

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da210-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Number				Input					
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description			
CN0	48	74	B11	Ι	ST				
CN1	47	73	C10	Ι	ST				
CN2	16	25	K2	Ι	ST				
CN3	15	24	K1	Ι	ST				
CN4	14	23	J2	Ι	ST				
CN5	13	22	J1	Ι	ST				
CN6	12	21	H2	-	ST				
CN7	11	20	H1	Ι	ST				
CN8	4	10	E3	Ι	ST				
CN9	5	11	F4	Ι	ST				
CN10	6	12	F2	Ι	ST				
CN11	8	14	F3	-	ST				
CN12	30	44	L8	Ι	ST				
CN13	52	81	C8	Ι	ST				
CN14	53	82	B8	-	ST				
CN15	54	83	D7	Ι	ST				
CN16	55	84	C7	Ι	ST				
CN17	31	49	L10	Ι	ST				
CN18	32	50	L11	Ι	ST				
CN19	—	80	D8	Ι	ST	Interrupt on Change Innute			
CN20		47	L9	Ι	ST	Interrupt-on-Change Inputs.			
CN21	—	48	K9	Ι	ST				
CN22	40	64	F11	Ι	ST				
CN23	39	63	F9	Ι	ST				
CN24	17	26	L1	Ι	ST				
CN25	18	27	J3	Ι	ST				
CN26	21	32	K4	Ι	ST				
CN27	22	33	L4	Ι	ST				
CN28	23	34	L5	Ι	ST				
CN29	24	35	J5	-	ST				
CN30	27	41	J7	Ι	ST				
CN31	28	42	L7	Ι	ST				
CN32	29	43	K7	Ι	ST				
CN33	_	17	G3	Ι	ST				
CN34	—	38	J6	Ι	ST				
CN35	—	58	H11	Ι	ST				
CN36	—	59	G10	Ι	ST				
CN37	—	60	G11	Ι	ST				
CN38		61	G9	Ι	ST				
CN39		91	C5	Ι	ST				

TABLE 1-3: PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0 > = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

3.0 CPU

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 44. "CPU with Extended Data Space (EDS)" (DS39732). The information in this data sheet supersedes the information in the FRM.

The PIC24F CPU has a 16-bit (data) modified Harvard architecture with an enhanced instruction set and a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M instructions of user program memory space. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the REPEAT instructions, which are interruptible at any point.

PIC24F devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can act as a data, address or address offset register. The 16th working register (W15) operates as a Software Stack Pointer for interrupts and calls.

The lower 32 Kbytes of the data space can be accessed linearly. The upper 32 Kbytes of the data space are referred to as extended data space to which the extended data RAM, EPMP memory space or program memory can be mapped.

The Instruction Set Architecture (ISA) has been significantly enhanced beyond that of the PIC18, but maintains an acceptable level of backward compatibility. All PIC18 instructions and addressing modes are supported, either directly, or through simple macros. Many of the ISA enhancements have been driven by compiler efficiency needs. The core supports Inherent (no operand), Relative, Literal, Memory Direct Addressing modes along with three groups of addressing modes. All modes support Register Direct and various Register Indirect modes. Each group offers up to seven addressing modes. Instructions are associated with predefined addressing modes depending upon their functional requirements.

For most instructions, the core is capable of executing a data (or program data) memory read, a working register (data) read, a data memory write and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing trinary operations (that is, A + B = C) to be executed in a single cycle.

A high-speed, 17-bit x 17-bit multiplier has been included to significantly enhance the core arithmetic capability and throughput. The multiplier supports Signed, Unsigned and Mixed mode, 16-bit x 16-bit or 8-bit x 8-bit, integer multiplication. All multiply instructions execute in a single cycle.

The 16-bit ALU has been enhanced with integer divide assist hardware that supports an iterative non-restoring divide algorithm. It operates in conjunction with the REPEAT instruction looping mechanism and a selection of iterative divide instructions to support 32-bit (or 16-bit), divided by 16-bit, integer signed and unsigned division. All divide operations require 19 cycles to complete but are interruptible at any cycle boundary.

The PIC24F has a vectored exception scheme with up to 8 sources of non-maskable traps and up to 118 interrupt sources. Each interrupt source can be assigned to one of seven priority levels.

A block diagram of the CPU is shown in Figure 3-1.

3.1 Programmer's Model

The programmer's model for the PIC24F is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. A description of each register is provided in Table 3-1. All registers associated with the programmer's model are memory mapped.

TABLE 4-5: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE	CN9PDE	CN8PDE	CN7PDE	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	CN31PDE	CN30PDE	CN29PDE	CN28PDE	CN27PDE	CN26PDE	CN25PDE	CN24PDE	CN23PDE	CN22PDE	CN21PDE ⁽¹⁾	CN20PDE ⁽¹⁾	CN19PDE ⁽¹⁾	CN18PDE	CN17PDE	CN16PDE	0000
CNPD3	005A	CN47PDE ⁽¹⁾	CN46PDE ⁽¹⁾	CN45PDE ⁽¹⁾	CN44PDE ⁽¹⁾	CN43PDE ⁽¹⁾	CN42PDE ⁽¹⁾	CN41PDE ⁽¹⁾	CN40PDE ⁽¹⁾	CN39PDE ⁽¹⁾	CN38PDE ⁽¹⁾	CN37PDE ⁽¹⁾	CN36PDE ⁽¹⁾	CN35PDE ⁽¹⁾	CN34PDE ⁽¹⁾	CN33PDE ⁽¹⁾	CN32PDE	0000
CNPD4	005C	CN63PDE	CN62PDE	CN61PDE	CN60PDE	CN59PDE	CN58PDE	CN57PDE ⁽¹⁾	CN56PDE	CN55PDE	CN54PDE	CN53PDE	CN52PDE	CN51PDE	CN50PDE	CN49PDE	CN48PDE ⁽¹⁾	0000
CNPD5	005E	CN79PDE ⁽¹⁾	CN78PDE ⁽¹⁾	CN77PDE ⁽¹⁾	CN76PDE ⁽¹⁾	CN75PDE ⁽¹⁾	CN74PDE ⁽¹⁾	CN73PDE ⁽¹⁾	_	CN71PDE	CN70PDE(1)	CN69PDE	CN68PDE	CN67PDE ⁽¹⁾	CN66PDE ⁽¹⁾	CN65PDE	CN64PDE	0000
CNPD6	0060	_	_	_	_	_	_	_	_	_	_	_	CN84PDE	CN83PDE	CN82PDE ⁽¹⁾	CN81PDE ⁽¹⁾	CN80PDE ⁽¹⁾	0000
CNEN1	0062	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	CN31IE	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE ⁽¹⁾	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE	CN17IE	CN16IE	0000
CNEN3	0066	CN47IE ⁽¹⁾	CN46IE ⁽¹⁾	CN45IE ⁽¹⁾	CN44IE ⁽¹⁾	CN43IE ⁽¹⁾	CN42IE ⁽¹⁾	CN41IE ⁽¹⁾	CN40IE ⁽¹⁾	CN39IE ⁽¹⁾	CN38IE ⁽¹⁾	CN37IE ⁽¹⁾	CN36IE ⁽¹⁾	CN35IE ⁽¹⁾	CN34IE ⁽¹⁾	CN33IE ⁽¹⁾	CN32IE	0000
CNEN4	0068	CN63IE	CN62IE	CN61IE	CN60IE	CN59IE	CN58IE	CN57IE ⁽¹⁾	CN56IE	CN55IE	CN54IE	CN53IE	CN52IE	CN51IE	CN50IE	CN49IE	CN48IE ⁽¹⁾	0000
CNEN5	006A	CN79IE ⁽¹⁾	CN78IE ⁽¹⁾	CN77IE ⁽¹⁾	CN76IE ⁽¹⁾	CN75IE ⁽¹⁾	CN74IE ⁽¹⁾	CN73IE ⁽¹⁾	_	CN71IE	CN70IE ⁽¹⁾	CN69IE	CN68IE	CN67IE ⁽¹⁾	CN66IE ⁽¹⁾	CN65IE	CN64IE	0000
CNEN6	006C	_	_	_	_	_	_	_	_	_	_	—	CN84IE	CN83IE	CN82IE ⁽¹⁾	CN81IE ⁽¹⁾	CN80IE ⁽¹⁾	0000
CNPU1	006E	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	0070	CN31PUE	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE ⁽¹⁾	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE	CN17PUE	CN16PUE	0000
CNPU3	0072	CN47PUE ⁽¹⁾	CN46PUE ⁽¹⁾	CN45PUE ⁽¹⁾	CN44PUE ⁽¹⁾	CN43PUE ⁽¹⁾	CN42PUE ⁽¹⁾	CN41PUE ⁽¹⁾	CN40PUE ⁽¹⁾	CN39PUE ⁽¹⁾	CN38PUE ⁽¹⁾	CN37PUE ⁽¹⁾	CN36PUE ⁽¹⁾	CN35PUE ⁽¹⁾	CN34PUE ⁽¹⁾	CN33PUE ⁽¹⁾	CN32PUE	0000
CNPU4	0074	CN63PUE	CN62PUE	CN61PUE	CN60PUE	CN59PUE	CN58PUE	CN57PUE ⁽¹⁾	CN56PUE	CN55PUE	CN54PUE	CN53PUE	CN52PUE	CN51PUE	CN50PUE	CN49PUE	CN48PUE ⁽¹⁾	0000
CNPU5	0076	CN79PUE ⁽¹⁾	CN78PUE ⁽¹⁾	CN77PUE ⁽¹⁾	CN76PUE ⁽¹⁾	CN75PUE ⁽¹⁾	CN74PUE ⁽¹⁾	CN73PUE ⁽¹⁾	_	CN71PUE	CN70PUE ⁽¹⁾	CN69PUE	CN68PUE	CN67PUE ⁽¹⁾	CN66PUE ⁽¹⁾	CN65PUE	CN64PUE	0000
CNPU6	0078	_	_	_	_	_	_	_			—		CN84PUE	CN83PUE	CN82PUE ⁽¹⁾	CN81PUE ⁽¹⁾	CN80PUE ⁽¹⁾	0000

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

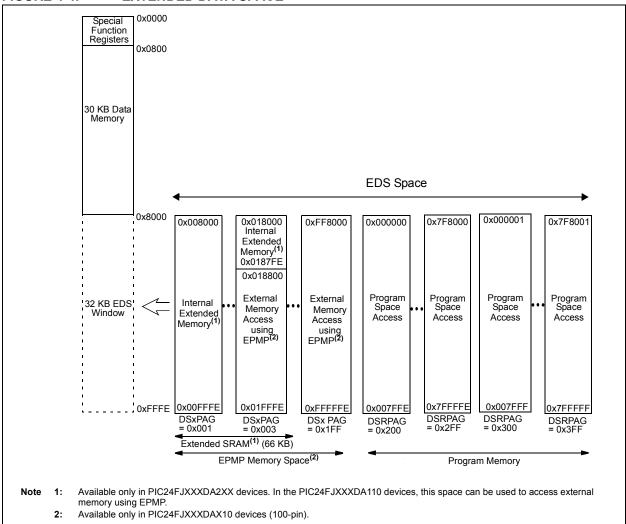
 Note
 1:
 Unimplemented in 64-pin devices; read as '0'.

TABLE 4-9: OUTPUT COMPARE REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC8CON1	01D6	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC8CON2	01D8	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC8RS	01DA								Output Compa	are 8 Seconda	ry Register							0000
OC8R	01DC								Output 0	Compare 8 Re	gister							0000
OC8TMR	01DE								Output Compa	re 8 Timer Val	ue Register							xxxx
OC9CON1	01E0		_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC9CON2	01E2	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC9RS	01E4								Output Compa	are 9 Seconda	ry Register							0000
OC9R	01E6								Output 0	Compare 9 Re	gister							0000
OC9TMR	01E8		Output Compare 9 Timer Value Register								xxxx							
Legend:	_=	unimpleme	nplemented, read as '0'. Reset values are shown in hexadecimal.															

TABLE 4-10: I²C™ REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	—	_	_	_	—	-	_				I2C1 Receiv	e Register				0000
I2C1TRN	0202	_	—		_	_	_	—	_				I2C1 Transm	nit Register				00FF
I2C1BRG	0204	_	—	_	_		_	_				I2C1 Baud I	Rate Generat	or Register				0000
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	—			BCL	GCSTAT	ADD10	IWCOL	I2COV	D/Ā	Р	s	R/W	RBF	TBF	0000
I2C1ADD	020A	_	—	_	_		_					I2C1 Addre	ss Register					0000
I2C1MSK	020C	_	_	_	_		_				12	C1 Address	Mask Registe	er				0000
I2C2RCV	0210	—	—	—	—		_	—					I2C2 Receiv	ve Register				0000
I2C2TRN	0212	_	_	_	_		_	_					I2C2 Transm	nit Register				00FF
I2C2BRG	0214	—	—	—	—	—	—	—				I2C2 Baud I	Rate Generat	or Register				0000
I2C2CON	0216	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C2STAT	0218	ACKSTAT	TRSTAT	_	—	—	BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF	0000
I2C2ADD	021A	_	—	_	_		_					I2C2 Addre	ss Register					0000
I2C2MSK	021C	_	—	_	_		_				12	C2 Address	Mask Registe	r				0000
I2C3RCV	0270	_	—	_	_		_	_					I2C3 Receiv	e Register				0000
I2C3TRN	0272	_	—	_	_		—	_					I2C3 Transm	nit Register				00FF
I2C3BRG	0274	_	_	_	_		_	_				I2C3 Baud I	Rate Generat	or Register				0000
I2C3CON	0276	I2CEN	—	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C3STAT	0278	ACKSTAT	TRSTAT	—	_		BCL	GCSTAT	ADD10	IWCOL	I2COV	D/A	Р	s	R/W	RBF	TBF	0000
I2C3ADD	027A	_	—	_	_		_					I2C3 Addre	ss Register					0000
I2C3MSK	027C	_	_	_	_	_	_				120	C3 Address I	Mask Registe	er				0000


4.2.5 EXTENDED DATA SPACE (EDS)

The enhancement of the data space in PIC24FJ256DA210 family devices has been accomplished by a new technique, called the Extended Data Space (EDS).

The EDS includes any additional internal extended data memory not accessible by the lower 32 Kbytes data address space, any external memory through EPMP and the Program Space Visibility (PSV).

The extended data space is always accessed through the EDS window, the upper half of data space. The entire extended data space is organized into EDS pages, each having 32 Kbytes of data. Mapping of the EDS page into the EDS window is done using the Data Space Read register (DSRPAG<9:0>) for read operations and Data Space Write register (DSWPAG<8:0>) for write operations. Figure 4-4 displays the entire EDS space.

Note: Accessing Page 0 in the EDS window will generate an address error trap as Page 0 is the base data memory (data locations, 0x0800 to 0x7FFF, in the lower data space).

	Vector	IVT	AIVT	Inte	errupt Bit Locat	ions
Interrupt Source	Number	Address	Address	Flag	Enable	Priority
Timer1	3	00001Ah	00011Ah	IFS0<3>	IEC0<3>	IPC0<14:12>
Timer2	7	000022h	000122h	IFS0<7>	IEC0<7>	IPC1<14:12>
Timer3	8	000024h	000124h	IFS0<8>	IEC0<8>	IPC2<2:0>
Timer4	27	00004Ah	00014Ah	IFS1<11>	IEC1<11>	IPC6<14:12>
Timer5	28	00004Ch	00014Ch	IFS1<12>	IEC1<12>	IPC7<2:0>
UART1 Error	65	000096h	000196h	IFS4<1>	IEC4<1>	IPC16<6:4>
UART1 Receiver	11	00002Ah	00012Ah	IFS0<11>	IEC0<11>	IPC2<14:12>
UART1 Transmitter	12	00002Ch	00012Ch	IFS0<12>	IEC0<12>	IPC3<2:0>
UART2 Error	66	000098h	000198h	IFS4<2>	IEC4<2>	IPC16<10:8>
UART2 Receiver	30	000050h	000150h	IFS1<14>	IEC1<14>	IPC7<10:8>
UART2 Transmitter	31	000052h	000152h	IFS1<15>	IEC1<15>	IPC7<14:12>
UART3 Error	81	0000B6h	0001B6h	IFS5<1>	IEC5<1>	IPC20<6:4>
UART3 Receiver	82	0000B8h	0001B8h	IFS5<2>	IEC5<2>	IPC20<10:8>
UART3 Transmitter	83	0000BAh	0001BAh	IFS5<3>	IEC5<3>	IPC20<14:12>
UART4 Error	87	0000C2h	0001C2h	IFS5<7>	IEC5<7>	IPC21<14:12>
UART4 Receiver	88	0000C4h	0001C4h	IFS5<8>	IEC5<8>	IPC22<2:0>
UART4 Transmitter	89	0000C6h	0001C6h	IFS5<9>	IEC5<9>	IPC22<6:4>
USB Interrupt	86	0000C0h	0001C0h	IFS5<6>	IEC5<6>	IPC21<10:8>

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS (CONTINUED)

Note 1: Not available in 64-pin devices (PIC24FJXXXDAX06).

7.3 Interrupt Control and Status Registers

The PIC24FJ256DA210 family of devices implements a total of 40 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFS0 through IFS6
- IEC0 through IEC6
- IPC0 through IPC25 (except IPC14, IPC17 and IPC24)
- INTTREG

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit, as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

The IFSx registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or an external signal and is cleared via software.

The IECx registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals. The IPCx registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into the Vector Number (VECNUM<6:0>) and the Interrupt Level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the order of their vector numbers, as shown in Table 7-2. For example, the INT0 (External Interrupt 0) is shown as having a vector number and a natural order priority of 0. Thus, the INT0IF status bit is found in IFS0<0>, the INT0IE enable bit in IEC0<0> and the INT0IP<2:0> priority bits in the first position of IPC0 (IPC0<2:0>).

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. The ALU STATUS register (SR) contains the IPL<2:0> bits (SR<7:5>). These indicate the current CPU interrupt priority level. The user can change the current CPU priority level by writing to the IPL bits.

GCLKDIV<6:0>	Frequency Divisor	Display Module Clock Frequency 96 MHz Input (48 MHz Input)
000000	1	96 MHz (48 MHz)
000001	1.25 (start incrementing by 0.25)	76.80 MHz (38.4 MHz)
0000010	1.5	64 MHz (32 MHz)
0111111	16.75	5.73 MHz (2.86 MHz)
1000000	17	5.65 MHz (2.82 MHz)
1000001	17.5 (start incrementing by 0.5)	5.49 MHz (2.74 MHz)
1000010	18	5.33 MHz (2.66 MHz)
1011111	32.5	2.95 MHz (1.47 MHz)
1100000	33	2.91 MHz (1.45 MHz)
1100001	34 (start incrementing by 1)	2.82 MHz (1.41 MHz)
1100010	35	2.74 MHz (1.37 MHz)
1111110	63	1.52 MHz (762 kHz)
1111111	64	1.50 MHz (750 kHz)

TABLE 8-4: DISPLAY MODULE CLOCK FREQUENCY DIVISION

8.6 Reference Clock Output

In addition to the CLKO output (Fosc/2) available in certain oscillator modes, the device clock in the PIC24FJ256DA210 family devices can also be configured to provide a reference clock output signal to a port pin. This feature is available in all oscillator configurations and allows the user to select a greater range of clock submultiples to drive external devices in the application.

This reference clock output is controlled by the REFOCON register (Register 8-5). Setting the ROEN bit (REFOCON<15>) makes the clock signal available on the REFO pin. The RODIV bits (REFOCON<11:8>) enable the selection of 16 different clock divider options.

The ROSSLP and ROSEL bits (REFOCON<13:12>) control the availability of the reference output during Sleep mode. The ROSEL bit determines if the oscillator on OSCI and OSCO, or the current system clock source, is used for the reference clock output. The ROSSLP bit determines if the reference source is available on REFO when the device is in Sleep mode.

To use the reference clock output in Sleep mode, both the ROSSLP and ROSEL bits must be set. The device clock must also be configured for one of the primary modes (EC, HS or XT); otherwise, if the POSCEN bit is not also set, the oscillator on OSCI and OSCO will be powered down when the device enters Sleep mode. Clearing the ROSEL bit allows the reference output frequency to change as the system clock changes during any clock switches.

10.4.6 PERIPHERAL PIN SELECT REGISTERS

The PIC24FJ256DA210 family of devices implements a total of 37 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (21)
- Output Remappable Peripheral Registers (16)

Note: Input and output register values can only be changed if IOLOCK (OSCCON<6>) = 0. See Section 10.4.4.1 "Control Register Lock" for a specific command sequence.

REGISTER 10-8: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

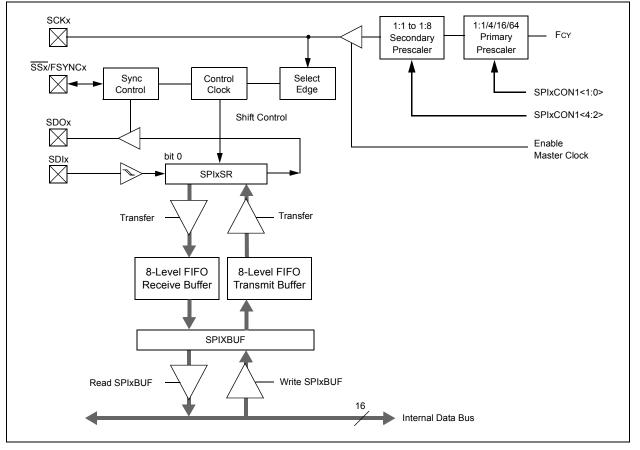
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	INT1R5	INT1R4	INT1R3	INT1R2	INT1R1	INT1R0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	-	—	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	iown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT1R<5:0>: Assign External Interrupt 1 (INT1) to Corresponding RPn or RPIn Pin bits
bit 7-0	Unimplemented: Read as '0'

REGISTER 10-9: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	INT3R5	INT3R4	INT3R3	INT3R2	INT3R1	INT3R0
bit 15						·	bit
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	INT2R5	INT2R4	INT2R3	INT2R2	INT2R1	INT2R0
bit 7		·					bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	INT3R<5:0>: Assign External Interrupt 3 (INT3) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	INT2R<5:0>: Assign External Interrupt 2 (INT2) to Corresponding RPn or RPIn Pin bits


To set up the SPI module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Enhanced Buffer Slave mode of operation:

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (4 BRG clock cycles per bit)
 - 0 = Standard-Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

18.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement to the USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power-down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

18.6.3 **EXTERNAL VBUS COMPARATORS**

The external VBUS comparator option is enabled by setting the UVCMPDIS bit (U1CNFG2<1>). This disables the internal VBUS comparators, removing the need to attach VBUS to the microcontroller's VBUS pin.

The external comparator interface uses either the VCMPST1 and VCMPST2 pins, or the VBUSVLD, SESSVLD and SESSEND pins, based upon the setting of the UVCMPSEL bit (U1CNFG2<5>). These pins are digital inputs and should be set in the following patterns (see Table 18-3), based on the current level of the VBUS voltage.

EXTERNAL VBUS COMPARATOR STATES TABLE 18-3:

lf U\	CMPSEL = 0

VCMPST1	VCMPST2	Bus Condition				
0	0	VBUS < VB_SESS_END				
1	0	VB_SESS_END < VBUS < VA_SESS_VLD				
0	1	VA_SESS_VLD < VBUS < VA_VBUS_VLD				
1	1	VBUS > VBUS_VLD				

IF UVCMPSEL = 1

VBUSVLD	SESSVLD	SESSEND	Bus Condition						
0	0	1	VBUS < VB_SESS_END						
0	0	0	VB_SESS_END < VBUS < VA_SESS_VLD						
0	1	0	VA_SESS_VLD < VBUS < VA_VBUS_VLD						
1	1	0	VBUS > VBUS_VLD						

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
PMPEN		PSIDL	ADRMUX1	ADRMUX0	—	MODE1	MODE0
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
CSF1	CSF0	ALP	ALMODE		BUSKEEP	IRQM1	IRQM0
bit 7	0010	,	, LINODE		DUCINELI	in equilit	bit (
Legend:							
R = Readabl	e bit	W = Writable	e bit	U = Unimplem	ented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15	PMPEN: Par 1 = EPMP is 0 = EPMP is		ort Enable bit				
bit 14	Unimpleme	nted: Read as	· '0'				
bit 13	PSIDL: Stop	in Idle Mode I	bit				
			peration when de		mode		
			ation in Idle mod				
bit 12-11			Data Multiplexing				
	10 = Lower 01 = Lower	address bits a address bits a	re multiplexed w re multiplexed w re multiplexed w pear on separate	ith data bits usir ith data bits usir	ng 2 address p	hases	
bit 10	Unimpleme	nted: Read as	· '0'				
bit 9-8	MODE<1:0>	: Parallel Port	Mode Select bits	6			
	01 = Buffere 00 = Legacy	ced PSP; pins ed PSP; pins u / Parallel Slav	used are PMRD ised are PMRD, e Port; PMRD, P	PMWR, PMCS	and PMD<7:0	>	
bit 7-6	CSF<1:0>: (Chip Select Fu	nction bits				
	01 = PMA<	15> used for C 15> used for C	Chip Select 2, PN Chip Select 2, PN p Select 2, PMC	ICS1 used for C	hip Select 1		
bit 5	ALP: Addres	s Latch Polari	ty bit				
			MALH and PMA				
bit 4	ALMODE: A	ddress Latch	Strobe Mode bit				
	cause a		ss strobes (each ess in the latch tl ss strobes	-	• •	t if the current	access woul
bit 3	Unimpleme	nted: Read as	· '0'				
bit 2	BUSKEEP:	Bus Keeper bi	t				
			t value when not pedance state wi				
oit 1-0	IRQM<1:0>:	Interrupt Req	uest Mode bits				
		read or write	when Read Buffer				

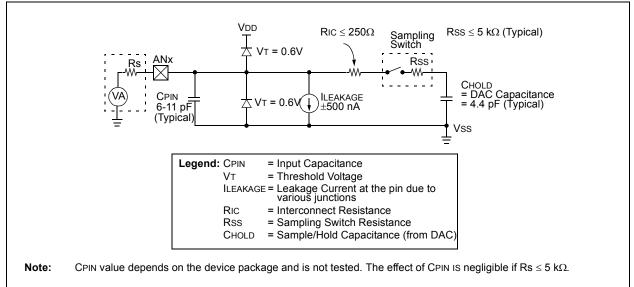
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
—	—	—	—	—	_	DPPINOE	DPPOWER				
oit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
DPCLKPOL	DPENPOL	DPVSPOL	DPHSPOL	DPPWROE	DPENOE	DPVSOE	DPHSOE				
bit 7		DIVOIOL	DITIOL		DI LINOL	DIVSOL	bit				
Legend:											
R = Readable	bit	W = Writable bit		U = Unimple	mented bit, re	ead as '0'					
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known				
bit 15-10	Unimplemen	ted: Read as '0'									
bit 9	-	isplay Pin Output P	ad Enable bit								
	DPPINOE is	the master outp	ut enable and			GDBEN<15:0	>, DPENOE				
		DPVSOE and DPH	SOE to enable	the associated	d pads						
		lisplay output pads display output signa	als as set by G[DBEN<15:0>							
	Pins used by	 Disable display output signals as set by GDBEN<15:0> Pins used by the signals are assigned to the next enabled module that uses the same pins. 									
	For data sign	als, GDBEN<15:0> set	can be used to	o disable or en	able specific	data signals	while				
bit 8		Display Power-up F	Power-Down Se	equencer Cont	trol bit						
	Refer to the "PIC24F Family Reference Manual", Section 43. "Graphics Controller Module (GFX)"										
	for details. 1 = Set Display Power Sequencer Control port (GPWR) to '1'										
		er Control Sequence									
bit 7	DPCLKPOL:	Display Glass Cloo	ck (GCLK) Pola	rity bit							
		atches data on the									
h : h O		atches data on the									
bit 6		Display Enable Sign		-							
	For TFT mode (DPMODE (G1CON2<2:0>) = 001): 1 = Active-high (GEN)										
	$0 = \text{Active-low}(\overline{\text{GEN}})$										
	For STN mode (DPMODE (G1CON2<2:0>) = 010 or 011): 1 = GEN connects to the shift clock input of the display (Shift Clock mode)										
		inects to the MOD i				,					
bit 5	DPVSPOL: Display Vertical Synchronization (VSYNC) Polarity bit										
	1 = Active-hi										
hit 1	0 = Active-lo	()	which reprize tion		arity bit						
bit 4	DPHSPOL: Display Horizontal Synchronization (HSYNC) Polarity bit 1 = Active-high (HSYNC)										
	0 = Active-loc										
bit 3	DPPWROE:	Display Power-up/F	Power-Down Se	equencer Cont	rol port (GPV	VR) enable b	it				
		ort is enabled (pin ort is disabled (pin			·	3<8>))					
bit 2	-	splay Enable Port E		s an orunnary h							
	1 = GEN por										

23.0 10-BIT HIGH-SPEED A/D CONVERTER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 17. "10-Bit A/D Converter" (DS39705). The information in this data sheet supersedes the information in the FRM.

The 10-bit A/D Converter has the following key features:

- · Successive Approximation (SAR) conversion
- · Conversion speeds of up to 500 ksps
- 24 analog input pins (PIC24FJXXXDAX10 devices) and 16 analog input pins (PIC24FJXXXDAX06 devices)
- External voltage reference input pins
- Internal band gap reference inputs
- · Automatic Channel Scan mode
- · Selectable conversion trigger source
- 32-word conversion result buffer
- · Selectable Buffer Fill modes
- · Four result alignment options
- · Operation during CPU Sleep and Idle modes


On all PIC24FJ256DA210 family devices, the 10-bit A/D Converter has 24 analog input pins, designated AN0 through AN23. In addition, there are two analog input pins for external voltage reference connections (VREF+ and VREF-). These voltage reference inputs may be shared with other analog input pins.

A block diagram of the A/D Converter is shown in Figure 23-1.

To perform an A/D conversion:

- 1. Configure the A/D module:
 - Configure the port pins as analog inputs and/or select band gap reference inputs (ANCFG registers).
 - b) Select the voltage reference source to match the expected range on analog inputs (AD1CON2<15:13>).
 - c) Select the analog conversion clock to match the desired data rate with the processor clock (AD1CON3<7:0>).
 - d) Select the appropriate sample/conversion sequence (AD1CON1<7:5> and AD1CON3<12:8>).
 - e) Select how the conversion results are presented in the buffer (AD1CON1<9:8>).
 - f) Select the interrupt rate (AD1CON2<6:2>).
 - g) Turn on the A/D module (AD1CON1<15>).
- 2. Configure the A/D interrupt (if required):
 - a) Clear the AD1IF bit.
 - b) Select the A/D interrupt priority.

27.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "*PIC24F Family Reference Manual*". The information in this data sheet supersedes the information in the FRMs.
 - Section 9. "Watchdog Timer (WDT)" (DS39697)
 - Section 32. "High-Level Device Integration" (DS39719)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FJ256DA210 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™]
- In-Circuit Emulation

27.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 27-1 through Register 27-6.

Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFFh) which can only be accessed using table reads and table writes.

27.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256DA210 FAMILY DEVICES

In PIC24FJ256DA210 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 27-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 27-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256DA210 FAMILY DEVICES

Device	Configuration Word Addresses						
Device	1	2	3	4			
PIC24FJ128DAXXX	157FEh	157FCh	157FAh	157F8h			
PIC24FJ256DAXXX	2ABFEh	2ABFCh	2ABFAh	2ABF8h			

U-0

R FAMID0

R

bit 16

bit 8

REGISTER 2	7-5: DEVI	D: DEVICE ID	REGISTER				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	—	
bit 23		•	•		•	•	
R	R	R	R	R	R	R	
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	Γ
bit 15		•	•			•	
R	R	R	R	R	R	R	
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	Γ

DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Readable bit	U = Unim	plemented bit

bit 23-16	Unimplemented: Read as '1'
-----------	----------------------------

- bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 01000001 = PIC24FJ256DA210 family
- bit 7-0 **DEV<7:0>:** Individual Device Identifier bits 00001000 = PIC24FJ128DA206 00001001 = PIC24FJ128DA106 00001010 = PIC24FJ128DA210 00001011 = PIC24FJ128DA110 00001100 = PIC24FJ256DA206 00001101 = PIC24FJ256DA106 00001110 = PIC24FJ256DA210 00001111 = PIC24FJ256DA110

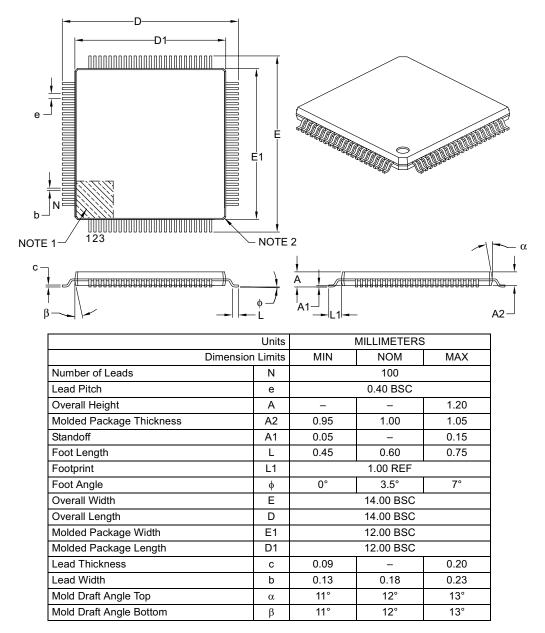

AC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$				
Param No.	Sympol Characteristic			Тур	Max.	Units	Conditions
		Cloc	k Parame	ters			
AD50	Tad	ADC Clock Period	75	—	—	ns	Tcy = 75 ns, AD1CON3 in default state
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	
		Con	version R	ate			
AD55	tCONV	Conversion Time	_	12	_	Tad	
AD56	FCNV	Throughput Rate	—		500	ksps	AVDD > 2.7V
AD57	tSAMP	Sample Time	—	1	—	Tad	
		Cloc	k Parame	ters			
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	—	3	Tad	

TABLE 30-20: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-100B

NOTES: