

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da110t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-21: ADC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300	ADC Data Buffer 0									xxxx							
ADC1BUF1	0302		ADC Data Buffer 1								xxxx							
ADC1BUF2	0304								ADC Dat	a Buffer 2								xxxx
ADC1BUF3	0306		ADC Data Buffer 3									xxxx						
ADC1BUF4	0308	ADC Data Buffer 4									xxxx							
ADC1BUF5	030A		ADC Data Buffer 5									xxxx						
ADC1BUF6	030C								ADC Dat	a Buffer 6								xxxx
ADC1BUF7	030E								ADC Dat	a Buffer 7								xxxx
ADC1BUF8	0310								ADC Dat	a Buffer 8								xxxx
ADC1BUF9	0312								ADC Dat	a Buffer 9								xxxx
ADC1BUFA	0314								ADC Data	a Buffer 10								xxxx
ADC1BUFB	0316		ADC Data Buffer 11									xxxx						
ADC1BUFC	0318		ADC Data Buffer 12								xxxx							
ADC1BUFD	031A		ADC Data Buffer 13								xxxx							
ADC1BUFE	031C	ADC Data Buffer 14								xxxx								
ADC1BUFF	031E								ADC Data	a Buffer 15								xxxx
ADC1BUF10	0340								ADC Data	a Buffer 16								xxxx
ADC1BUF11	0342								ADC Data	a Buffer 17								xxxx
ADC1BUF12	0344								ADC Data	a Buffer 18								xxxx
ADC1BUF13	0346								ADC Data	a Buffer 19								xxxx
ADC1BUF14	0348								ADC Data	a Buffer 20								xxxx
ADC1BUF15	034A								ADC Data	a Buffer21								xxxx
ADC1BUF16	034C								ADC Data	a Buffer 22								xxxx
ADC1BUF17	034E								ADC Data	a Buffer 23								xxxx
ADC1BUF18	0350								ADC Data	a Buffer 24								xxxx
ADC1BUF19	0352								ADC Data	a Buffer 25								xxxx
ADC1BUF1A	0354								ADC Data	a Buffer 26								xxxx
ADC1BUF1B	0356								ADC Data	a Buffer 27								xxxx
ADC1BUF1C	0358								ADC Data	a Buffer 28								xxxx
ADC1BUF1D	035A								ADC Data	a Buffer 29								xxxx
ADC1BUF1E	035C								ADC Data	a Buffer 30								xxxx
ADC1BUF1F	035E								ADC Data	a Buffer 31								xxxx

PIC24FJ256DA210 FAMILY

 Legend:
 -- = unimplemented, read as '0', r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Unimplemented in 64-pin devices, read as '0'

4.2.5.1 Data Read from EDS Space

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the working register, assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

FIGURE 4-5: EDS ADDRESS GENERATION FOR READ OPERATIONS

When the Most Significant bit (MSBs) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double-word from EDS.

Note:	All read operations from EDS space have							
	an overhead of one instruction cycle.							
	Therefore, a minimum of two instruction							
	cycles is required to complete an EDS							
	read. EDS reads under the REPEAT							
	instruction; the first two accesses take							
	three cycles and the subsequent							
	accesses take one cycle.							

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

```
; Set the EDS page from where the data to be read
              #0x0002 , w0
   mov
              w0 , DSRPAG
                             ;page 2 is selected for read
   mov
   mov
              \#0x0800 , w1 ;select the location (0x800) to be read
bset
          wl , #15
                         ;set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
   mov.b
            [w1++] , w2 ;read Low byte
   mov.b
              [w1++] , w3 ;read High byte
;Read a word from the selected location
              [w1] , w2
   mov
                           ;
;Read Double - word from the selected location
   mov.d
              [w1] , w2
                             ;two word read, stored in w2 and w3
```

TABLE 4-36: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0 PC<22:1>				0			
(Code Execution)		0xx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0:	xxx xxxx	xxxx xxxx xxxx xxxx					
	Configuration	TB	LPAG<7:0>	Data EA<15:0>					
		1:	xxx xxxx	XXXX XXXX XXXX XXXX					
Program Space Visibility	User	0	DSRPAG<7:	.0> ⁽²⁾ Data EA<14:0> ⁽¹⁾					
(Block Remap/Read)		0	XXXX XX	xx	xxx xxxx xxxx xxxx				

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is DSRPAG<0>.

2: DSRPAG<9> is always '1' in this case. DSRPAG<8> decides whether the lower word or higher word of program memory is read. When DSRPAG<8> is '0', the lower word is read and when it is '1', the higher word is read.

FIGURE 4-8: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

2: The instructions, TBLRDH/TBLWTH/TBLRDL/TBLWTL, decide if the higher or lower word of program memory is accessed. TBLRDH/TBLWTH instructions access the higher word and TBLRDL/TBLWTL instructions access the lower word. Table read operations are permitted in the configuration memory space.

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	U-0	U-0		
ALTIVT	DISI		—	—	_	—	—		
bit 15				•		·	bit 8		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP		
bit 7				•		·	bit 0		
Legend:		HSC = Hardw	are Settable/C	learable bit					
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	ALTIVT: Enat	ole Alternate Int	errupt Vector 7	able bit					
	1 = Use Alternate Interrupt Vector Table								
	0 = Use standard (default) vector table								
bit 14	DISI: DISI In	struction Status	s bit						
	1 = DISI INS	truction is activ	e						
bit 13_5		ted: Read as '	n'						
bit 4		rnal Interrunt 4	, Edge Detect F	Polarity Select k	nit				
	1 = Interrupt	on negative ed	ne	olarity oclect t					
	0 = Interrupt	on positive edg	le						
bit 3	INT3EP: Exte	ernal Interrupt 3	Edge Detect F	Polarity Select b	pit				
	1 = Interrupt	on negative ed	ge						
	0 = Interrupt	on positive edg	e						
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect F	Polarity Select b	bit				
	1 = Interrupt	on negative ed	ge						
L:1	0 = Interrupt on positive edge								
	1 = Interrupt	on negativo od		-oranity Select t	л				
	0 = Interrupt	on positive ed	le						
bit 0	INT0EP: Exte	ernal Interrupt 0	Edge Detect F	Polarity Select b	bit				
	1 = Interrupt	on negative ed	ge	-,					
	0 = Interrupt	on positive edg	e						

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7-27: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-7 bit 6-4	Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	001 = Interrupt is priority 1 000 = Interrupt source is disabled

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC5IP2	IC5IP1	IC5IP0	—	IC4IP2	IC4IP1	IC4IP0
bit 15							bit 8
	D 444 4	D 444 0	D 444 0				
0-0	R/W-1	R/W-0	R/W-0	0-0	0-0	0-0	0-0
	IC3IP2	IC3IP1	IC3IP0		_		
DIT /							DIT U
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unki	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	IC5IP<2:0>:	Input Capture	Channel 5 Inte	rrupt Priority bi	ts		
	111 = Interru	upt is priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	upt is priority 1	sabled				
bit 11	Unimplemer	nted: Read as '	0'				
bit 10-8	IC4IP<2:0>:	Input Capture (Channel 4 Inte	rrupt Priority bi	ts		
	111 = Interru	upt is priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	sabled				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-4	IC3IP<2:0>:	Input Capture (Channel 3 Inte	rrupt Priority bi	ts		
	111 = Interru	upt is priority 7	(highest priorit	y interrupt)			
	•						
	•						
	001 = Interru 000 = Interru	upt is priority 1 upt source is dis	sabled				
bit 3-0	Unimplemer	nted: Read as '	0'				

REGISTER 7-28: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

REGISTER 7-42: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0, HSC	U-0	R/W-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

U-0	R-0, HSC						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/C	learable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
	1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority
	0 = No interrupt request is unacknowledged
bit 14	Unimplemented: Read as '0'
bit 13	VHOLD: Vector Number Capture Configuration bit
	 1 = The VECNUM bits contain the value of the highest priority pending interrupt 0 = The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12	Unimplemented: Read as '0'
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits
	1111 = CPU Interrupt Priority Level is 15
	•
	•
	0001 = CPU Interrupt Priority Level is 1
	0000 = CPU Interrupt Priority Level is 0
bit 7	Unimplemented: Read as '0'
bit 6-0	VECNUM<5:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits
	VHOLD = 1: The VECNUM bits indicate the vector number (from 0 to 118) of the last interrupt to occur VHOLD = 0: The VECNUM bits indicate the vector number (from 0 to 118) of the interrupt request currently being handled

REGISTER 10-6: ANSF: PORTF ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—		—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
—	—	—	—	—	—	—	ANSF0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-1 Unimplemented: Read as '0'

bit 0

bit 9-6

ANSF0: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

REGISTER 10-7: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
	—		_	—	_	ANSG9	ANSG8
bit 15							bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSG7	ANSG6	—	—	—		—	—
bit 7							bit 0
Legend:							
R = Readable bit V		W = Writable bit		U = Unimplemented bit, read		l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-10 **Unimplemented:** Read as '0'

ANSG<9:6>: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

bit 5-0 Unimplemented: Read as '0'

'1' = Bit is set

REGISTER 10-29: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplem	nented bit, read	l as '0'		

bit 15-14 Unimplemented: Read as '0'

-n = Value at POR

 bit 13-8
 RP1R<5:0>: RP1 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP1 (see Table 10-4 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

'0' = Bit is cleared

x = Bit is unknown

bit 5-0 **RP0R<5:0>:** RP0 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).

REGISTER 10-30: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0
bit 7	-						bit 0
Logond:							

Logona			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP3R<5:0>:** RP3 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP3 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP2R<5:0>:** RP2 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP2 (see Table 10-4 for peripheral function numbers).

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = Input Capture 9⁽²⁾
 - 11101 = Input Capture 6⁽²⁾
 - 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾

 - 11010 = Comparator 3⁽²⁾
 - 11001 = Comparator 2⁽²⁾
 - 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾
 - 10110 = Input Capture 3⁽²⁾

 - 10101 = Input Capture 2⁽²⁾
 - 10100 = Input Capture 1⁽²⁾
 - 10011 = Input Capture 8⁽²⁾ 10010 = Input Capture 7⁽²⁾

 - 1000x = Reserved
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2 01011 = Timer1

 - 01010 =Input Capture $5^{(2)}$ 01001 = Output Compare 9⁽¹⁾
 - 01000 = Output Compare 8⁽¹⁾
 - 00111 = Output Compare 7⁽¹⁾
 - $00110 = Output Compare 6^{(1)}$
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare $2^{(1)}$
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

16.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 24. "Inter-Integrated Circuit™ (I²C™)" (DS39702). The information in this data sheet supersedes the information in the FRM.

The Inter-Integrated CircuitTM (I²CTM) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, display drivers, A/D Converters, etc.

The I²C module supports these features:

- Independent master and slave logic
- · 7-bit and 10-bit device addresses
- General call address, as defined in the I²C protocol
- Clock stretching to provide delays for the processor to respond to a slave data request
- Both 100 kHz and 400 kHz bus specifications
- · Configurable address masking
- Multi-Master modes to prevent loss of messages in arbitration
- Bus Repeater mode, allowing the acceptance of all messages as a slave regardless of the address
- Automatic SCL
- A block diagram of the module is shown in Figure 16-1.

16.1 Communicating as a Master in a Single Master Environment

The details of sending a message in Master mode depends on the communications protocol for the device being communicated with. Typically, the sequence of events is as follows:

- 1. Assert a Start condition on SDAx and SCLx.
- 2. Send the I²C device address byte to the slave with a write indication.
- 3. Wait for and verify an Acknowledge from the slave.
- 4. Send the first data byte (sometimes known as the command) to the slave.
- 5. Wait for and verify an Acknowledge from the slave.
- 6. Send the serial memory address low byte to the slave.
- 7. Repeat steps 4 and 5 until all data bytes are sent.
- 8. Assert a Repeated Start condition on SDAx and SCLx.
- 9. Send the device address byte to the slave with a read indication.
- 10. Wait for and verify an Acknowledge from the slave.
- 11. Enable master reception to receive serial memory data.
- 12. Generate an ACK or NACK condition at the end of a received byte of data.
- 13. Generate a Stop condition on SDAx and SCLx.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from slave
	0 = Write – indicates data transfer is input to slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with the received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full
	0 = Transmit is complete, I2CxTRN is empty

Hardware is set when software writes to I2CxTRN; hardware is clear at the completion of data transmission.

REGISTER 16-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—		AMSK9	AMSK8
bit 15							bit 8

bit 7				•			bit 0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
R/W-0							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSK<9:0>: Mask for Address Bit x Select bits

1 = Enable masking for bit x of the incoming message address; bit match is not required in this position

0 = Disable masking for bit x; bit match is required in this position

REGISTER 18-6: U1STAT: USB STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	U-0					
ENDPT3	ENDPT2	ENDPT1	ENDPT0	DIR	PPBI ⁽¹⁾	—	—
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'				
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-8 bit 7-4	Unimplemented: Read as '0' ENDPT<3:0>: Number of the Last Endpoint Activity bits (Represents the number of the BDT updated by the last USB transfer.) 1111 = Endpoint 15 1110 = Endpoint 14
	0001 = Endpoint 1 0000 = Endpoint 0
bit 3	DIR: Last BD Direction Indicator bit
	 1 = The last transaction was a transmit transfer (TX) 0 = The last transaction was a receive transfer (RX)
bit 2	PPBI: Ping-Pong BD Pointer Indicator bit ⁽¹⁾
	1 = The last transaction was to the odd BD bank0 = The last transaction was to the even BD bank
bit 1-0	Unimplemented: Read as '0'

Note 1: This bit is only valid for endpoints with available even and odd BD registers.

REGISTER	19-1: PMC	ON1: EPMP	CONTROL RE	EGISTER 1							
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0				
PMPEN	—	PSIDL	ADRMUX1	ADRMUX0		MODE1	MODE0				
bit 15							bit 8				
DAM 0				11.0							
				0-0							
bit 7	0010		ALWODE		DOORLEI		bit 0				
L											
Legend:	- 1-14		L:1			-l (O)					
R = Readable		vv = vvritable	DIT	U = Unimplem	iented bit, rea	u as 'U					
-n = value at	PUR	"I" = Bit is se	t	0 = Bit is clea	ared	x = Bit is unkr	nown				
bit 15	PMPEN: Pa	rallel Master P	ort Enable bit								
	1 = EPMP is	s enabled									
	0 = EPMP is	s disabled									
bit 14	Unimpleme	nted: Read as	'0'								
bit 13	PSIDL: Stop	in Idle Mode k)It Norotion when de	vice entere Idle	mada						
	1 = Discontinu	e module op	ation in Idle mod	evice enters idie le	mode						
bit 12-11	ADRMUX<1	:0>: Address/[Data Multiplexing	Selection bits							
	11 = Lower	address bits a	re multiplexed w	, ith data bits usir	ng 3 address p	ohases					
	10 = Lower	address bits a	re multiplexed w	ith data bits usir	ng 2 address p	ohases					
	01 = Lower	address bits a	re multiplexed w	ith data bits usir	ng 1 address p	ohase					
hit 10	00 = Addres	ss and data ap	pear on separate	e pins							
bit 9_8		Parallel Port	U Mode Select bit								
bit 9-0	Imode Imode Imode Imode 11 = Master mode Imode Imode Imode										
	10 = Enhan	ced PSP; pins	used are PMRD	, PMWR, PMC	S, PMD<7:0>	and PMA<1:0>					
	01 = Buffere	ed PSP; pins u	sed are PMRD,	PMWR, PMCS	and PMD<7:0	>					
bit 7.6		y Parallel Slave	e PUIL, PIVIRD, P	MWR, PMC5 a		pins are used					
Dit 7-0	11 = Reserve	ued									
	10 = PMA<	15> used for C	hip Select 2, PM	IA<14> used for	r Chip Select 1	1					
	01 = PMA<	15> used for C	hip Select 2, PM	ICS1 used for C	Chip Select 1						
	00 = PMCS	2 used for Chi	o Select 2, PMC	S1 used for Chi	p Select 1						
bit 5	ALP: Addres	ss Latch Polari	ty bit								
	1 = Active-high (PMALL, PMALH and PMALU) 0 = Active-low (PMALL, PMALH and PMALL)										
bit 4	ALMODE: A	ddress Latch S	Strobe Mode bit	_0)							
	1 = Enable	1 = Enable "smart" address strobes (each address phase is only present if the current access would									
	cause a	cause a different address in the latch than the previous address)									
	0 = Disable	"smart" addres	s strobes								
bit 3	Unimpleme	nted: Read as	•0,								
DIT 2	BUSKEEP:	Bus Keeper bit		activaly baing	drivon						
	1 = Data bu 0 = Data bu	s is in high-im	edance state w	hen not actively	being driven						
bit 1-0	IRQM<1:0>:	Interrupt Requ	uest Mode bits	,,	J						
	11 = Interru	ot generated w	hen Read Buffer	3 is read or Wr	ite Buffer 3 is	written (Buffere	ed PSP mode),				
	or on a	read or write o	operation when I	PMA<1:0> = 11	(Addressable	PSP mode on	ly)				
	10 = Reserv	'ed at generated at	the end of a rea	ad/write cycle							
	00 = No inte	rrupt is genera	ited								

20.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the following steps for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 20-1: RTCC CALIBRATION

Error (clocks per minute) = (Ideal Frequency \dagger – Measured Frequency) x 60

†Ideal Frequency = 32,768H

3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2), the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter, once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses).

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note: It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

20.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 20-3)
- One-time alarm and repeat alarm options
 available

20.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 20-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

20.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers
	and the CHIME bit while the alarm is
	enabled (ALRMEN = 1), can result in a
	false alarm event leading to a false alarm
	interrupt. To avoid a false alarm event, the
	timer and alarm values should only be
	changed while the alarm is disabled
	(ALRMEN = 0). It is recommended that the
	ALCEGRPT register and CHIME bit be
	changed when RTCSYNC = 0.

21.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The information in this data sheet supersedes the information in the FRM.

FIGURE 21-1: CRC BLOCK D

The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

Figure 21-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 21-2.

REGISTER 22-23: G1VSYNC: VERTICAL SYNCHRONIZATION CONTROL REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VSLEN7 | VSLEN6 | VSLEN5 | VSLEN4 | VSLEN3 | VSLEN2 | VSLEN1 | VSLEN0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| VSST7 | VSST6 | VSST5 | VSST4 | VSST3 | VSST2 | VSST1 | VSST0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 VSLEN<7:0>: VSYNC Pulse-Width Configuration bits (in lines) The DPVSOE bit (G1CON3<1>) must be set for the VSYNC signal to toggle; minimum value is 1.

 bit 7-0
 VSST<7:0>: VSYNC Start Delay Configuration bits (in lines) This is the number of lines from the start of vertical blanking to the start of VSYNC active.

REGISTER 22-24: G1DBLCON: DISPLAY BLANKING CONTROL REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VENST7 | VENST6 | VENST5 | VENST4 | VENST3 | VENST2 | VENST1 | VENST0 |
| bit 15 | -
- | | | | • | | bit 8 |
| | | | | | | | |
| R/W-0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| HENST7 | HENST6 | HENST5 | HENST4 | HENST3 | HENST2 | HENST1 | HENST0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **VENST<7:0>:** Vertical Blanking Start to First Displayed Line Configuration bits (in lines) This is the number of lines from the start of vertical blanking to the first displayed line of a frame.

bit 7-0 **HENST<7:0>:** Horizontal Blanking Start to First Displayed Pixel Configuration bits (in DISPCLKs) This is the number of GCLK cycles from the start of horizontal blanking to the first displayed pixel of each displayed line.

REGISTER 22-25: G1CLUT: COLOR LOOK-UP TABLE CONTROL REGISTER

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CLUTEN	CLUTBUSY	_	—	—	—	CLUTTRD	CLUTRWEN
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLUTADR7 | CLUTADR6 | CLUTADR5 | CLUTADR4 | CLUTADR3 | CLUTADR2 | CLUTADR1 | CLUTADR0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	CLUTEN: Color Look-up Table Enable Control bit
	1 = Color look-up table is enabled
	0 = Color look-up table is disabled
bit 14	CLUTBUSY: Color Look-up Table Busy Status bit
	1 = A CLUT entry read/write access is being executed
	0 = No CLUT entry read/write access is being executed
bit 13-10	Unimplemented: Read as '0'
bit 9	CLUTTRD: Color Look-up Table Read Trigger bit
	Enabling this bit will trigger a read to the CLUT location determined by the CLUTADR bits (G1CLUT<7:0>) with CLUTRWEN enabled.
	 1 = CLUT read trigger is enabled (must be cleared in software after reading data in the G1CLUTRD register)
	0 = CLUT read trigger is disabled
bit 8	CLUTRWEN: Color Look-up Table Read/Write Enable Control bit
	This bit must be set when reading or modifying entries on the CLUT and it must also be cleared when CLUT is used by the display controller.
	 1 = Color look-up table read/write enabled; display controller cannot access the CLUT 0 = Color look-up table read/write disabled; display controller can access the CLUT
bit 7-0	CLUTADR<7:0>: Color Look-up Table Memory Address bits

30.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of the PIC24FJ256DA210 family electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the PIC24FJ256DA210 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these, or any other conditions above the parameters indicated in the operation listings of this specification, is not implied.

Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +100°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any combined analog and digital pin and MCLR, with respect to Vss	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss when VDD < 3.0V	0.3V to (VDD + 0.3V)
Voltage on any digital only pin with respect to Vss when VDD > 3.0V	0.3V to (+5.5V)
Voltage on VBUS pin with respect to VSS, independent of VDD or VUSB	0.3V to (+5.5V)
Maximum current out of Vss pin	
Maximum current into VDD pin (Note 1)	250 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports (Note 1)	200 mA

Note 1: Maximum allowable current is a function of device maximum power dissipation (see Table 30-1).

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.