

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da206-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number				Innut			
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description		
RB0	16	25	K2	I/O	ST			
RB1	15	24	K1	I/O	ST			
RB2	14	23	J2	I/O	ST			
RB3	13	22	J1	I/O	ST			
RB4	12	21	H2	I/O	ST			
RB5	11	20	H1	I/O	ST			
RB6	17	26	L1	I/O	ST			
RB7	18	27	J3	I/O	ST			
RB8	21	32	K4	I/O	ST			
RB9	22	33	L4	I/O	ST			
RB10	23	34	L5	I/O	ST			
RB11	24	35	J5	I/O	ST			
RB12	27	41	J7	I/O	ST			
RB13	28	42	L7	I/O	ST			
RB14	29	43	K7	I/O	ST			
RB15	30	44	L8	I/O	ST			
RC1	—	6	D1	I/O	ST			
RC2	—	7	E4	I/O	ST			
RC3	—	8	E2	I/O	ST			
RC4	—	9	E1	I/O	ST			
RC12	39	63	F9	I/O	ST			
RC13	47	73	C10	I/O	ST			
RC14	48	74	B11	I/O	ST			
RC15	40	64	F11	I/O	ST			
RCV	18	27	J3	I	ST	USB Receive Input (from external transceiver).		
Legend:	TTL = TTL inp ANA = Analog	ut buffer level input/out	put		ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer		

TABLE 1-3: PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INT0IF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

							11.0
K/W-0, HS	K/W-0, HS	R/W-0, HS	K/W-0, HS	R/W-0, HS	R/W-U, HS	R/W-0, HS	U-0
	UZRXIF	INTZIE	1515	141⊦	UC4IF	OC3IF	-
DIT 15							Bit 8
		11.0					
		<u> </u>	INIT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7	10711				ONII	10120111	bit 0
Dit i							
Legend:		HS = Hardwar	re Settable bit				
R = Readable	bit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
L							
bit 15	U2TXIF: UAR	T2 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt	request has oc	curred				
hit 11		T2 Dessiver la	torrupt Flog Of	atua hit			
DIC 14		roquest has ee	iterrupt Flag St	alus dil			
	0 = Interrupt I	request has no	t occurred				
bit 13	INT2IF: Exter	nal Interrupt 2 I	Flag Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 12	T5IF: Timer5	Interrupt Flag S	Status bit				
	1 = Interrupt	request has oc	curred				
hit 11		request has no					
	1 = Interrupt	merrupt Flag S					
	0 = Interrupt I	request has no	t occurred				
bit 10	OC4IF: Outpu	It Compare Cha	annel 4 Interru	pt Flag Status b	bit		
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 9	OC3IF: Output	it Compare Cha	annel 3 Interru	pt Flag Status b	bit		
	1 = Interrupt	request has oc	curred				
hit Q		request has no	,				
ull O bit 7		ieu: Reau as () A R Interrupt E	aa Statua hit			
		request has one	er o mienupi Fi curred	ay status bil			
	0 = Interrupt I	request has no	t occurred				
bit 6	IC7IF: Input C	apture Channe	el 7 Interrupt Fl	ag Status bit			
	1 = Interrupt	request has oc	curred .	-			
	0 = Interrupt	request has no	t occurred				

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
_	RTCIF	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0, HS	R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-7	Unimplemented: Read as '0'
bit 6	INT4IF: External Interrupt 4 Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	INT3IF: External Interrupt 3 Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS
		IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF
bit 15		11					bit 8
R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
U4ERIF	USB1IF	MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF	
bit 7							bit 0
Logondu		US - Hardwar	o Cottoblo bit				
R = Readable	a bit	W = Writable k	it	II = I Inimplen	nented hit rear	1 26 'N'	
-n = Value at	POR	'1' = Rit is set	Л	$0^{\circ} = \text{Bit is clear}$	ared	x = Rit is unkr	lown
n value at							
bit 15-14	Unimplement	ted: Read as '0	3				
bit 13	IC9IF: Input C	Capture Channe	l 9 Interrupt Fl	ag Status bit			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				
bit 12	OC9IF: Outpu	It Compare Cha	annel 9 Interru	pt Flag Status I	bit		
	1 = Interrupt 0 = Interrupt	request has occ request has not	occurred				
bit 11	SPI3IF: SPI3	Event Interrupt	Flag Status bi	t			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				
bit 10	SPF3IF: SPI3	Fault Interrupt	Flag Status bi	t			
	1 = Interrupt	request has occ	curred				
hit Q		T4 Transmitter	Interrunt Flag	Statue bit			
bit 9		request has oc	curred	Status bit			
	0 = Interrupt	request has not	occurred				
bit 8	U4RXIF: UAR	RT4 Receiver In	terrupt Flag St	atus bit			
	1 = Interrupt	request has occ	curred				
h:+ 7		request has not	COCCURRED	- I- :4			
DIT 7		roquest bas oc	upt Flag Status	S DIT			
	0 = Interrupt	request has not	occurred				
bit 6	USB1IF: USB	81 (USB OTG) I	nterrupt Flag S	Status bit			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				
bit 5	MI2C3IF: Mas	ster I2C3 Event	Interrupt Flag	Status bit			
	1 = Interrupt 0 = Interrupt	request has occ request has not	curred				
bit 4	SI2C3IF: Slav	/e I2C3 Event Ir	nterrupt Flag S	Status bit			
	1 = Interrupt	request has occ	curred				
	0 = Interrupt	request has not	occurred				
bit 3	U3TXIF: UAR	T3 Transmitter	Interrupt Flag	Status bit			
	1 = Interrupt	request has occ	curred				
hit 2		T3 Receiver In		atus hit			
	1 = Interrunt	request has on	curred	alus bil			
	0 = Interrupt	request has not	occurred				

REGISTER 7-27: IPC8: INTERRUPT PRIORITY CONTROL REGISTER 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	SPI2IP2	SPI2IP1	SPI2IP0	—	SPF2IP2	SPF2IP1	SPF2IP0
bit 7							bit 0

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 15-7 bit 6-4	Unimplemented: Read as '0' SPI2IP<2:0>: SPI2 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	SPF2IP<2:0>: SPI2 Fault Interrupt Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	001 = Interrupt is priority 1 000 = Interrupt source is disabled

REGISTER 7-31: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	—	—	—
bit 7							bit 0

r							
Legend:							
R = Readabl	e bit	W = Writable bit	U = Unimplemented bit,	, read as '0'			
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-11	bit 15-11 Unimplemented: Read as '0'						
bit 10-8	MI2C2IP<	2:0>: Master I2C2 Event In	terrupt Priority bits				
	111 = Inte	errupt is priority 7 (highest p	priority interrupt)				
	•						
	•						
	001 = Inte	errupt is priority 1					
	000 = Inte	errupt source is disabled					
bit 7	Unimpler	nented: Read as '0'					
bit 6-4	SI2C2IP<	2:0>: Slave I2C2 Event Inte	errupt Priority bits				
	111 = Inte	errupt is priority 7 (highest p	priority interrupt)				
	•						
•							
	• 001 = Inte	errunt is priority 1					
000 = Interrupt source is disabled							
bit 3-0	Unimplemented: Read as '0'						

REGISTER 7-41: IPC25: INTERRUPT PRIORITY CONTROL REGISTER 25

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—	GFX1IP2	GFX1IP1	GFX1IP0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea		d as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-3 Unimplemented: Read as '0'

bit 2-0 **GFX1IP<2:0>:** Graphics 1 Interrupt Priority bits

- 111 = Interrupt is priority 7 (highest priority interrupt)
- •
- 001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 7-42: INTTREG: INTERRUPT CONTROLLER TEST REGISTER

R-0, HSC	U-0	R/W-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
CPUIRQ	—	VHOLD	—	ILR3	ILR2	ILR1	ILR0
bit 15							bit 8

U-0	R-0, HSC						
—	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	CPUIRQ: Interrupt Request from Interrupt Controller CPU bit
	1 = An interrupt request has occurred but has not yet been Acknowledged by the CPU; this happens when the CPU priority is higher than the interrupt priority
	0 = No interrupt request is unacknowledged
bit 14	Unimplemented: Read as '0'
bit 13	VHOLD: Vector Number Capture Configuration bit
	 1 = The VECNUM bits contain the value of the highest priority pending interrupt 0 = The VECNUM bits contain the value of the last Acknowledged interrupt (i.e., the last interrupt that has occurred with higher priority than the CPU, even if other interrupts are pending)
bit 12	Unimplemented: Read as '0'
bit 11-8	ILR<3:0>: New CPU Interrupt Priority Level bits
	1111 = CPU Interrupt Priority Level is 15
	•
	•
	0001 = CPU Interrupt Priority Level is 1
	0000 = CPU Interrupt Priority Level is 0
bit 7	Unimplemented: Read as '0'
bit 6-0	VECNUM<5:0>: Vector Number of Pending Interrupt or Last Acknowledged Interrupt bits
	VHOLD = 1: The VECNUM bits indicate the vector number (from 0 to 118) of the last interrupt to occur VHOLD = 0: The VECNUM bits indicate the vector number (from 0 to 118) of the interrupt request currently being handled

8.0 OSCILLATOR CONFIGURATION

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 6. "Oscillator" (DS39700). The information in this data sheet supersedes the information in the FRM.

The oscillator system for PIC24FJ256DA210 family devices has the following features:

• A total of four external and internal oscillator options as clock sources, providing 11 different clock modes

- An on-chip PLL block to boost internal operating frequency on select internal and external oscillator sources, and to provide a precise clock source for peripherals, such as USB and graphics
- Software controllable switching between various clock sources
- Software controllable postscaler for selective clocking of CPU for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- A separate and independently configurable system clock output for synchronizing external hardware
- A simplified diagram of the oscillator system is shown in Figure 8-1.

10.1.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be a NOP.

10.1.2 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, each port pin can also be individually configured for either a digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired digital only pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

10.1.3 CONFIGURING D+ AND D- PINS (RG2 AND RG3)

The input buffers of the RG2 and RG3 pins are by default, tri-stated. To use these pins as input pins, the UTRDIS bit (U1CNFG2<0>) should be set which enables the input buffers on these pins.

10.2 Configuring Analog Port Pins (ANSEL)

The ANSx and TRISx registers control the operation of the pins with analog function. Each port pin with analog function is associated with one of the ANS bits (see Register 10-1 through Register 10-7), which decides if the pin function should be analog or digital. Refer to Table 10-1 for detailed behavior of the pin for different ANSx and TRISx bit settings.

When reading the PORT register, all pins configured as analog input channels will read as cleared (a low level).

10.2.1 ANALOG INPUT PINS AND VOLTAGE CONSIDERATIONS

The voltage tolerance of pins used as device inputs is dependent on the pin's input function. Pins that are used as digital only inputs are able to handle DC voltages of up to 5.5V, a level typical for digital logic circuits. In contrast, pins that also have analog input functions of any kind can only tolerate voltages up to VDD. Voltage excursions beyond VDD on these pins should always be avoided. Table 10-2 summarizes the input capabilities. Refer to **Section 30.1 "DC Characteristics"** for more details.

Pin Function	ANSx Setting	TRISx Setting	Comments
Analog Input	1	1	It is recommended to keep ANSx = 1.
Analog Output	1	1	It is recommended to keep ANSx = 1.
Digital Input	0	1	Firmware must wait at least one instruction cycle after configuring a pin as a digital input before a valid input value can be read.
Digital Output	0	0	Make sure to disable the analog output function on the pin if any is present.

TABLE 10-1: CONFIGURING ANALOG/DIGITAL FUNCTION OF AN I/O PIN

TABLE 10-2: INPUT VOLTAGE LEVELS FOR PORT OR PIN TOLERATED DESCRIPTION INPUT

Port or Pin	Tolerated Input	Description
PORTA ⁽¹⁾ <10:9, 7:6>		
PORTB<15:0>		
PORTC ⁽¹⁾ <15:12, 4>		
PORTD<7:6>	VDD	Only VDD input levels are tolerated.
PORTE ⁽¹⁾ <9>		
PORTF<0>		
PORTG<9:6, 3:2>		
PORTA ⁽¹⁾ <15:14, 5:0>		
PORTC ⁽¹⁾ <3:1>		
PORTD ⁽¹⁾ <15:8, 5:0>	E E)/	Tolerates input levels above VDD, useful
PORTE ⁽¹⁾ <8:0>	5.5V	for most standard logic.
PORTF ⁽¹⁾ <13:12, 8:7, 5:1>		
PORTG ⁽¹⁾ <15:12, 1:0>		

Note 1: Not all of the pins of these PORTS are implemented in 64-pin devices (PIC24FJXXXDAX06); refer to the device pinout diagrams for the details.

For 32-bit cascaded operation, these steps are also necessary:

- Set the OC32 bits for both registers (OCyCON2<8>) and (OCxCON2<8>). Enable the even numbered module first to ensure the modules will start functioning in unison.
- Clear the OCTRIG bit of the even module (OCyCON2), so the module will run in Synchronous mode.
- 3. Configure the desired output and Fault settings for OCy.
- 4. Force the output pin for OCx to the output state by clearing the OCTRIS bit.
- If Trigger mode operation is required, configure the trigger options in OCx by using the OCTRIG (OCxCON2<7>), TRIGMODE (OCxCON1<3>) and SYNCSEL (OCxCON2<4:0>) bits.
- Configure the desired Compare or PWM mode of operation (OCM<2:0>) for OCy first, then for OCx.

Depending on the output mode selected, the module holds the OCx pin in its default state and forces a transition to the opposite state when OCxR matches the timer. In Double Compare modes, OCx is forced back to its default state when a match with OCxRS occurs. The OCxIF interrupt flag is set after an OCxR match in Single Compare modes and after each OCxRS match in Double Compare modes.

Single-shot pulse events only occur once, but may be repeated by simply rewriting the value of the OCxCON1 register. Continuous pulse events continue indefinitely until terminated.

14.3 Pulse-Width Modulation (PWM) Mode

In PWM mode, the output compare module can be configured for edge-aligned or center-aligned pulse waveform generation. All PWM operations are double-buffered (buffer registers are internal to the module and are not mapped into SFR space).

To configure the output compare module for PWM operation:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- 2. Calculate the desired duty cycles and load them into the OCxR register.
- 3. Calculate the desired period and load it into the OCxRS register.
- Select the current OCx as the synchronization source by writing 0x1F to the SYNCSEL<4:0> bits (OCxCON2<4:0>) and '0' to the OCTRIG bit (OCxCON2<7>).
- 5. Select a clock source by writing to the OCTSEL<2:0> bits (OCxCON<12:10>).
- 6. Enable interrupts, if required, for the timer and output compare modules. The output compare interrupt is required for PWM Fault pin utilization.
- Select the desired PWM mode in the OCM<2:0> bits (OCxCON1<2:0>).
- Appropriate Fault inputs may be enabled by using the ENFLT<2:0> bits as described in Register 14-1.
- If a timer is selected as a clock source, set the selected timer prescale value. The selected timer's prescaler output is used as the clock input for the OCx timer, and not the selected timer output.

Note: This peripheral contains input and output functions that may need to be configured by the Peripheral Pin Select. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER	18-8: U1CC	ON: USB CON	TROL REGI	STER (HOST		Y)	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_			_	_	_	
bit 15							bit 8
R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSIAIE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
DIT /							DITU
Legend:		U = Unimplem	ented bit read	1 as '0'			
R = Readable	e bit	W = Writable I	oit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplemen	ted: Read as 'd)'				
bit 7	JSTATE: Live	e Differential Re	ceiver J State	Flag bit			
	1 = J state (c	differential '0' in	low speed, dif	ferential '1' in fu	ull speed) is de	tected on the U	ISB
	0 = No J stat	e is detected					
bit 6	SE0: Live Sin	igle-Ended Zero	o Flag bit	D h			
	1 = Single-er 0 = No single	nded zero is act e-ended zero is	detected	3 DUS			
bit 5	TOKBUSY: T	oken Busv Stat	us bit				
	1 = Token is	being executed	by the USB m	odule in On-Th	ie-Go state		
	0 = No token	is being execu	ted				
bit 4	USBRST: Mo	dule Reset bit					
	1 = USB Res	set has been ge	enerated; for s	oftware Reset,	application mu	st set this bit fo	or 50 ms, then
		set is terminated	ł				
bit 3	HOSTEN: Ho	ost Mode Enable	e bit				
	1 = USB hos	t capability is er	nabled; pull-do	wns on D+ and	I D- are activate	ed in hardware	
	0 = USB hos	t capability is di	sabled				
bit 2	RESUME: Re	esume Signaling	g Enable bit				
	1 = Resume	signaling is act	ivated; softwa	re must set bit	for 10 ms and	then clear to e	enable remote
	0 = Resume	signaling is disa	abled				
bit 1	PPBRST: Pin	ig-Pong Buffers	Reset bit				
	1 = Reset al	I Ping-Pong Bu	ffer Pointers to	the even BD b	anks		
	0 = Ping-Po	ng Buffer Pointe	ers are not res	et			
bit 0	SOFEN: Star	t-Of-Frame Ena	ble bit				
	1 = Start-Of-	Frame token is	sent every one	e 1 ms			

20.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the following steps for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 20-1: RTCC CALIBRATION

Error (clocks per minute) = (Ideal Frequency \dagger – Measured Frequency) x 60

†Ideal Frequency = 32,768H

3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2), the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter, once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses).

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note: It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

20.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 20-3)
- One-time alarm and repeat alarm options
 available

20.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 20-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

20.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers
	and the CHIME bit while the alarm is
	enabled (ALRMEN = 1), can result in a
	false alarm event leading to a false alarm
	interrupt. To avoid a false alarm event, the
	timer and alarm values should only be
	changed while the alarm is disabled
	(ALRMEN = 0). It is recommended that the
	ALCEGRPT register and CHIME bit be
	changed when RTCSYNC = 0.

REGISTER 21-4: CRCXORH: CRC XOR HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X31	X30	X29	X28	X27	X26	X25	X24
bit 15			·		·	·	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X23	X22	X21	X20	X19	X18	X17	X16
bit 7							bit 0
Legend:							
			1. 11				

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 X<31:16>: XOR of Polynomial Term xⁿ Enable bits

REGISTER 21-5: CRCDATL: CRC DATA LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| DATA7 | DATA6 | DATA5 | DATA4 | DATA3 | DATA2 | DATA1 | DATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns '0'.

REGISTER 21-6: CRCDATH: CRC DATA HIGH REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA15	DATA14	DATA13	DATA12	DATA11	DATA10	DATA9	DATA8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 DATA<15:0>: CRC Input Data bits

Writing to this register fills the FIFO; reading from this register returns '0'.

REGISTER 22-28: G1MRGN: INTERRUPT ADVANCE REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VBAMGN7 | VBAMGN6 | VBAMGN5 | VBAMGN4 | VBAMGN3 | VBAMGN2 | VBAMGN1 | VBAMGN0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| HBAMGN7 | HBAMGN6 | HBAMGN5 | HBAMGN4 | HBAMGN3 | HBAMGN2 | HBAMGN1 | HBAMGN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	VBAMGN<7:0>: Vertical Blanking Advance bits
	The number of DISPCLK cycles in advance that the vertical blanking interrupt will assert ahead of the
	actual start of the vertical blanking.
bit 7-0	HBAMGN<7:0>: Horizontal Blanking Advance bits

The number of DISPCLK cycles in advance that the horizontal blanking interrupt will assert ahead of the actual start of the horizontal blanking.

REGISTER 22-29: G1CHRX: CHARACTER-X COORDINATE PRINT POSITION REGISTER

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	CURPOSX10	CURPOSX9	CURPOSX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CURPOSX7 | CURPOSX6 | CURPOSX5 | CURPOSX4 | CURPOSX3 | CURPOSX2 | CURPOSX1 | CURPOSX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-11 Unimplemented: Read as '0'

bit 10-0 CURPOSX<10:0>: Current Character Position in the X-Coordinate bits

REGISTER 22-30: G1CHRY: CHARACTER Y-COORDINATE PRINT POSITION REGISTER

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	CURPOSY10	CURPOSY9	CURPOSY8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CURPOSY7 | CURPOSY6 | CURPOSY5 | CURPOSY4 | CURPOSY3 | CURPOSY2 | CURPOSY1 | CURPOSY0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-11 Unimplemented: Read as '0'

Hadren I and a start of Data data (a)

bit 10-0 CURPOSY<10:0>: Current Character Position in the Y-Coordinate bits

REGISTER 22-31: G1IPU: INFLATE PROCESSOR STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
—	—	HUFFERR ⁽²⁾	BLCKERR ⁽²⁾	LENERR ⁽²⁾	WRAPERR ⁽²⁾	IPUDONE ^(1,2)	BFINAL ^(1,2)
bit 7							bit 0

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

0-61 110	Unimplemented: Read as 0
bit 5	HUFFERR: Undefined Huffmann Code Encountered Status bit ⁽²⁾
	1 = Undefined code is encountered
	0 = No undefined code is encountered
bit 4	BLCKERR: Undefined Block Code Encountered Status bit ⁽²⁾
	1 = Undefined block is encountered
	0 = No undefined block is encountered
bit 3	LENERR: Mismatch in Expected Block Length Status bit ⁽²⁾
	1 = Mismatch in block length is detected
	0 = No mismatch in block length is detected
bit 2	WRAPERR: Wrap-Around Error Status bit ⁽²⁾
	1 = Wrap-around error is encountered
	0 = No wrap-around error is encountered
bit 1	IPUDONE: IPU Decompression Status bit ^(1,2)
	1 = Decompression is done
	0 = Decompression is not yet done
bit 0	BFINAL: Final Block Encountered Status bit ^(1,2)
	1 = Final block is encountered
	0 = Final block is not encountered

Note 1: IPUDONE and BFINAL status bits are set after successful decompression.

2: All IPU status bits are available after each decompression. All status bits are automatically cleared every time a decompression command (IPU_DECOMPRESS) is issued.

L:1 4 5 0

27.4 Program Verification and Code Protection

PIC24FJ256DA210 family devices provide two complimentary methods to protect application code from overwrites and erasures. These also help to protect the device from inadvertent configuration changes during run time.

27.4.1 GENERAL SEGMENT PROTECTION

For all devices in the PIC24FJ256DA210 family, the on-chip program memory space is treated as a single block, known as the General Segment (GS). Code protection for this block is controlled by one Configuration bit, GCP. This bit inhibits external reads and writes to the program memory space. It has no direct effect in normal execution mode.

Write protection is controlled by the GWRP bit in the Configuration Word. When GWRP is programmed to '0', internal write and erase operations to program memory are blocked.

27.4.2 CODE SEGMENT PROTECTION

In addition to global General Segment protection, a separate subrange of the program memory space can be individually protected against writes and erases. This area can be used for many purposes where a separate block of write and erase-protected code is needed, such as bootloader applications. Unlike common boot block implementations, the specially protected segment in the PIC24FJ256DA210 family devices can be located by the user anywhere in the program space and configured in a wide range of sizes.

Code segment protection provides an added level of protection to a designated area of program memory by disabling the NVM safety interlock whenever a write or erase address falls within a specified range. It does not override General Segment protection controlled by the GCP or GWRP bits. For example, if GCP and GWRP are enabled, enabling segmented code protection for the bottom half of program memory does not undo General Segment protection for the top half. The size and type of protection for the segmented code range are configured by the WPFPx, WPEND, WPCFG and WPDIS bits in Configuration Word 3. Code segment protection is enabled by programming the WPDIS bit (= 0). The WPFP bits specify the size of the segment to be protected, by specifying the 512-word code page that is the start or end of the protected segment. The specified region is inclusive, therefore, this page will also be protected.

The WPEND bit determines if the protected segment uses the top or bottom of the program space as a boundary. Programming WPEND (= 0) sets the bottom of program memory (000000h) as the lower boundary of the protected segment. Leaving WPEND unprogrammed (= 1) protects the specified page through the last page of implemented program memory, including the Configuration Word locations.

A separate bit, WPCFG, is used to protect the last page of program space, including the Flash Configuration Words. Programming WPCFG (= 0) protects the last page in addition to the pages selected by the WPEND and WPFP<7:0> bits setting. This is useful in circumstances where write protection is needed for both the code segment in the bottom of the memory and the Flash Configuration Words.

The various options for segment code protection are shown in Table 27-2.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions					
Idle Current (IIDLE) ⁽²⁾									
DC40D	170	320	μA	-40°C					
DC40E	170	320	μA	+25°C	3.3∨ ⁽³⁾	1 MIPS			
DC40F	220	380	μA	+85°C					
DC43D	0.6	1.2	mA	-40°C					
DC43E	0.6	1.2	mA	+25°C	3.3∨ ⁽³⁾	4 MIPS			
DC43F	0.7	1.2	mA	+85°C					
DC47D	2.3	4.8	mA	-40°C					
DC47E	2.3	4.8	mA	+25°C	3.3∨ ⁽³⁾	16 MIPS			
DC47F	2.4	4.8	mA	+85°C					
DC50D	0.8	1.8	mA	-40°C		FRC (4 MIPS)			
DC50E	0.8	1.8	mA	+25°C	3.3∨ ⁽³⁾				
DC50F	1.0	1.8	mA	+85°C					
DC51D	40.0	85	μA	-40°C		LPRC (31 kHz)			
DC51E	40.0	85	μA	+25°C	3.3∨ ⁽³⁾				
DC51F	120.0	210	μA	+85°C					

TABLE 30-5: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: Base IIDLE current is measured with the core off; OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

NOTES:

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B