:0>
UART3 Clear To Send	U3CTS	RPINR21	U3CTSR<5:0>
UART3 Receive	U3RX	RPINR17	U3RXR<5:0>
UART4 Clear To Send	U4CTS	RPINR27	U4CTSR<5:0>
UART4 Receive	U4RX	RPINR27	U4RXR<5:0>

TABLE 10-3: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt Trigger (ST) input buffers.

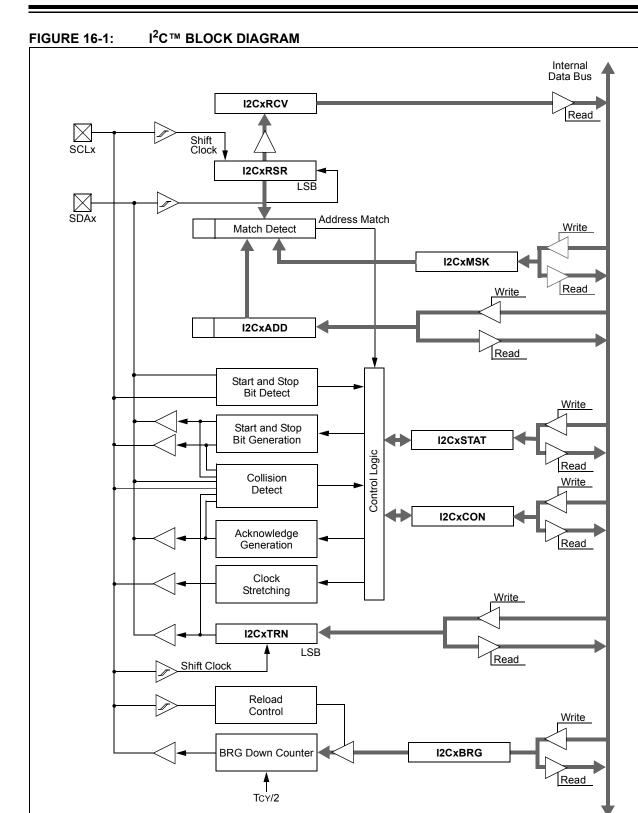
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON		TSIDL				—					
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
	TGATE	TCKPS1	TCKPS0	0-0	TSYNC	TCS					
bit 7	TOAL	1010101			101110	100	bit				
Legend:											
R = Readab	le hit	W = Writable	hit	II – I Inimplen	nented bit, read	1 as 'O'					
-n = Value a		'1' = Bit is set	JIL	'0' = Bit is clea		x = Bit is unkno					
	IFUR	I - DILIS SEL			areu		JWII				
bit 15	TON: Timer1	On bit									
	1 = Starts 16										
	0 = Stops 16										
bit 14	-	nted: Read as '									
bit 13		in Idle Mode bit									
		nue module ope e module operat			e mode						
bit 12-7		nted: Read as '		-							
bit 6	-	er1 Gated Time		Enable bit							
		When TCS = 1:									
	This bit is igr										
	<u>When TCS =</u> 1 = Gated ti	: <u>0:</u> me accumulatio	n enabled								
		me accumulatio									
bit 5-4	TCKPS<1:0	>: Timer1 Input	Clock Prescale	Select bits							
	11 = 1:256										
	10 = 1:64 01 = 1:8										
	01 = 1.8 00 = 1.1										
bit 3	Unimplemer	nted: Read as ')'								
bit 2	TSYNC: Tim	er1 External Clo	ock Input Syncl	nronization Sel	ect bit						
	When TCS =										
		nize external clo									
	0 = D0 hot s When TCS =	synchronize exte	mai ciock inpu	l.							
	This bit is igr										
bit 1	TCS: Timer1	Clock Source S	Select bit								
		clock from T1C clock (Fosc/2)	K pin (on the r	ising edge)							
bit 0	Unimplemer	nted: Read as 'o)'								
	Changing the values of the transformer the set and is not rest.		hile the timer is	s running (TON	l = 1) causes tl	ne timer prescale	e counter to				

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.


The I²C module supports these features:

- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

REGISTER 18-6: U1STAT: USB STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	U-0					
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	—	—
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 bit 7-4	Unimplemented: Read as '0' ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.) 1111 = Endpoint 15 1110 = Endpoint 14
	•
	0001 = Endpoint 1
	0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	1 = The last transaction was a transmit transfer (TX) a = The last transaction was a receive transfer (PX)
	0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank
	0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

REGISTER 18-16: U1IR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

					•			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	_	—	—	_	_		
bit 15								
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS	
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	
bit 7							bit 0	
Legend:		U = Unimplem	nented bit, read	d as '0'				
R = Readable	e bit	K = Write '1' to	o clear bit	HS = Hardware Settable bit				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unknown		
bit 15-8	Unimplemer	nted: Read as 'o)'					
bit 7	STALLIF: ST	ALL Handshake	e Interrupt bit					
 1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode 								

	1 = A STALL handshake was sent by the peripheral during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	Unimplemented: Read as '0'
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
bit 4	IDLEIF: Idle Detect Interrupt bit
DIL 4	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token is not complete; clear the U1STAT register or load the next token from STAT (clearing this bit causes the STAT FIFO to advance)
bit 2	SOFIF: Start-Of-Frame Token Interrupt bit
	 1 = A Start-Of-Frame token is received by the peripheral or the Start-Of-Frame threshold is reached by the host
	0 = No Start-Of-Frame token is received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit (read-only)
	1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	URSTIF: USB Reset Interrupt bit
	1 = Valid USB Reset has occurred for at least 2.5 μs; Reset state must be cleared before this bit can be reasserted
	0 = No USB Reset has occurred. Individual bits can only be cleared by writing a '1' to the bit position
	as part of a word write operation on the entire register. Using Boolean instructions or bitwise oper- ations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the
	entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause

Pin Name	Туре	Description
PMA<22:16>	0	Address bus bits<22-16>
	0	Address bus bit<15>
PMA<15>, PMCS2	0	Chip Select 2 (alternate location)
	I/O	Data bus bit<15> when port size is 16 bits and address is multiplexed
	0	Address bus bit<14>
PMA<14>, PMCS1	0	Chip Select 1 (alternate location)
	I/O	Data bus bit 14 when port size is 16-bit and address is multiplexed
	0	Address bus bit< 13-8>
PMA<13:8>	I/O	Data bus bits<13-8> when port size is 16 bits and addres is multiplexed
PMA<7:3>	0	Address bus bit< 7-3>
PMA<2>, PMALU	0	Address bus bit<2>
	0	Address latch upper strobe for multiplexed address
	I/O	Address bus bit<1>
PMA<1>, PMALH	0	Address latch high strobe for multiplexed address
	I/O	Address bus bit<0>
PMA<0>, PMALL	0	Address latch low strobe for multiplexed address
PMD<15:8>	I/O	Data bus bits<15-8> when address is not multiplexed
	I/O	Data bus bits<7-4>
PMD<7:4>	0	Address bus bits<7-4> when port size is 4 bits and addre is multiplexed with 1 address phase
PMD<3:0>	I/O	Data bus bits<3-0>
PMCS1	I/O	Chip Select 1
PMCS2	0	Chip Select 2
PMWR, PMENB	I/O	Write strobe or Enable signal depending on Strobe mode
PMRD, PMRD/PMWR	I/O	Read strobe or Read/Write signal depending on Strobe mode
PMBE1	0	Byte indicator
PMBE0	0	Nibble or byte indicator
PMACK1	Ι	Acknowledgment 1
PMACK2	I	Acknowledgment 2

TABLE 19-2: PARALLEL MASTER PORT PIN DESCRIPTION

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
PTWREN	PTRDEN	PTBE1EN	PTBE0EN		AWAITM1	AWAITM0	AWAITE				
bit 15	*						bit 8				
	DAMA	D 444 0	D 444 0	D 444 0	D 444 0	D 444 0	D M M A				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	PTEN22	PTEN21	PTEN20	PTEN19	PTEN18	PTEN17	PTEN16				
bit 7							bit C				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkno	wn				
bit 15	PTWREN: W	rite/Enable Stro	be Port Enable	e bit							
		PMENB port is e									
		PMENB port is o									
bit 14		ad/Write Strobe		oit							
		= PMRD/ <u>PMWR</u> port is enabled									
		MWR port is di									
bit 13		ligh Nibble/Byte	e Enable Port E	nable bit							
	1 = PMBE1 port is enabled										
L:1 40		port is disabled									
bit 12		BEOEN: Low Nibble/Byte Enable Port Enable bit									
	1 = PMBE0 port is enabled 0 = PMBE0 port is disabled										
bit 11	-	ited: Read as '	n'								
bit 10-9	•	>: Address Lat		States hits							
	11 = Wait of 3										
	$11 = \text{Wait of } 3/2 \text{ TCY}$ $10 = \text{Wait of } 2\frac{1}{2} \text{ TCY}$										
	$01 = $ Wait of $1\frac{1}{2}$ TCY										
	00 = Wait of 2	½ TCY									
bit bit 8	AWAITE: Add	AITE: Address Hold After Address Latch Strobe Wait States bits									
	1 = Wait of 1¼ Tcy										
	$0 = Wait of \frac{1}{2}$										
bit 7	Unimplemen	ted: Read as '	0'								
bit 6-0	PTEN<22:16	>: EPMP Addre	ess Port Enable	e bits							
		:16> function a		ss lines							
	0 - DMA < 22	:16> function a	a part 1/Oa								

REGISTER 19-3: PMCON3: EPMP CONTROL REGISTER 3

22.2 Display Resolution and Memory Requirements

The PIC24FJ256DA210 family of devices has two variants in terms of on-board RAM (24-Kbyte and 96-Kbyte variants). The 24-Kbyte variant supports monochrome displays while the 96-Kbyte variant supports Quarter VGA (QVGA) color displays, up to 256 colors. Support of higher resolution displays with higher color depth requirements are available by extending the data space through external memory. Table 22-1 provides the summary of image buffer memory requirements of different display resolutions and color depth requirements.

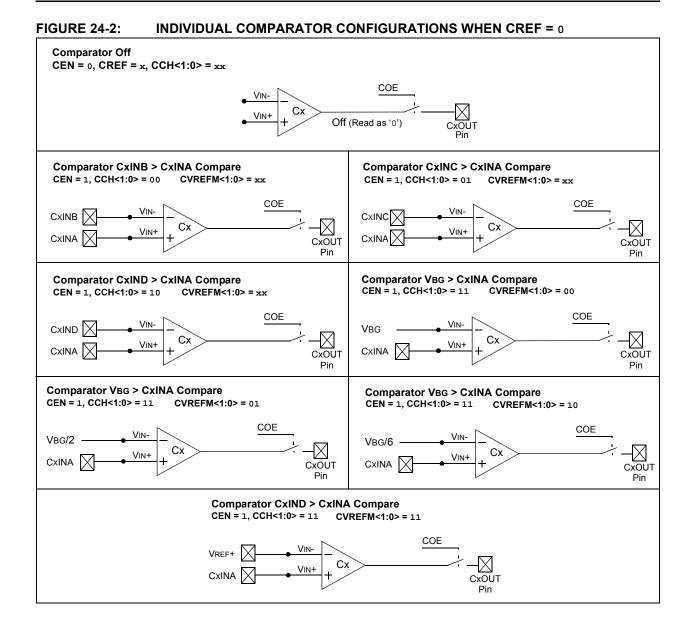
22.3 Display Clock (GCLK) Source

Frequency of the Graphics Controller Display Clock (GCLK) signal is determined by programming the GCLKDIV bits (CLKDIV2<15:9>). For more information, refer to the "*PIC24F Family Reference Manual*", **Section 6. "Oscillator" (D**S39700).

22.4 Display Buffer and Work Areas Memory Locations

The PIC24FJ256DA210 family of devices has variants with two on-board RAM sizes. These are the 24-Kbyte and 96-Kbyte variants. These two RAM variants are further divided in terms of pin counts. The 100-pin count device will have the EPMP module available for extending RAM for applications. The 64-pin count device will not have the EPMP modules. Extending the RAM size is necessary for applications that require larger display buffers and work areas. It is recommended that the display buffers and work areas are not mapped into an area that overlaps the internal RAM and the external RAM. The external RAM can be interfaced using the EPMP module. For details, refer to the "PIC24F Family Reference Manual", Section 42. "Enhanced Parallel Master Port (EPMP)" (DS39730).

Display Resolution	Display Buffer Memory Requirements (Bytes)							
	1 Врр	2 Врр	4 Bpp	8 Врр	16 Bpp			
480x272 (WQVGA)	16320	32640	65280	130560	261120			
320x240 (QVGA)	9600	19200	38400	76800	153600			
240x160 (HQVGA)	4800	9600	19200	38400	76800			
160x160	3200	6400	12800	25600	51200			
160x120 (QQVGA)	2400	4800	9600	19200	38400			
128x64	1024	2048	4096	8192	16384			


TABLE 22-1: BUFFER MEMORY REQUIREMENTS vs. DISPLAY CONFIGURATION

Legend:

Less than 24-Kbyte RAM variants (PIC24FJXXXDA106)

Less than 96-Kbyte RAM variants (PIC24FJXXXDA2XX)

External Memory with 96 Kbytes/24 Kbytes of RAM variants (PIC24FJXXXDAX10)

28.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

28.12 MPLAB PM3 Device Programmer

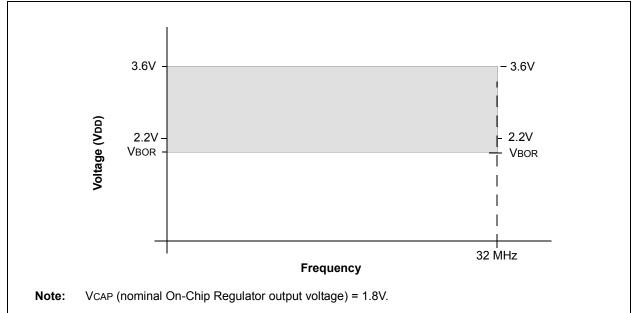
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

28.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.


In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

30.1 DC Characteristics

TABLE 30-1: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Мах	Unit
PIC24FJ256DA210 family:					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Power Dissipation (with ENVREG = 1): Internal Chip Power Dissipation: $PINT = VDD \times (IDD - \Sigma IOH)$	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: $PI/O = \Sigma (\{VDD - VOH\} x IOH) + \Sigma (VOL x IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(Тјмах – Та)/θја			W

TABLE 30-2: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Note
Package Thermal Resistance, 12x12x1 mm TQFP	θJA	69.4	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1 mm TQFP	θJA	76.6	—	°C/W	(Note 1)
Package Thermal Resistance, 9x9x0.9 mm QFN	θJA	28.0	_	°C/W	(Note 1)
Package Thermal Resistance, 10x10x1.1 mm BGA	θJA	40.2		°C/W	(Note 1)

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS		I/O PIN INPUT SPECIFICATIONS Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)						
			Operating temperature		$-40^{\circ}C \leq TA \leq +85^{\circ}$		C for Industrial	
Param No.	Symbo I	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
	VIL	Input Low Voltage ⁽³⁾						
DI10		I/O Pins with ST Buffer	Vss	—	0.2 VDD	V		
DI11		I/O Pins with TTL Buffer	Vss	—	0.15 VDD	V		
DI15		MCLR	Vss	_	0.2 VDD	V		
DI16		OSCI (XT mode)	Vss	_	0.2 VDD	V		
DI17		OSCI (HS mode)	Vss	_	0.2 VDD	V		
DI18		I/O Pins with I ² C™ Buffer:	Vss		0.3 VDD	V		
DI19		I/O Pins with SMBus Buffer:	Vss	_	0.8	V	SMBus enabled	
	Vih	Input High Voltage ⁽³⁾						
DI20		I/O Pins with ST Buffer: with Analog Functions, Digital Only	0.8 Vdd 0.8 Vdd	—	Vdd 5.5	V V		
DI21		I/O Pins with TTL Buffer: with Analog Functions, Digital Only	0.25 VDD + 0.8 0.25 VDD + 0.8	_	Vdd 5.5	V V		
DI25		MCLR	0.8 VDD		Vdd	V		
DI26		OSCI (XT mode)	0.7 Vdd	_	Vdd	V		
DI27		OSCI (HS mode)	0.7 Vdd	_	Vdd	V		
DI28		I/O Pins with I ² C™ Buffer: with Analog Functions, Digital Only	0.7 Vdd 0.7 Vdd		Vdd 5.5	V V		
DI29		I/O Pins with SMBus Buffer: with Analog Functions, Digital Only	2.1 2.1		Vdd 5.5	V V	$2.5V \le VPIN \le VDD$	
DI30	ICNPU	CNxx Pull-up Current	150	350	550	μA	VDD = 3.3V, VPIN = VSS	
DI30A	ICNPD	CNxx Pull-down Current	15	70	150	μA	VDD = 3.3V, VPIN = VDD	
DI50	lı∟	Input Leakage Current ⁽²⁾ I/O Ports	_	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance	
DI51		Analog Input Pins	—	_	<u>+</u> 1	μA	Vss \leq VPIN \leq VDD, pin at high-impedance	
DI55		MCLR	—	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSCI/CLKI	—	_	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &VSS \leq V \text{PIN} \leq V \text{DD}, \\ &EC, XT \text{ and } HS \text{ modes} \end{split}$	

TABLE 30-7: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Negative current is defined as current sourced by the pin.

3: Refer to Table 1-1 for I/O pins buffer types.

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com