

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da110t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTCON1	0080	NSTDIS	—	—	_	_	—	—	—	_	_	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_
INTCON2	0082	ALTIVT	DISI	_	_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	_	IC8IF	IC7IF	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF
IFS2	0088	_	_	PMPIF ⁽¹⁾	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	_	_	_	SPI2IF	SPF2IF
IFS3	008A	_	RTCIF	_	-	_	_	-	_	-	INT4IF	INT3IF	_	_	MI2C2IF	SI2C2IF	_
IFS4	008C	_	_	CTMUIF	_	_	_	_	LVDIF	—	_	-	-	CRCIF	U2ERIF	U1ERIF	_
IFS5	008E	_	—	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	U4ERIF	USB1IF	MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF	_
IFS6	0090	_	_	_	_	_	_	_	_	_	_	_	GFX1IF	_	_	_	_
IEC0	0094	_	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	_	IC8IE	IC7IE	_	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
IEC2	0098	_	—	PMPIE ⁽¹⁾	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	_	_	_	SPI2IE	SPF2IE
IEC3	009A	_	RTCIE	_	-	_	_	_	_	-	INT4IE	INT3IE	_	_	MI2C2IE	SI2C2IE	_
IEC4	009C	_	_	CTMUIE	_	_	_	_	LVDIE	_	_	_	_	CRCIE	U2ERIE	U1ERIE	_
IEC5	009E	_	—	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	USB1IE	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	_
IEC6	00A0	_	_	_	-	_	_	_	_	-	_	-	GFX1IE	_	_	_	_
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	_	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	-	IC2IP2	IC2IP1	IC2IP0	_	_	_	-
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	—	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0
IPC3	00AA	_	_	_	_	_	_	_	_	_	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0
IPC4	00AC		CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0
IPC5	00AE	_	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	—	_	-	-	_	INT1IP2	INT1IP1	INT1IP0
IPC6	00B0		T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	_	OC3IP2	OC3IP1	OC3IP0	_	_	_	_
IPC7	00B2		U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0
IPC8	00B4	_	_	_	_	_	_	_	_	_	SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0
IPC9	00B6		IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	_	IC3IP2	IC3IP1	IC3IP0	_	_	_	_
IPC10	00B8		OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0
IPC11	00BA	-	_	_	_	_	_	_	_	_	PMPIP2 ⁽¹⁾	PMPIP1 ⁽¹⁾	PMPIP0 ⁽¹⁾	_	OC8IP2	OC8IP1	OC8IP0
IPC12	00BC		_		_	_	MI2C2IP2	MI2C2IP1	MI2C2IP0	_	SI2C2IP2	SI2C2IP1	SI2C2IP0		—		_
IPC13	00BE	—	_	_	_	_	INT4IP2	INT4IP1	INT4IP0	—	INT3IP2	INT3IP1	INT3IP0		_	—	_
IPC15	00C2	_	_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_	_	_	_	_

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP

 Legend:
 -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Unimplemented in 64-pin devices, read as '0'.

 2:
 The Reset value in 64-pin devices are '0004'.

4.2.6 SOFTWARE STACK

Apart from its use as a working register, the W15 register in PIC24F devices is also used as a Software Stack Pointer (SSP). The pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-7. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note:	A PC push during exception processing									
	will concatenate the SRL register to the									
	MSB of the PC prior to the push.									

The Stack Pointer Limit Value register (SPLIM), associated with the Stack Pointer, sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' as all stack operations must be word-aligned. Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 2000h in RAM, initialize the SPLIM with the value, 1FFEh.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0800h. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.3 Interfacing Program and Data Memory Spaces

The PIC24F architecture uses a 24-bit wide program space and 16-bit wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the PIC24F architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (program space visibility)

Table instructions allow an application to read or write to small areas of the program memory. This makes the method ideal for accessing data tables that need to be updated from time to time. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look ups from a large table of static data. It can only access the least significant word of the program word.

4.3.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Memory Page Address register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSBs of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 10-bit Extended Data Space Read register (DSRPAG) is used to define a 16K word page in the program space. When the Most Significant bit (MSb) of the EA is '1', and the MSb (bit 9) of DSRPAG is '1', the lower 8 bits of DSRPAG are concatenated with the lower 15 bits of the EA to form a 23-bit program space address. The DSRPAG<8> bit decides whether the lower word (when bit is '0') or the higher word (when bit is '1') of program memory is mapped. Unlike table operations, this strictly limits remapping operations to the user memory area.

Table 4-36 and Figure 4-8 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, whereas D<15:0> refers to a data space word.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-3).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-4.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

	; Set up NVMCON for block erase oper	ration
	MOV #0x4042, W0 ;	
	MOV W0, NVMCON	; Initialize NVMCON
	; Init pointer to row to be ERASED	
	MOV #tblpage(PROG_ADDR), W0	i
	MOV W0, TBLPAG	; Initialize Program Memory (PM) Page Boundary SFR
	MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA<15:0> pointer
	TBLWTL W0, [W0]	; Set base address of erase block
	DISI #5	; Block all interrupts with priority <7
		; for next 5 instructions
	MOV.B #0x55, W0	
	MOV W0, NVMKEY	; Write the 0x55 key
	MOV.B #0xAA, W1 ;	
	MOV W1, NVMKEY	; Write the OxAA key
	BSET NVMCON, #WR	; Start the erase sequence
	NOP	; Insert two NOPs after the erase
l	NOP	; command is asserted
L		

REGISTER 7-19: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

r							ı			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0			
bit 15							bit 8			
										
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	IC1IP2	IC1IP1	IC1IP0		INT0IP2	INT0IP1	INT0IP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as '	כי							
bit 14-12	T1IP<2:0>: ⊺i	imer1 Interrupt	Priority bits							
	111 = Interru	pt is priority 7 (highest priority	y interrupt)						
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 11	Unimplemented: Read as '0'									
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits									
	111 = Interrup	ot is priority 7 (I	highest priority	v interrupt)						
	•									
	•									
	001 = Interru	pt is priority 1	abled							
bit 7		tod: Pead as '	abieu							
bit 6 4		nout Conturo (bannol 1 Into	rupt Priority bits						
bit 0-4	111 = Interru	pt is priority 7 (highest priority	y interrupt)	2					
	•									
	•									
	001 = Interru 000 = Interru	pt is priority 1 pt source is dis	abled							
bit 3	Unimplemen	ted: Read as '	כי							
bit 2-0	INT0IP<2:0>:	External Interr	upt 0 Priority I	oits						
	111 = Interru	pt is priority 7 (highest priority	y interrupt)						
	•									
	• 001 = Interru	nt is priority 1								
	000 = Interru	pt source is dis	abled							

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—			—	—	—			
bit 15	·						bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_	AD1IP2	AD1IP1	AD1IP0	—	U1TXIP2	U1TXIP1	U1TXIP0		
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown									
bit 15-7	Unimplemen	ted: Read as '	0'						
bit 6-4	AD1IP<2:0>:	A/D Conversio	n Complete In	terrupt Priority	bits				
	111 = Interru	pt is priority 7 (highest priority	/ interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						
bit 3	Unimplemen	ted: Read as '	0'						
bit 2-0	U1TXIP<2:0>	: UART1 Trans	smitter Interrup	ot Priority bits					
	111 = Interru	pt is priority 7 (highest priority	interrupt)					
	•								
	•								
	001 = Interru	pt is priority 1							
	000 = Interru	pt source is dis	abled						

REGISTER 7-22: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_	T4IP2	T4IP1	T4IP0	—	OC4IP2	OC4IP1	OC4IP0					
oit 15		•					bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
_	OC3IP2	OC3IP1	OC3IP0	—	—	—						
bit 7							bit					
Legend:												
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'						
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	Unimplemen	nted: Read as ')'									
bit 14-12	14-12 T4IP<2:0>: Timer4 Interrupt Priority bits											
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	•											
	•											
	001 = Interru	pt is priority 1										
		ipt source is dis	abled									
bit 11	Unimplemen	ited: Read as ')'									
bit 10-8	OC4IP<2:0>:	: Output Compa	re Channel 4	Interrupt Priori	ty bits							
	 111 = Interrupt is priority 7 (highest priority interrupt) . 											
	•											
001 = Interrupt is priority if 000 = Interrupt source is disabled												
hit 7	Unimplemen	ted: Read as '	מגופע ו'									
bit 6-4	OC3IP<2:0>	: Output Compa	re Channel 3	Interrupt Priori	tv bits							
	111 = Interru	upt is priority 7 (highest priorit	v interrupt)	.,							
	•	······································		,								
	•											
	001 = Interru	int is priority 1										

REGISTER 7-25: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

000 = Interrupt source is disabledbit 3-0Unimplemented: Read as '0'

	REGISTER 7-29:	IPC10: INTERRUPT PRIORITY CONTROL REGISTER 10
--	----------------	--

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	OC7IP2	OC7IP1	OC7IP0		OC6IP2	OC6IP1	OC6IP0			
bit 15										
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
	OC5IP2	OC5IP1	OC5IP0		IC6IP2	IC6IP1	IC6IP0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable I	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	Unimplemen	ted: Read as '0)'							
bit 14-12	OC7IP<2:0>:	OC7IP<2:0>: Output Compare Channel 7 Interrupt Priority bits								
	111 = Interru	111 = Interrupt is priority 7 (highest priority interrupt)								
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 11	Unimplemented: Read as '0'									
bit 10-8	OC6IP<2:0>: Output Compare Channel 6 Interrupt Priority bits									
	111 = Interru	pt is priority 7 (I	nighest priority	interrupt)	,					
	•		0 1 3	1 /						
	•									
	001 = Interru	pt is priority 1								
	000 = Interru	pt source is dis	abled							
bit 7	Unimplemen	ted: Read as '0)'							
bit 6-4	OC5IP<2:0>:	Output Compa	re Channel 5 I	nterrupt Priority	y bits					
	111 = Interru	pt is priority 7 (I	nighest priority	interrupt)						
	•									
	•									
	001 = Interru	pt is priority 1								
	000 = Interrupt source is disabled									
bit 3	Unimplemented: Read as '0'									
bit 2-0	IC6IP<2:0>: Input Capture Channel 6 Interrupt Priority bits									
	•	pt is priority 7 (i	lignest priority	interrupt)						
	•									
	• 001 - Interry	nt is priority 1								
		pt is priority 1	abled							

REGISTER 7-41: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25

U-0 U-0 U-0 U				U-0	U-0	U-0	U-0			
—	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0 U-0 U-0 U-0			U-0	U-0	R/W-1	R/W-0	R/W-0			
		—	_	—	GFX1IP2	GFX1IP1	GFX1IP0			
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown						

bit 15-3 Unimplemented: Read as '0'

bit 2-0 **GFX1IP<2:0>:** Graphics 1 Interrupt Priority bits

- 111 = Interrupt is priority 7 (highest priority interrupt)
- •
- 001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 8	3-2: CLK	DIV: CLOCK	DIVIDER REC	GISTER					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1		
ROI	DOZE2	DOZE1	DOZE0	DOZEN ⁽¹⁾	RCDIV2	RCDIV1	RCDIV0		
bit 15		-					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0		
CPDIV1	CPDIV0	PLLEN	G1CLKSEL	_	_	_	—		
bit 7							bit 0		
Leaend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit. read	l as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown		
bit 15	ROI: Recover 1 = Interrupt 0 = Interrupt	er on Interrupt b ts clear the DO ts have no effec	oit ZEN bit and res ct on the DOZE	et the CPU per N bit	ipheral clock ra	atio to 1:1			
	111 = 1:128 110 = 1:64 101 = 1:32 100 = 1:16 011 = 1:8 010 = 1:4 001 = 1:2 000 = 1:1								
bit 11	DOZEN: DO 1 = DOZE<2 0 = CPU per	ZE Enable bit ⁽¹ 2:0> bits specif ripheral clock ra) y the CPU perip atio is set to 1:1	heral clock ratio	D				
bit 10-8	RCDIV<2:0>: FRC Postscaler Select bits $111 = 31.25$ kHz (divide by 256) $110 = 125$ kHz (divide by 64) $101 = 250$ kHz (divide by 32) $100 = 500$ kHz (divide by 16) $011 = 1$ MHz (divide by 8) $010 = 2$ MHz (divide by 4) $001 = 4$ MHz (divide by 2) $000 = 8$ MHz (divide by 1)								
bit 7-6	$000 = 8 \text{ MHz (divide by 1)}$ $CPDIV<1:0>: System Clock Select bits (postscaler select from 32 MHz clock branch)$ $11 = 4 \text{ MHz (divide by 8)}^{(2)}$ $10 = 8 \text{ MHz (divide by 4)}^{(2)}$ $01 = 16 \text{ MHz (divide by 2)}$ $00 = 32 \text{ MHz (divide by 1)}$								

2: This setting is not allowed while the USB module is enabled.

10.3 Input Change Notification

The input change notification function of the I/O ports allows the PIC24FJ256DA210 family of devices to generate interrupt requests to the processor in response to a Change-Of-State (COS) on selected input pins. This feature is capable of detecting input Change-Of-States, even in Sleep mode, when the clocks are disabled. Depending on the device pin count, there are up to 84 external inputs that may be selected (enabled) for generating an interrupt request on a Change-Of-State.

Registers, CNEN1 through CNEN6, contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin has a both a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source that is connected to the pin, while the pull-downs act as a current sink that is connected to the pin. These eliminate the need for external resistors when push button or keypad devices are connected. The pull-ups and pull-downs are separately enabled using the CNPU1 through CNPU6 registers (for pull-ups), and the CNPD1 through CNPD6 registers (for pull-downs). Each CN pin has individual control bits for its pull-up and pull-down. Setting a control bit enables the weak pull-up or pull-down for the corresponding pin.

When the internal pull-up is selected, the pin pulls up to VDD - 1.1V (typical). When the internal pull-down is selected, the pin pulls down to Vss.

Note: Pull-ups on change notification pins should always be disabled whenever the port pin is configured as a digital output.

Note: To use CN83 and CN84, which are on the D+ and D- pins, the UTRDIS bit (U1CNFG2<0>) should be set.

EXAMPLE 10-1: PORT WRITE/READ IN ASSEMBLY

MOV 0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV W0, TRISB	; and PORTB<7:0> as outputs
NOP	; Delay 1 cycle
BTSS PORTB, #13	; Next Instruction

EXAMPLE 10-2: PORT WRITE/READ IN 'C'

TRISB = 0xFF00;	// Configure PORTB<15:8> as inputs and PORTB<7:0> as outputs
Nop();	// Delay 1 cycle
<pre>If (PORTBbits.RB13) { };</pre>	// Next Instruction

FIGURE 12-1: TIMER2/3 AND TIMER4/5 (32-BIT) BLOCK DIAGRAM

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{FCY}{FPWM \cdot (Timer Prescale Value)} \right)}{\log_{10}^{(2)}}$ bits

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

$$TCY = 2 * TOSC = 62.5 \text{ ns}$$

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \text{ ms} = \text{PR2} + 1) \cdot 62.5 \text{ ns} \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

Note 1: Based on Tcy = 2 * Tosc; Doze mode and PLL are disabled.

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz		
Timer Prescaler Ratio	8	1	1	1	1	1	1		
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh		
Resolution (bits)	16	16	15	12	10	7	5		

TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

REGISTER 18-9: U1ADDR: USB ADDRESS REGISTER								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
LSPDEN ⁽¹⁾	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
-n = Value at POR '1'		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		

bit 15-8	Unimplemented: Read as '0'

- bit 7 LSPDEN: Low-Speed Enable Indicator bit⁽¹⁾
 - 1 = USB module operates at low speed
 - 0 = USB module operates at full speed
- bit 6-0 ADDR<6:0>: USB Device Address bits

Note 1: Host mode only. In Device mode, this bit is unimplemented and read as '0'.

REGISTER 18-10: U1TOK: USB TOKEN REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	—
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PID3 | PID2 | PID1 | PID0 | EP3 | EP2 | EP1 | EP0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	PID<3:0>: Token Type Identifier bits
	<pre>1101 = SETUP (TX) token type transaction⁽¹⁾ 1001 = IN (RX) token type transaction⁽¹⁾ 0001 = OUT (TX) token type transaction⁽¹⁾</pre>
bit 3-0	EP<3:0>: Token Command Endpoint Address bits
	This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

REGISTER 2	20-3: ALCF	GRPI: ALAF	M CONFIGU	RATION REC	SIER					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC			
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0			
bit 15							bit 8			
R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC			
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0			
bit 7							bit 0			
Legend:		HSC = Hardw	are Settable/C	learable bit						
R = Readable	bit	W = Writable	hit	U = Unimplem	nented bit read	d as '0'				
-n = Value at l	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	Iown			
	ÖN									
bit 15	ALRMEN: Ala	arm Enable bit								
	1 = Alarm is	enabled (clear	ed automatica	lly after an ala	rm event whe	never ARPT<7	:0> = 00h and			
	CHIME =	0)								
	0 = Alarm is 0	disabled								
bit 14	CHIME: Chim	e Enable bit			(<u> </u>					
	1 = Chime is 0 = Chime is	disabled; ARP	<pre>1<7:0> bits are T<7:0> bits sto</pre>	allowed to roll	over from 00h	to FFh				
hit 13-10		• Alarm Mask	Configuration b	its						
51115-10	AWAST SIVE: Alarm Mask Configuration bits									
	11xx = Reserved - do not use 101x = Reserved - do not use									
	1001 = Once a year (except when configured for February 29 th , once every 4 years)									
	1000 = Once a month									
	0111 = Once a week									
	0110 = Once	a day								
	0100 = Every	10 minutes								
	0011 = Every	minute								
	0010 = Every	10 seconds								
	0001 = Every	second								
	0000 = Every	half second								
bit 9-8	ALRMPIR<1	:0>: Alarm Valu	le Register Wir	ndow Pointer bi	its					
	The AI RMPT	orresponding A R<1:0> value d	arm value regis ecrements on e	verv read or wri	ing the ALRIVIV	ALH and ALRIVI	vall registers.			
	AI RMVAL <15.8>									
	11 = Unimplemented									
	10 = ALRMMNTH									
	01 = ALRMWD									
	<u>ALRMVAL<7:0>:</u>									
	10 = AI RMDAY									
	01 = ALRMH	R								
	00 = ALRMS	EC								
bit 7-0	ARPT<7:0>:	Alarm Repeat (Counter Value b	oits						
	11111111 =	Alarm will repo	eat 255 more ti	mes						
		Alorm will not	ropost							
			repear	The second state						

The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

21.1.3 DATA SHIFT DIRECTION

The LENDIAN bit (CRCCON1<3>) is used to control the shift direction. By default, the CRC will shift data through the engine, MSb first. Setting LENDIAN (= 1) causes the CRC to shift data, LSb first. This setting allows better integration with various communication schemes and removes the overhead of reversing the bit order in software. Note that this only changes the direction the data is shifted into the engine. The result of the CRC calculation will still be a normal CRC result, not a reverse CRC result.

21.1.4 INTERRUPT OPERATION

The module generates an interrupt that is configurable by the user for either of two conditions.

If CRCISEL is '0', an interrupt is generated when the VWORD<4:0> bits make a transition from a value of '1' to '0'. If CRCISEL is '1', an interrupt will be generated after the CRC operation finishes and the module sets the CRCGO bit to '0'. Manually setting CRCGO to '0' will not generate an interrupt. Note that when an interrupt occurs, the CRC calculation would not yet be complete. The module will still need (PLEN + 1)/2 clock cycles after the interrupt is generated until the CRC calculation is finished.

21.1.5 TYPICAL OPERATION

To use the module for a typical CRC calculation:

- 1. Set the CRCEN bit to enable the module.
- Configure the module for desired operation:

 a) Program the desired polynomial using the CRCXORL and CRCXORH registers, and the PLEN<4:0> bits.

b) Configure the data width and shift direction using the DWIDTH and LENDIAN bits.

c) Select the desired interrupt mode using the CRCISEL bit.

- Preload the FIFO by writing to the CRCDATL and CRCDATH registers until the CRCFUL bit is set or no data is left.
- Clear old results by writing 00h to CRCWDATL and CRCWDATH. The CRCWDAT registers can also be left unchanged to resume a previously halted calculation.
- 5. Set the CRCGO bit to start calculation.
- 6. Write remaining data into the FIFO as space becomes available.
- When the calculation completes, CRCGO is automatically cleared. An interrupt will be generated if CRCISEL = 1.
- 8. Read CRCWDATL and CRCWDATH for the result of the calculation.

There are eight registers used to control programmable CRC operation:

- CRCCON1
- CRCCON2
- CRCXORL
- CRCXORH
- CRCDATL
- CRCDATH
- CRCWDATL
- CRCWDATH

The CRCCON1 and CRCCON2 registers (Register 21-1 and Register 21-2) control the operation of the module and configure the various settings.

The CRCXOR registers (Register 21-3 and Register 21-4) select the polynomial terms to be used in the CRC equation. The CRCDAT and CRCWDAT registers are each register pairs that serve as buffers for the double-word input data, and CRC processed output, respectively.

REGISTER	21-1: CRC	CON1: CRC (CONTROL 1	REGISTER							
R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0				
bit 15							bit 8				
	D 4 1100			DAVA							
R-0, HSC	R-1, HSC	R/W-U	R/W-0, HC	R/W-U	0-0	0-0	0-0				
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	— —				
							DILU				
Legend:											
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown				
HC = Hardw	are Cleared	HSC = Hardv	vare Settable/C	learable bit							
bit 15	CRCEN: CR	C Enable bit									
	1 = Enables	module									
	0 = Disables NOT res	et et	ate machines, p	pointers and C	RCWDAT/CRC	DATH reset; o	ther SFRs are				
bit 14	Unimplemen	nted: Read as '	0'								
bit 13	CSIDL: CRC	CSIDL: CRC Stop in Idle Mode bit									
	1 = Discontir 0 = Continue	nue module ope e module opera	eration when de tion in Idle mod	evice enters Idl le	e mode						
bit 12-8	VWORD<4:0	WORD<4:0>: Pointer Value bits									
	Indicates the 16 when PLE	number of vali N<4:0> \leq 7.	d words in the	FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> ≥ 7 or				
bit 7	CRCFUL: FI	FO Full bit									
	1 = FIFO is f	1 = FIFO is full									
	0 = FIFO is r	not full									
bit 6	CRCMPT: FI	FO Empty bit									
	1 = FIFO is empty										
hit 5		PC Interrupt Se	election bit								
DIL J	1 = Interrunt c	n EIEO is empt	v: the final word	of data is still s	hifting through t	he CRC					
	0 = Interrupt c	on shift is compl	ete and results a	are ready	intering through t						
bit 4	CRCGO: Sta	rt CRC bit									
	1 = Start CR	C serial shifter									
	0 = CRC ser	ial shifter is tur	ned off								
bit 3	LENDIAN: D	ata Shift Direct	ion Select bit								
	1 = Data wor 0 = Data wor	rd is shifted into rd is shifted into	o the CRC, star o the CRC, star	ting with the LS ting with the M	Sb (little endian Sb (big endian))					
bit 2-0	Unimplemen	ted: Read as '	0'	-	-						

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable bit		W = Writable b	pit	U = Unimpler			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	CTMUEN: CT	MU Enable bit					
	1 = Module is	senabled					
	0 = Module is	s disabled					
bit 14	Unimplement	ted: Read as '0)' 				
bit 13	CTMUSIDL: 8	Stop in Idle Mod	le bit				
	\perp = Discontin	module operat	ration when th	ie device enter: 1e	s lale mode		
bit 12	TGEN: Time (Generation Ena	ble bit ⁽¹⁾				
SIT 12	1 = Enables	edae delav aen	eration				
	0 = Disables	edge delay ger	eration				
bit 10	EDGEN: Edge	e Enable bit					
	1 = Edges are	e not blocked					
	0 = Edges are blocked						
bit 10	EDGSEQEN: Edge Sequence Enable bit						
	$1 = Edge 1 e^{-1}$	vent must occu	r before Edge	2 event can oc	cur		
bit 0	U = INO eage sequence is needed						
bit 9							
	0 = Analog cu	urrent source of	utput is not gro	ounded			
bit 8	CTTRIG: Trigger Control bit						
	1 = Trigger output is enabled						
	0 = Trigger o	utput is disable	d				
bit 7	EDG2POL: Edge 2 Polarity Select bit						
	1 = Edge 2 is	programmed f	or a positive e	dge response			
h # 0 5			or a negative (edge response			
DIT 6-5	EDG2SEL<1:0>: Edge 2 Source Select bits						
	11 = CTEDG 10 = CTEDG	i2 pin					
	01 = OC1 mo	odule					
	00 = Timer1	module					
bit 4	EDG1POL: Edge 1 Polarity Select bit						
	1 = Edge 1 is	programmed f	or a positive e	dge response			
		programmed f	or a negative (euge response			

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

28.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
OS10	Fosc	External CLKI Frequency (External clocks allowed only in EC mode)	DC 4	_	32 48	MHz MHz	EC ECPLL
		Oscillator Frequency	3.5 4 10 10 31		10 8 32 32 33	MHz MHz MHz MHz kHz	XT XTPLL HS HSPLL SOSC
OS20	Tosc	Tosc = 1/Fosc	—	—	_	—	See parameter OS10 for Fosc value
OS25	Тсү	Instruction Cycle Time ⁽²⁾	62.5	—	DC	ns	
OS30	TosL, TosH	External Clock in (OSCI) High or Low Time	0.45 x Tosc	—	—	ns	EC
OS31	TosR, TosF	External Clock in (OSCI) Rise or Fall Time	—	—	20	ns	EC
OS40	TckR	CLKO Rise Time ⁽³⁾	_	6	10	ns	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	6	10	ns	

TABLE 30-13: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 2: Instruction cycle period (Tcr) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min." values with an external clock applied to the OSCI/CLKI pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSCO pin. CLKO is low for the Q1-Q2 period (1/2 TcY) and high for the Q3-Q4 period (1/2 TcY).

AC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
OS50 Fplli	PLL Input Frequency Range ⁽²⁾	4	_	48	MHz	ECPLL mode	
		4		32	MHz	HSPLL mode	
			4		8	MHz	XTPLL mode
OS51	Fsys	PLL Output Frequency Range	95.76	_	96.24	MHz	
OS52	TLOCK	PLL Start-up Time (Lock Time)	—	-	200	μS	
OS53	DCLK	CLKO Stability (Jitter)	-0.25	_	0.25	%	

TARI E 30-14.	PLL CLOCK TIMING S	SPECIFICATIONS	$(V_{DD} = 2.2V TO 3.6V)$
IADLE 30-14.	FLL CLOCK HIMING 3	SFECIFICATIONS	VDD - 2.2V IO 3.0V

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.