

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da110-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 2: COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES

Pin	Function	Pin	Function
81	RP25/PMWR/CN13/RD4	91	AN23/GEN/CN39/RA6
82	RP20/PMRD/CN14/RD5	92	AN22/PMA17/CN40/RA7
83	C3INB/PMD14/CN15/RD6	93	PMD0/CN58/RE0
84	C3INA/SESSEND/PMD15/CN16/RD7	94	PMD1/CN59/RE1
85	VCAP	95	PMA16/CN81/RG14
86	ENVREG	96	Vsync/CN79/RG12
87	VBUSST/VCMPST1/VBUSVLD/PMD11/CN68/RF0	97	HSYNC/CN80/RG13
88	VCMPST2/SESSVLD/PMD10/CN69/RF1	98	PMD2/CN60/RE2
89	PMD9/CN78/RG1	99	PMD3/CN61/RE3
90	PMD8/CN77/RG0	100	PMD4/CN62/RE4

Legend:

end: RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Note 1: Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed.

2: Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed.

3: Pin assignment for PMCSx when CSF<1:0> is not equal to '00'.

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R-1	U-0	U-0
—	_	—	—	IPL3 ⁽¹⁾	r	—	—
bit 7							bit 0

Legend:	C = Clearable bit	r = Reserved bit	HSC = Hardware Settable/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see Register 3-1 for bit description.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

TABLE 4-5: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE	CN9PDE	CN8PDE	CN7PDE	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	CN31PDE	CN30PDE	CN29PDE	CN28PDE	CN27PDE	CN26PDE	CN25PDE	CN24PDE	CN23PDE	CN22PDE	CN21PDE ⁽¹⁾	CN20PDE ⁽¹⁾	CN19PDE ⁽¹⁾	CN18PDE	CN17PDE	CN16PDE	0000
CNPD3	005A	CN47PDE ⁽¹⁾	CN46PDE ⁽¹⁾	CN45PDE ⁽¹⁾	CN44PDE ⁽¹⁾	CN43PDE ⁽¹⁾	CN42PDE ⁽¹⁾	CN41PDE ⁽¹⁾	CN40PDE ⁽¹⁾	CN39PDE ⁽¹⁾	CN38PDE ⁽¹⁾	CN37PDE ⁽¹⁾	CN36PDE ⁽¹⁾	CN35PDE ⁽¹⁾	CN34PDE ⁽¹⁾	CN33PDE ⁽¹⁾	CN32PDE	0000
CNPD4	005C	CN63PDE	CN62PDE	CN61PDE	CN60PDE	CN59PDE	CN58PDE	CN57PDE ⁽¹⁾	CN56PDE	CN55PDE	CN54PDE	CN53PDE	CN52PDE	CN51PDE	CN50PDE	CN49PDE	CN48PDE ⁽¹⁾	0000
CNPD5	005E	CN79PDE ⁽¹⁾	CN78PDE ⁽¹⁾	CN77PDE ⁽¹⁾	CN76PDE ⁽¹⁾	CN75PDE ⁽¹⁾	CN74PDE ⁽¹⁾	CN73PDE ⁽¹⁾	_	CN71PDE	CN70PDE(1)	CN69PDE	CN68PDE	CN67PDE ⁽¹⁾	CN66PDE ⁽¹⁾	CN65PDE	CN64PDE	0000
CNPD6	0060	_	_	_	_	_	_	_	_	_	_	_	CN84PDE	CN83PDE	CN82PDE ⁽¹⁾	CN81PDE ⁽¹⁾	CN80PDE ⁽¹⁾	0000
CNEN1	0062	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	CN31IE	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE ⁽¹⁾	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE	CN17IE	CN16IE	0000
CNEN3	0066	CN47IE ⁽¹⁾	CN46IE ⁽¹⁾	CN45IE ⁽¹⁾	CN44IE ⁽¹⁾	CN43IE ⁽¹⁾	CN42IE ⁽¹⁾	CN41IE ⁽¹⁾	CN40IE ⁽¹⁾	CN39IE ⁽¹⁾	CN38IE ⁽¹⁾	CN37IE ⁽¹⁾	CN36IE ⁽¹⁾	CN35IE ⁽¹⁾	CN34IE ⁽¹⁾	CN33IE ⁽¹⁾	CN32IE	0000
CNEN4	0068	CN63IE	CN62IE	CN61IE	CN60IE	CN59IE	CN58IE	CN57IE ⁽¹⁾	CN56IE	CN55IE	CN54IE	CN53IE	CN52IE	CN51IE	CN50IE	CN49IE	CN48IE ⁽¹⁾	0000
CNEN5	006A	CN79IE ⁽¹⁾	CN78IE ⁽¹⁾	CN77IE ⁽¹⁾	CN76IE ⁽¹⁾	CN75IE ⁽¹⁾	CN74IE ⁽¹⁾	CN73IE ⁽¹⁾	_	CN71IE	CN70IE ⁽¹⁾	CN69IE	CN68IE	CN67IE ⁽¹⁾	CN66IE ⁽¹⁾	CN65IE	CN64IE	0000
CNEN6	006C	_	_	_	_	_	_	_	_	_	_	—	CN84IE	CN83IE	CN82IE ⁽¹⁾	CN81IE ⁽¹⁾	CN80IE ⁽¹⁾	0000
CNPU1	006E	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	0070	CN31PUE	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE ⁽¹⁾	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE	CN17PUE	CN16PUE	0000
CNPU3	0072	CN47PUE ⁽¹⁾	CN46PUE ⁽¹⁾	CN45PUE ⁽¹⁾	CN44PUE ⁽¹⁾	CN43PUE ⁽¹⁾	CN42PUE ⁽¹⁾	CN41PUE ⁽¹⁾	CN40PUE ⁽¹⁾	CN39PUE ⁽¹⁾	CN38PUE ⁽¹⁾	CN37PUE ⁽¹⁾	CN36PUE ⁽¹⁾	CN35PUE ⁽¹⁾	CN34PUE ⁽¹⁾	CN33PUE ⁽¹⁾	CN32PUE	0000
CNPU4	0074	CN63PUE	CN62PUE	CN61PUE	CN60PUE	CN59PUE	CN58PUE	CN57PUE ⁽¹⁾	CN56PUE	CN55PUE	CN54PUE	CN53PUE	CN52PUE	CN51PUE	CN50PUE	CN49PUE	CN48PUE ⁽¹⁾	0000
CNPU5	0076	CN79PUE ⁽¹⁾	CN78PUE ⁽¹⁾	CN77PUE ⁽¹⁾	CN76PUE ⁽¹⁾	CN75PUE ⁽¹⁾	CN74PUE ⁽¹⁾	CN73PUE ⁽¹⁾	_	CN71PUE	CN70PUE ⁽¹⁾	CN69PUE	CN68PUE	CN67PUE ⁽¹⁾	CN66PUE ⁽¹⁾	CN65PUE	CN64PUE	0000
CNPU6	0078	_	_	_	_	_	_	_			—		CN84PUE	CN83PUE	CN82PUE ⁽¹⁾	CN81PUE ⁽¹⁾	CN80PUE ⁽¹⁾	0000

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Unimplemented in 64-pin devices; read as '0'.

TABLE 4-12: SPI REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL			SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	—	—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	—	_	_	—	—	SPIFE	SPIBEN	0000
SPI1BUF	0248							SPI	1 Transmit ar	d Receive B	uffer							0000
SPI2STAT	0260	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	_	_	_			_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI2BUF	0268							SPI	2 Transmit ar	d Receive B	uffer							0000
SPI3STAT	0280	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI3BUF	0288							SPI	3 Transmit ar	d Receive B	uffer							0000

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	_	—		TRISA10	TRISA9		TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	ODA15	ODA14	_	_	_	ODA10	ODA9	_	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000

 Legend:
 -- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

 Note
 1:
 PORTA and all associated bits are unimplemented on 64-pin devices and read as '0'. Bits are available on 100-pin devices only, unless otherwise noted.

TABLE 4-14: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: Reset values are shown in hexadecimal.

TABLE 4-31: GRAPHICS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
G1CMDL	0700							Graph	ics Command F	Register<15:0>	,							0000
G1CMDH	0702							Graphi	cs Command F	Register<31:16	>							0000
G1CON1	0704	G1EN	_	G1SIDL	GCMDWMK4	GCMDWMK3	GCMDWMK2	GCMDWMK1	GCMDWMK0	PUBPP2	PUBPP1	PUBPP0	GCMDCNT4	GCMDCNT3	GCMDCNT2	GCMDCNT1	GCMDCNT0	0000
G1STAT	0706	PUBUSY	_		_	_	-	_	_	IPUBUSY	RCCBUSY	CHRBUSY	VMRGN	HMRGN	CMDLV	CMDFUL	CMDMPT	0000
G1IE	0708	PUIE			_	_		_	_	IPUIE	RCCIE	CHRIE	VMRGNIE	HMRGNIE	CMDLVIE	CMDFULIE	CMDMPTIE	0000
G1IR	070A	PUIF	-		—	—		—	—	IPUIF	RCCIF	CHRIF	VMRGNIF	HMRGNIF	CMDLVIF	CMDFULIF	CMDMPTIF	0000
G1W1ADRL	070C							GPU Work A	Area 1 Start Ado	dress Register∙	<15:0>							0000
G1W1ADRH	070E	—	—	-	-	—	—	—	—			GPU Wo	rk Area 1 Star	Address Regi	ster<23:16>			0000
G1W2ADRL	0710							GPU Work A	Area 2 Start Ado	dress Register	<15:0>							0000
G1W2ADRH	0712	—	_	—	—	—	_	_	—			GPU Wo	rk Area 2 Star	Address Regi	ster<23:16>			0000
G1PUW	0714	—	_	—	—	—					GPU Wor	k Area Width	Register					0000
G1PUH	0716	_	—	_	_	_					GPU Wor	k Area Heigh	t Register					0000
G1DPADRL	0718							Display Bu	uffer Start Addre	ess Register<1	5:0>							0000
G1DPADRH	071A	_	—	_	—	_	_	—	—			Display	Buffer Start A	ddress Registe	er<23:16>			0000
G1DPW	071C	—	_	_	—	—					Display F	Frame Width	Register					0000
G1DPH	071E	—	_	_	—	—					Display F	rame Height	Register					0000
G1DPWT	0720	—	_	_	—	—					Display	Total Width F	Register					0000
G1DPHT	0722	—	—	—	—	—					Display	Total Height F	Register					0000
G1CON2	0724	DPGWDTH1	DPGWDTH0	DPSTGER1	DPSTGER0	_	_	DPTEST1	DPTEST0	DPBPP2	DPBPP1	DPBPP0	—	—	DPMODE2	DPMODE1	DPMODE0	0000
G1CON3	0726	—	—	—	—	—	—	DPPINOE	DPPOWER	DPCLKPOL	DPENPOL	DPVSPOL	DPHSPOL	DPPWROE	DPENOE	DPVSOE	DPHSOE	0000
G1ACTDA	A 0728 Number of Lines Before the First Active Line Register Number of Pixels Before the First Active Plxel Register 0	0000																
G1HSYNC	072A			HSYN	IC Pulse-Width	Configuration F	Register					HSYN	IC Start Delay	Configuration	Register			0000
G1VSYNC	072C			VSYN	IC Pulse-Width	Configuration F	Register					VSYN	IC Start Delay	Configuration	Register			0000
G1DBLCON	072E			ical Blanking S	Start to First Dis	played Line Co	nfiguration Reg		1		Horizo	ntal Blanking	Start to First D	Displayed Line	Configuration F	Regsiter		0000
G1CLUT	0730	CLUTEN	CLUTBUSY	—	_	_	—	CLUTTRD	CLUTRWEN			Color Lo	ook-Up Table N	Memory Addres	ss Register			0000
G1CLUTWR	0732								p Table Memor		•							0000
G1CLUTRD	0734							Color Look-u	p Table Memor	y Read Data R	Register							0000
G1MRGN	0736			V	ertical Blanking	Advance Regis	ster					Но	rizontal Blanki	ng Advance Re	egister			0000
G1CHRX	0738	-	—	—	-	_				Curre	ent Character	X-Coordinate	Position Reg	ister				0000
G1CHRY	073A	_	_	_	_	_				Curre	ent Character	Y-Coordinate	Position Regi	ster				0000
G1IPU	073C	_	_	_	_	_	_	_	_	_	_	HUFFERR	BLCKERR	LENERR	WRAPERR	IPUDONE	BFINAL	0000
G1DBEN	073E	GDBEN15	GDBEN14	GDBEN13	GDBEN12	GDBEN11	GDBEN10	GDBEN9	GDBEN8	GDBEN7	GDBEN6	GDBEN5	GDBEN4	GDBEN3	GDBEN2	GDBEN1	GDBEN0	0000

Legend:

DS39969B-page 69

: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, where Device IDs are located. Table write operations are not allowed.

	\$20-\$	ram Specie
78:0945a []2		
	23 34 0 00000h 020000h 030000h 800000h	23 16 8 0 00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000 Phantom' Byte (Phantom' Byte 00000000 00000000 00000000 00000000 00000000 00000000 Phantom' Byte 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 00000000 000000000 000000000 00000000 00000000 000000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000 00000000000 000000000 000000000 000000000 00000000000000 0000000000 0000000000 0000000000 000000000000000000000000000000000000

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 5-1: NVMCON: FLASH MEMORY CONTROL REGISTER
--

R/S-0, HC(1) R/W-0 ⁽¹⁾	R-0, HSC ⁽¹⁾	U-0	U-0	U-0	U-0	U-0
WR	WREN	WRERR	_	_	_	_	_
bit 15							bit
U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾
	ERASE			NVMOP3 ⁽²⁾	NVMOP2 ⁽²⁾	NVMOP1 ⁽²⁾	NVMOP0 ⁽²⁾
bit 7					1	1	bit
Legend:		S = Settable bi	t	HSC = Hardw	are Settable/C	learable bit	
R = Readat	ole bit	W = Writable b	it	U = Unimplen	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
HC = Hardv	ware Clearable b	vit					
bit 15	cleared 0 = Program	a Flash memory by hardware onc or erase operati e Enable bit ⁽¹⁾	e the operatio	on is complete	n; the operatio	n is self-timed	and the bit i
bit 14	1 = Enable I	e Enable bit ^{ver} Flash program/er lash program/era					
bit 13		ite Sequence Err	-				
	automat	oper program o ically on any set gram or erase op	attempt of the	e WR bit)	t or terminatic	n has occurre	ed (bit is se
bit 12-7	Unimpleme	nted: Read as '0	2				
bit 6	ERASE: Era	se/Program Enal	ble bit ⁽¹⁾				
		the erase operate the program operate					nd
bit 5-4	Unimpleme	nted: Read as '0	,				
bit 3-0		>: NVM Operation					
	0011 = Mer 0010 = Mer	nory bulk erase o nory word progra nory page erase nory row prograr	am operation operation (Ef	(ERASE = 0) or RASE = 1) or no	r no operation (o operation (EF	ERASE = 1) RASE = 0)	
		nly be reset on P					
		ations of NVMOP		•			
3.	Available in ICSI	P™ mode only re	eter to the dev	/ice programmi	ng specification	ו	

3: Available in ICSP[™] mode only; refer to the device programming specification.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8**RP29R<5:0>:** RP29 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP29 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP28R<5:0>:** RP28 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP28 (see Table 10-4 for peripheral function numbers).

REGISTER 10-44: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5	RP31R4	RP31R3	RP31R2	RP31R1	RP31R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0
Legend:							

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP31 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP30 (see Table 10-4 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽	¹⁾ —	USIDL	IREN ⁽²⁾	RTSMD	—	UEN1	UEN0
bit 15							bit 8
R/W-0, H0	C R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL
bit 7							bit 0
Legend:		HC = Hardware			anted bit read		
R = Reada -n = Value		W = Writable b '1' = Bit is set	It	0 = Unimpien 0' = Bit is clea	nented bit, read	x = Bit is unkn	0.000
	alfOR	I - DILIS SEL					OWII
bit 15	UARTEN: UA	ARTx Enable bit ^{(*}	I)				
		s enabled; all UA		controlled by U	ARTx as define	d by UEN<1:0>	>
		disabled; all UAF					
bit 14	Unimplemen	ted: Read as '0'					
bit 13	-	in Idle Mode bit			_		
		nue module operation module operation			mode		
bit 12		Encoder and De					
511 12		oder and decode					
	0 = IrDA end	oder and decode	er are disable	d			
bit 11		le Selection for U		:			
		oin is in Simplex i oin is in Flow Cor					
bit 10		ited: Read as '0'					
bit 9-8	-	IARTx Enable bit					
		UxRX and BCLK		abled and used	UxCTS pin is	controlled by po	ort latches
	10 = UxTX,	UxRX, UxCTS a	nd UxRTS pir	ns are enabled a	and used		
		UxRX and UxRT			·		
	latches	and UxRX pins ar		u useu, uxc i s a		LKX pins are co	ntrolled by port
bit 7	WAKE: Wake	-up on Start Bit I	Detect During	Sleep Mode Er	nable bit		
		vill continue to sa	•		is generated on	the falling edge	e, bit is cleared
		are on the follow	ing rising edg	е			
bit 6		-up is enabled \RTx Loopback I	loda Salact k	sit			
DIL U		oopback mode		Л			
		k mode is disable	ed				
bit 5	ABAUD: Aut	o-Baud Enable b	it				
		aud rate measu		e next characte	r – requires re	ception of a Sy	nc field (55h);
		n hardware upor e measurement i		completed			
					. .		
	If UARTEN = 1, Section 10.4 "P					vailable RPn/R	PIn pin. See
	This feature is o	-					

REGISTER 17-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

18.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 27. "USB On-The-Go (OTG)" (DS39721). The information in this data sheet supersedes the information in the FRM.

PIC24FJ256DA210 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act either as a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement to the USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.

The USB OTG module offers these features:

- USB functionality in Device and Host modes, and OTG capabilities for application-controlled mode switching
- Software-selectable module speeds of full speed (12 Mbps) or low speed (1.5 Mbps, available in Host mode only)
- Support for all four USB transfer types: control, interrupt, bulk and isochronous
- 16 bidirectional endpoints for a total of 32 unique endpoints
- · DMA interface for data RAM access
- Queues up to sixteen unique endpoint transfers without servicing
- Integrated, on-chip USB transceiver with support for off-chip transceivers via a digital interface
- Integrated VBUS generation with on-chip comparators and boost generation, and support of external VBUS comparators and regulators through a digital interface
- Configurations for on-chip bus pull-up and pull-down resistors

A simplified block diagram of the USB OTG module is shown in Figure 18-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 18-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.

TABLE 18-1:CONTROLLER-CENTRIC
DATA DIRECTION FOR USB
HOST OR TARGET

USB Mode	Direc	ction
OSD MODE	RX	ТХ
Device	OUT or SETUP	IN
Host	IN	OUT or SETUP

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to <u>www.microchip.com/usb</u> for the latest firmware and driver support.

18.4.2 RECEIVING AN IN TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in "Chapter 9 of the USB 2.0 Specification".
- 2. Create a data buffer and populate it with the data to send to the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an IN token, it automatically transmits the data in the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).

18.4.3 RECEIVING AN OUT TOKEN IN DEVICE MODE

- 1. Attach to a USB host and enumerate as described in *"Chapter 9 of the USB 2.0 Specification"*.
- 2. Create a data buffer with the amount of data you are expecting from the host.
- 3. In the appropriate (even or odd) TX BD for the desired endpoint:
 - a) Set up the status register (BDnSTAT) with the correct data toggle (DATA0/1) value and the byte count of the data buffer.
 - b) Set up the address register (BDnADR) with the starting address of the data buffer.
 - c) Set the UOWN bit of the status register to '1'.
- When the USB module receives an OUT token, it automatically receives the data sent by the host to the buffer. Upon completion, the module updates the status register (BDnSTAT) and sets the Transfer Complete Interrupt Flag, TRNIF (U1IR<3>).

18.5 Host Mode Operation

The following sections describe how to perform common Host mode tasks. In Host mode, USB transfers are invoked explicitly by the host software. The host software is responsible for the Acknowledge portion of the transfer. Also, all transfers are performed using the Endpoint 0 Control register (U1EP0) and Buffer Descriptors.

18.5.1 ENABLE HOST MODE AND DISCOVER A CONNECTED DEVICE

- Enable Host mode by setting the HOSTEN bit (U1CON<3>). This causes the Host mode control bits in other USB OTG registers to become available.
- Enable the D+ and D- pull-down resistors by setting the DPPULDWN and DMPULDWN bits (U10TGCON<5:4>). Disable the D+ and Dpull-up resistors by clearing the DPPULUP and DMPULUP bits (U10TGCON<7:6>).
- At this point, SOF generation begins with the SOF counter loaded with 12,000. Eliminate noise on the USB by clearing the SOFEN bit (U1CON<0>) to disable Start-Of-Frame packet generation.
- 4. Enable the device attached interrupt by setting the ATTACHIE bit (U1IE<6>).
- Wait for the device attached interrupt (U1IR<6> = 1). This is signaled by the USB device changing the state of D+ or D- from '0' to '1' (SE0 to J state). After it occurs, wait 100 ms for the device power to stabilize.
- Check the state of the JSTATE and SE0 bits in U1CON. If the JSTATE bit (U1CON<7>) is '0', the connecting device is low speed. If the connecting device is low speed, set the low LSPDEN and LSPD bits (U1ADDR<7> and U1EP0<7>) to enable low-speed operation.
- Reset the USB device by setting the USBRST bit (U1CON<4>) for at least 50 ms, sending Reset signaling on the bus. After 50 ms, terminate the Reset by clearing USBRST.
- In order to keep the connected device from going into suspend, enable the SOF packet generation by setting the SOFEN bit.
- 9. Wait 10 ms for the device to recover from Reset.
- 10. Perform enumeration as described by "Chapter 9 of the USB 2.0 Specification".

R-0, HSC	U-0	R/C-0, HS	R/C-0, HS	R-0, HSC	R-1, HSC	R/W-0	R/W-0
BUSY	—	ERROR	TIMEOUT	AMREQ	CURMST	MSTSEL1	MSTSEL0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RADDR23	RADDR22	RADDR21	RADDR20	RADDR19	RADDR18	RADDR17	RADDR16
bit 7							bit 0
							1
Legend:		HS = Hardwar	e Settable bit	HSC = Hardware	Settable/Clearabl	e bit	
R = Reada		W = Writable I	oit	U = Unimplemente			
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unk	known
bit 15	-	bit (Master mo	de only)				
	1 = Port is b 0 = Port is n						
bit 14		nted: Read as '	0'				
bit 13	ERROR: Err		0				
DIL 15		tion error (illega	transaction v	vaa raquaatad)			
		tion completed		vas requesteu)			
bit 12	TIMEOUT: T	-					
	1 = Transac	tion timed out					
	0 = Transac	tion completed	successfully				
bit 11	AMREQ: Alte	ernate Master F	Request bit				
		ernate Master is					
		ernate Master is	•	g use of EPMP			
bit 10		urrent Master b					
		ccess is grante					
		ccess is grante					
bit 9-8		0>: Parallel Por			1		
	11 = Alternat		direct access (EPMP Bypass mod	de)		
	01 = Alternat						
	00 = CPU						
bit 7-0	RADDR<23:	16>: Parallel M	aster Port Res	served Address Spa	ace bits ⁽¹⁾		
Note 1:	If RADDR<23	: 16> = 000000	00, then the la	ast EDS address fo	r Chip Select 2 wi	ll be 0xFFFFF	F.

REGISTER 19-2: PMCON2: EPMP CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM
oit 15							bi
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
ACKP	PTSZ1	PTSZ0	—	—		_	—
bit 7							bi
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimp	lemented bit, re	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is		x = Bit is unkno	own
bit 15	CSDIS: Chi	p Select x Disab	le bit				
	1 = Disable	the Chip Select	x functionality	1			
		the Chip Select	,				
bit 14	•	Select x Polarity	bit				
		nigh <u>(PMCS</u> x) ow (PMCSx)					
bit 13		MCSx Port Ena	hla hit				
		port is enabled					
		port is disabled					
oit 12		Select x Nibble/E		plarity bit			
	1 = Nibble/I	Byte enable acti	ve-high (PMBE	E0, PMBE1)			
	0 = Nibble/	Byte enable acti	ve-low (PMBE	0, PMBE1)			
bit 11	Unimpleme	ented: Read as '	0'				
bit 10		p Select x Write					
		odes and Maste		<u>SM = 0:</u>			
		trobe active-high trobe active-low					
		mode when SM	. ,				
	1 = Enable	strobe active-high	gh <u>(PMENB</u>)				
		strobe active-lo	. ,				
bit 9	-	Select x Read	-				
		odes and Maste		<u>SM = 0:</u>			
		trobe active-high trobe active-low					
		mode when SM	,				
	1 = Read/w	rite strobe active	e-high (PMRD/				
		Vrite strobe activ	,	PMWR)			
bit 8	-	elect x Strobe M					
		Vrite and enable nd write strobes			d PMENB)		
bit 7		Select x Ackno	-	-			
	-	tive-high (PMAC	-	y Dit			
		tive-low (PMAC					
bit 6-5	PTSZ<1:0>	: Chip Select x F	Port Size bits				
	11 = Reser	-					
		port size (PMD					
	01 = 4-bit p	port size (PMD oort size (PMD<3 oort size (PMD<3	3:0>)				

NOTES:

REGISTER							
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
PUIE	—	_	—	_	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IPUIE	RCCIE	CHRIE	VMRGNIE	HMRGNIE	CMDLVIE	CMDFULIE	CMDMPTIE
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable I	oit	-	mented bit, re	ead as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15		•	nplete Interrupt	Enable bit			
		the PU comple					
		the PU comple					
bit 14-8	-	ted: Read as '					
bit 7		-	it Complete Inte	errupt Enable	bit		
		the IPU comple					
		the IPU comple				,	
bit 6			phics Processi		ete Interrupt	DIt	
			complete interru				
bit E			complete interru	•	at bit		
bit 5		•	Processing Uni	t busy interru			
		the CHRGPU to the CHRGPU I					
bit 4			Interrupt Enab	la hit			
		-	nking period inte				
			nking period int	•			
bit 3			ing Interrupt En	-			
			lanking period i				
			planking period				
bit 2	CMDLVIE: Co	ommand Water	mark Interrupt E	Enable bit			
			vatermark interr				
			watermark inter	•			
bit 1	CMDFULIE:	Command FIFC) Full Interrupt B	Enable bit			
	1 = Enables	the command F	FIFO full interru	ot			
	0 = Disables	the command	FIFO full interru	pt			
bit 0	CMDMPTIE:	Command FIF	O Empty Interru	pt Enable bit			
			FIFO empty inte				
	0 = Disables	the command	EIEO omoty into				

REGISTER 22-28: G1MRGN: INTERRUPT ADVANCE REGISTER

		_					
R/W-0							
VBAMGN7	VBAMGN6	VBAMGN5	VBAMGN4	VBAMGN3	VBAMGN2	VBAMGN1	VBAMGN0
bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| HBAMGN7 | HBAMGN6 | HBAMGN5 | HBAMGN4 | HBAMGN3 | HBAMGN2 | HBAMGN1 | HBAMGN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	VBAMGN<7:0>: Vertical Blanking Advance bits
	The number of DISPCLK cycles in advance that the vertical blanking interrupt will assert ahead of the
	actual start of the vertical blanking.
bit 7-0	HBAMGN<7:0>: Horizontal Blanking Advance bits

The number of DISPCLK cycles in advance that the horizontal blanking interrupt will assert ahead of the actual start of the horizontal blanking.

REGISTER 22-29: G1CHRX: CHARACTER-X COORDINATE PRINT POSITION REGISTER

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
_	—	—	—	—	CURPOSX10	CURPOSX9	CURPOSX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CURPOSX7 | CURPOSX6 | CURPOSX5 | CURPOSX4 | CURPOSX3 | CURPOSX2 | CURPOSX1 | CURPOSX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-11 Unimplemented: Read as '0'

bit 10-0 CURPOSX<10:0>: Current Character Position in the X-Coordinate bits

DC CH	ARACTER	ISTICS		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise states)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial			
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
Operati	ing Voltag	e					
DC10	Supply V	oltage					
	Vdd		VBOR	—	3.6	V	Regulator enabled
	VCAP ⁽²⁾		—	1.8V	_	V	Regulator enabled
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	_	V	
DC16	Vpor	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	—	_	V	
DC17	SVDD	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	—	—	V/ms	0-3.3V in 66 ms 0-2.5V in 50 ms
	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.10	2.2	V	Regulator enabled
	Vlvd	LVD Trip Voltage	_	VBOR + 0.10	_	V	

Note 1: This is the limit to which the RAM data can be retained, while the on-chip regulator output voltage starts following the VDD.

2: This is the on-chip regulator output voltage specification.

APPENDIX A: REVISION HISTORY

Revision A (February 2010)

Original data sheet for the PIC24FJ256DA210 family of devices.

Revision B (May 2010)

Minor changes throughout text and the values in **Section 30.0 "Electrical Characteristics"** were updated.

۷

Voltage Regulator (On-Chip)	
and BOR	
Low Voltage Detection	
Standby Mode	

W

Watchdog Timer (WDT)	355
Control Register	356
Windowed Operation	356
WWW Address	405
WWW, On-Line Support	14