

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (43K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj128da210t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

				has t		
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
CN40	_	92	B5	1	ST	
CN41	_	28	L2	I	ST	
CN42	_	29	K3	Ι	ST	
CN43	_	66	E11	I	ST	
CN44	_	67	E8	I	ST	
CN45	—	6	D1	I	ST	
CN46	—	7	E4	I	ST	
CN47	_	8	E2	Ι	ST	
CN48	—	9	E1	I	ST	
CN49	46	72	D9	Ι	ST	
CN50	49	76	A11	Ι	ST	
CN51	50	77	A10	Ι	ST	
CN52	51	78	B9	Ι	ST	
CN53	42	68	E9	Ι	ST	
CN54	43	69	E10	Ι	ST	
CN55	44	70	D11	Ι	ST	
CN56	45	71	C11	Ι	ST	
CN57	—	79	A9	Ι	ST	
CN58	60	93	A4	Т	ST	
CN59	61	94	B4	Т	ST	Interrunt on Change Inpute
CN60	62	98	B3	Ι	ST	interrupt-on-oriange inputs.
CN61	63	99	A2	Ι	ST	
CN62	64	100	A1	Ι	ST	
CN63	1	3	D3	Ι	ST	
CN64	2	4	C1	Ι	ST	
CN65	3	5	D2	Ι	ST	
CN66	—	18	G1	Ι	ST	
CN67	—	19	G2	Ι	ST	
CN68	58	87	B6	Ι	ST	
CN69	59	88	A6	I	ST	
CN70	_	52	K11	I	ST	
CN71	33	51	K10	Ι	ST	
CN73	_	54	H8	I	ST	
CN74	—	53	J10	Ι	ST	
CN75	_	40	K6	I	ST	
CN76	—	39	L6	I	ST	
CN77	—	90	A5	Ι	ST	
CN78	—	89	E6	Ι	ST	
CN79	—	96	C3	Ι	ST	
CN80	—	97	A3	Ι	ST	
Legend:	TTL = TTL inp ANA = Analog	ut buffer level input/out	put		ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-3: PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with $PIC^{\textcircled{O}}$ MCUs and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a zero-extend (\mathbb{ZE}) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-4 throughTable 4-34.

	SFR Space Address												
	xx00	xx20	xx40	xx60	хх	80	xxA0	A0 xxC0 xxE0					
000h		Core		ICN			Inter	Interrupts					
100h	Tim	iers	Capture Compare										
200h	l ² C™	UART	SPI/UART	SPI/I ² C	S	SPI UART I/O			0				
300h		ADC/CTMU		_	_	-	_	_	_				
400h	-	_	_	_			USB		ANSEL				
500h	—		—	—	_	-		_					
600h	EPMP	RTC/Comp	CRC	_			PPS						
700h	GFX Co	ontroller	System	NVM/PMD	'M/PMD — — —								

 TABLE 4-3:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

TABLE	4-9:	OU	ГРОТ С	OMPA	RE REG	ISTER	MAP											
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0190	_	-	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC1CON2	0192	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC1RS	0194								Output Comp	are 1 Seconda	ary Register							0000
OC1R	0196								Output	Compare 1 Re	gister							0000
OC1TMR	0198								Output Compa	are 1 Timer Va	lue Register							XXXX
OC2CON1	019A	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC2CON2	019C	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC2RS	019E								Output Comp	are 2 Seconda	ary Register							0000
OC2R	01A0								Output	Compare 2 Re	gister							0000
OC2TMR	01A2								Output Compa	are 2 Timer Va	lue Register							xxxx
OC3CON1	01A4	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC3CON2	01A6	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC3RS	01A8								Output Comp	are 3 Seconda	ary Register							0000
OC3R	01AA		Output Compare 3 Register 000									0000						
OC3TMR	01AC								Output Compa	are 3 Timer Va	lue Register							XXXX
OC4CON1	01AE	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC4CON2	01B0	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC4RS	01B2								Output Comp	are 4 Seconda	ary Register							0000
OC4R	01B4								Output	Compare 4 Re	gister							0000
OC4TMR	01B6								Output Compa	are 4 Timer Va	lue Register							xxxx
OC5CON1	01B8	_	—	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT1	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC5CON2	01BA	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC5RS	01BC								Output Comp	are 5 Seconda	ary Register							0000
OC5R	01BE								Output	Compare 5 Re	gister							0000
OC5TMR	01C0								Output Compa	are 5 Timer Va	lue Register							xxxx
OC6CON1	01C2	_	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC6CON2	01C4	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC6RS	01C6								Output Comp	are 6 Seconda	ary Register							0000
OC6R	01C8	Output Compare 6 Register 0000								0000								
OC6TMR	01CA								Output Compa	are 6 Timer Va	lue Register							xxxx
OC7CON1	01CC	—	_	OCSIDL	OCTSEL2	OCTSEL1	OCTSEL0	ENFLT2	ENFLT1	ENFLT0	OCFLT2	OCFLT1	OCFLT0	TRIGMODE	OCM2	OCM1	OCM0	0000
OC7CON2	01CE	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB1	DCB0	OC32	OCTRIG	TRIGSTAT	OCTRIS	SYNCSEL4	SYNCSEL3	SYNCSEL2	SYNCSEL1	SYNCSEL0	000C
OC7RS	01D0								Output Comp	are 7 Seconda	ary Register							0000
OC7R	01D2								Output	Compare 7 Re	gister							0000
OC7TMR	01D4								Output Compa	are 7 Timer Va	lue Register							xxxx

DS39969B-page 55

TABLE 4-26: ENHANCED PARALLEL MASTER/SLAVE PORT REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMCON1	0600	PMPEN	—	PSIDL	ADRMUX1	ADRMUX0	—	MODE1	MODE0	CSF1	CSF0	ALP	ALMODE	—	BUSKEEP	IRQM1	IRQM0	0000
PMCON2	0602	BUSY	_	ERROR	TIMEOUT	AMREQ	CURMST	MSTSEL1	MSTSEL0	RADDR23	RADDR22	RADDR21	RADDR20	RADDR19	RADDR18	RADDR17	RADDR16	0000
PMCON3	0604	PTWREN	PTRDEN	PTBE1EN	PTBE0EN	_	AWAITM1	AWAITM0	AWAITE	_	PTEN22	PTEN21	PTEN20	PTEN19	PTEN18	PTEN17	PTEN16	0000
PMCON4	0606	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0	0000
PMCS1CF	0608	CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM	ACKP	PTSZ1	PTSZ0		_	—	_	—	0000
PMCS1BS	060A	BASE23	BASE22	BASE21	BASE20	BASE19	BASE18	BASE17	BASE16	BASE15	_	_		BASE11	—	_	—	0200
PMCS1MD	060C	ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	_	_	_	DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0	0000
PMCS2CF	060E	CSDIS	CSP	CSPTEN	BEP	_	WRSP	RDSP	SM	ACKP	PTSZ1	PTSZ0		_	—	_	—	0000
PMCS2BS	0610	BASE23	BASE22	BASE21	BASE20	BASE19	BASE18	BASE17	BASE16	BASE15	_	-	-	BASE11	—	_	—	0600
PMCS2MD	0612	ACKM1	ACKM0	AMWAIT2	AMWAIT1	AMWAIT0	_	_	_	DWAITB1	DWAITB0	DWAITM3	DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0	0000
PMDOUT1	0614			EF	PMP Data Out	Register 1<15:	8>					EP	MP Data Out	Register 1<	7:0>			xxxx
PMDOUT2	0616			EF	PMP Data Out	Register 2<15:	8>					EP	MP Data Out	Register 2<	7:0>			xxxx
PMDIN1	0618	B EPMP Data In Register 1<15:8>										El	PMP Data In	Register 1<7	:0>			xxxx
PMDIN2	061A	1A EPMP Data In Register 2<15:8>								EPMP Data In Register 2<7:0>							xxxx	
PMSTAT	061C	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008F

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Unimplemented in 64-pin devices, read as '0'.

TABLE 4-27: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window Based on ALRMPTR<1:0> xxxx															
ALCFGRPT	0622	ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	0000
RTCVAL	0624		RTCC Value Register Window Based on RTCPTR<1:0> xxxx									xxxx						
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPTR1	RTCPTR0	CAL7	CAL6	CAL5	CAL4	CAL3	CAL2	CAL1	CAL0	(Note 1

 Legend:
 - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 The status of the RCFGCAL register on POR is '0000' and on other Resets is unchanged.

NOTES:

REGISTER 10-1: ANSA: PORTA ANALOG FUNCTION SELECTION REGISTER⁽¹⁾

D A A A	D 444 4						
bit 15		·					bit 8
_	—	_		_	ANSA10	ANSA9	_
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	U-0

R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSA7	ANSA6	—	—	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'	
--------------------------------------	--

bit 10-9	ANSA<10:9>: Analog Function Selection bits
	1 = Pin is configured in Analog mode; I/O port read is disabled
	0 = Pin is conligured in Digital mode, i/O port read is enabled
bit 8	Unimplemented: Read as '0'
bit 7-6	ANSA<7:6>: Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 5-0	Unimplemented: Read as '0'

Note 1: This register is not available on 64-pin devices (PIC24FJXXXDAX06).

REGISTER 10-24: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-25: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-35: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14	Unimplemented: Read as '0'
bit 13-8	RP13R<5:0>: RP13 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP13 (see Table 10-4 for peripheral function numbers).
bit 7-6	Unimplemented: Read as '0'
bit 5-0	RP12R<5:0>: RP12 Output Pin Mapping bits
	Peripheral output number n is assigned to pin, RP12 (see Table 10-4 for peripheral function numbers).

REGISTER 10-36: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP15R<5:0>:** RP15 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP0 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP14R<5:0>:** RP14 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP14 (see Table 10-4 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

18.1.2.3 VBUS Voltage Generation with External Devices

When operating as a USB host, either as an A-device in an OTG configuration or as an embedded host, VBUS must be supplied to the attached device. PIC24FJ256DA210 family devices have an internal VBUS boost assist to help generate the required 5V VBUS from the available voltages on the board. This is comprised of a simple PWM output to control a Switch mode power supply, and built-in comparators to monitor output voltage and limit current.

To enable voltage generation:

- Verify that the USB module is powered (U1PWRC<0> = 1) and that the VBUS discharge is disabled (U1OTGCON<0> = 0).
- 2. Set the PWM period (U1PWMRRS<7:0>) and duty cycle (U1PWMRRS<15:8>) as required.
- 3. Select the required polarity of the output signal based on the configuration of the external circuit with the PWMPOL bit (U1PWMCON<9>).
- 4. Select the desired target voltage using the VBUSCHG bit (U1OTGCON<1>).
- 5. Enable the PWM counter by setting the CNTEN bit to '1' (U1PWMCON<8>).
- 6. Enable the PWM module by setting the PWMEN bit (U1PWMCON<15>) to '1'.
- 7. Enable the VBUS generation circuit (U10TGCON<3> = 1).
 - Note: This section describes the general process for VBUS voltage generation and control. Please refer to the "*PIC24F* Family Reference Manual" for additional examples.

18.1.3 USING AN EXTERNAL INTERFACE

Some applications may require the USB interface to be isolated from the rest of the system. PIC24FJ256DA210 family devices include a complete interface to communicate with and control an external USB transceiver, including the control of data line pull-ups and pull-downs. The VBUS voltage generation control circuit can also be configured for different VBUS generation topologies.

Refer to the "*PIC24F Family Reference Manual*", **Section 27. "USB On-The-Go (OTG)**" for information on using the external interface.

18.1.4 CALCULATING TRANSCEIVER POWER REQUIREMENTS

The USB transceiver consumes a variable amount of current depending on the characteristic impedance of the USB cable, the length of the cable, the VUSB supply voltage and the actual data patterns moving across the USB cable. Longer cables have larger capacitances and consume more total energy when switching output states. The total transceiver current consumption will be application-specific. Equation 18-1 can help estimate how much current actually may be required in full-speed applications.

Refer to the "*PIC24F Family Reference Manual*", **Section 27. "USB On-The-Go (OTG)**" for a complete discussion on transceiver power consumption.

EQUATION 18-1: ESTIMATING USB TRANSCEIVER CURRENT CONSUMPTION

 $\mathsf{IXCVR} = \frac{40 \text{ mA} \cdot \mathsf{VUSB} \cdot \mathsf{PZERO} \cdot \mathsf{PIN} \cdot \mathsf{LCABLE}}{3.3 \text{ V} \cdot 5 \text{ m}} + \mathsf{IPULLUP}$

Legend: VUSB – Voltage applied to the VUSB pin in volts (3.0V to 3.6V).

PZERO – Percentage (in decimal) of the IN traffic bits sent by the PIC[®] microcontroller that are a value of '0'.

PIN – Percentage (in decimal) of total bus bandwidth that is used for IN traffic.

LCABLE – Length (in meters) of the USB cable. The USB 2.0 Specification requires that full-speed applications use cables no longer than 5m.

IPULLUP – Current which the nominal, 1.5 k Ω pull-up resistor (when enabled) must supply to the USB cable.

USB OTG MODULE CONTROL REGISTERS 18.7.1

REGISTER 18-3: U10TGSTAT: USB OTG STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	—	—	—
bit 15							bit 8

R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC
ID	—	LSTATE	—	SESVD	SESEND	—	VBUSVD
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/C	Clearable bit			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-8	Unimplemented: Read as '0'
bit 7	ID: ID Pin State Indicator bit
	 1 = No plug is attached, or a type B cable has been plugged into the USB receptacle 0 = A type A plug has been plugged into the USB receptacle
bit 6	Unimplemented: Read as '0'
bit 5	LSTATE: Line State Stable Indicator bit
	 1 = The USB line state (as defined by SE0 and JSTATE) has been stable for the previous 1 ms 0 = The USB line state has not been stable for the previous 1 ms
bit 4	Unimplemented: Read as '0'
bit 3	SESVD: Session Valid Indicator bit
	1 = The VBUS voltage is above VA_SESS_VLD (as defined in the USB OTG Specification) on the A or B-device
	0 = The VBUS voltage is below VA_SESS_VLD on the A or B-device
bit 2	SESEND: B Session End Indicator bit
	1 = The VBUS voltage is below VB_SESS_END (as defined in the USB OTG Specification) on the B-device
	0 = The VBUS voltage is above VB_SESS_END on the B-device
bit 1	Unimplemented: Read as '0'
bit 0	VBUSVD: A VBUS Valid Indicator bit
	1 = The VBUS voltage is above VA_VBUS_VLD (as defined in the USB OTG Specification) on the A-device
	0 = The VBUS voltage is below VA_VBUS_VLD on the A-device

18.7.2 USB INTERRUPT REGISTERS

REGISTER 18-14: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/K-0, H	S R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	U-0	R/K-0, HS
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF
bit 7							bit 0
·							
Legend:		U = Unimplem	nented bit, read	d as '0'			
R = Reada	able bit	K = Write '1' to	o clear bit	HS = Hardwa	re Settable bit		
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-8	Unimplemen	ted: Read as 'd)'				
bit 7	IDIF: ID State	Change Indica	itor bit				
	1 = Change i	n ID state is de	tected				
	0 = No ID sta	te change is de	etected				
bit 6	I1MSECIF: 1	Millisecond III	mer bit				
	1 = The Tmin 0 = The 1 min	llisecond timer	has expired has not expired	d			
bit 5		ine State Stable	Indicator bit	-			
	1 = USB line	state (as define	d by the SE0 a	Ind JSTATE bits	s) has been stal	ole for 1 ms, bu	ut different from
	the last ti	me	5		,		
	0 = USB line	state has not b	een stable for	1 ms			
bit 4	ACTVIF: Bus	Activity Indicat	or bit				
	1 = Activity o 0 = No activit	n the D+/D- line ty on the D+/D-	es or VBUS is d lines or VBUS	letected is detected			
bit 3	SESVDIF: Se	ession Valid Cha	ange Indicator	bit			
	1 = VBUS has	s crossed VA_S	ESS_END (as	defined in the	USB OTG Spe	cification) ⁽¹⁾	
hit 2			R_3E33_END	tor bit			
	$1 = V_{BUS} cha$	ande on B-devi	ce detected: V	BUS has cross	ed VB_SESS	END (as defir	ned in the USB
	OTG Spe	ecification) ⁽¹⁾			cu vb_0200_		
	0 = VBUS has	s not crossed V	A_SESS_END)			
bit 1	Unimplemen	ted: Read as 'd)'				
bit 0	VBUSVDIF: A	A-Device VBUS	Change Indica	tor bit			
	1 = VBUS cha OTG Spe	ange on A-devid ecification) ⁽¹⁾	ce is detected;	VBUS has cros	sed VA_VBUS	_VLD (as defi	ned in the USB
	0 = No VBUS	change on A-d	evice is detect	ed			
Note 1:	VBUS threshold cr	rossings may b	e either rising o	or falling.			

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

REGISTER 19-6:	PMCSxBS: CH	IP SELECT x BASE	ADDRESS REGISTER

| R/W ⁽¹⁾ |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| BASE23 | BASE22 | BASE21 | BASE20 | BASE19 | BASE18 | BASE17 | BASE16 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W ⁽¹⁾ | U-0 | U-0 | U-0 | R/W ⁽¹⁾ | U-0 | U-0 | U-0 |
| BASE15 | | — | — | BASE11 | — | — | — |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Legend: | | | | | | | |
| R = Readabl | e bit | W = Writable | bit | U = Unimpler | mented bit, read | as '0' | |
| -n = Value at | POR | '1' = Bit is set | t | '0' = Bit is cle | ared | x = Bit is unkno | wn |

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽²⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 BASE<11>: Chip Select x Base Address bits⁽²⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: Value at POR is 0x0200 for PMCS1BS and 0x0600 for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip Select 1 will be 0xFFFFFF. In this case, the Chip Select 2 should not be used. PMCS1BS has no such feature.

REGISTER 22-5: G1CON3: DISPLAY CONTROL REGISTER 3									
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
	_	—	_	—	_	DPPINOE	DPPOWER		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DPCLKPOL	DPENPOL	DPVSPOL	DPHSPOL	DPPWROE	DPENOE	DPVSOE	DPHSOE		
Dit 7							DITU		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimple	mented bit, r	ead as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown		
bit 15-10 bit 9	Unimplement DPPINOE: D DPPINOE is DPPWROE, 1 = Enable of 0 = Disable Pins used by For data sign DPPINOE is	nted: Read as '0' Pisplay Pin Output Pa the master output DPVSOE and DPHS display output pads display output signal the signals are assi pals, GDBEN<15:0> set.	ad Enable bit t enable and SOE to enable s as set by GI gned to the ne can be used to	must be se the associate DBEN<15:0> ext enabled mo o disable or er	t to allow (d pads odule that use nable specific	GDBEN<15:0 es the same p data signals	>, DPENOE, ins. while		
bit 8	DPPOWER: Refer to the ' for details. 1 = Set Disp 0 = Set Pow	Display Power-up P PIC24F Family Refe lay Power Sequence er Control Sequence	ower-Down Se erence Manual er Control port er signal (GPV	equencer Cont ", Section 43. (GPWR) to '1 /R) '0'	trol bit " Graphics (,	Controller Mo	odule (GFX)"		
bit 7	DPCLKPOL : 1 = Display 0 = Display	Display Glass Clock atches data on the p atches data on the r	k (GCLK) Pola positive edge o negative edge	rity bit of GCLK of GCLK					
bit 6	 6 DPENPOL: Display Enable Signal (GEN) Polarity bit For TFT mode (DPMODE (G1CON2<2:0>) = 001): 1 = Active-high (GEN) 0 = Active-low (GEN) For STN mode (DPMODE (G1CON2<2:0>) = 010 or 011): 1 = GEN connects to the shift clock input of the display (Shift Clock mode) 								
bit 5	DPVSPOL: [1 = Active-h 0 = Active-lc	Display Vertical Sync igh <u>(Vsync)</u> w (Vsync)	hronization (V	SYNC) Polarity	bit				
bit 4	DPHSPOL: [1 = Active-h 0 = Active-lo	Display Horizontal Sy igh <u>(HSYNC)</u> w (HSYNC)	ynchronization	(HSYNC) Pol	arity bit				
bit 3	DPPWROE: 1 = GPWR p 0 = GPWR p	Display Power-up/Poort is enabled (pin coort is disabled (pin c	ower-Down Se ontrolled by th can be used as	equencer Cont le DPPOWER s an ordinary I	trol port (GP\ bit (G1CON /O)	WR) enable bi 3<8>))	t		
bit 2	DPENOE: Di 1 = GEN por 0 = GEN por	splay Enable Port E rt is enabled rt is disabled	nable bit						

REGISTER 2	2-7: G1IE:	GFX INTERF	UPT ENABL	E REGISTER	र		
R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
PUIE		_	_	_	_	_	_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IPUIE	RCCIE	CHRIE	VMRGNIE	HMRGNIE	CMDLVIE	CMDFULIE	CMDMPTIE
bit 7							bit 0
Legend:			.,				
R = Readable	bit	W = Writable t	Dit		mented bit, re	ead as '0'	
-n = Value at I	POR	1^{\prime} = Bit is set		$0^{\circ} = Bit is cle$	eared	x = Bit is unkr	nown
bit 15		ssing Units Corr	nloto Intorrunt	Enabla bit			
DIL 15	1 - Enables	the PLL complete					
	0 = Disables	the PU comple	te interrupt				
bit 14-8	Unimplemen	nted: Read as ')'				
bit 7	IPUIE: Inflate	Processing Un	it Complete Inte	errupt Enable	bit		
	1 = Enables	the IPU comple	te interrupt				
	0 = Disables	the IPU comple	ete interrupt				
bit 6	RCCIE: Rect	angle Copy Gra	phics Processi	ng Unit Compl	ete Interrupt	bit	
	1 = Enables	the RCCGPU of	omplete interru	pt			
	0 = Disables	the RCCGPU	complete interru	ıpt			
bit 5	CHRIE: Char	racter Graphics	Processing Uni	t Busy Interru	ot bit		
	1 = Enables	the CHRGPU b	usy interrupt				
hit 4		ertical Blanking	Interrunt Enab	le hit			
bit 4	1 = Enables	the vertical blanking	king period inte				
	0 = Disables	the vertical bla	nking period int	errupt			
bit 3	HMRGNIE: ⊦	lorizontal Blank	ing Interrupt En	able bit			
	1 = Enables	the horizontal b	lanking period i	interrupt			
	0 = Disables	the horizontal t	planking period	interrupt			
bit 2	CMDLVIE: C	ommand Water	mark Interrupt I	Enable bit			
	1 = Enables	the command v	vatermark interr	upt bit			
1.11.4	0 = Disables	the command	watermark inter	rupt bit			
DIT 1				=nable bit			
	1 = Enables 0 = Disables	the command l	TFO full interru	pi Int			
bit 0	CMDMPTIF:	Command FIF(C Empty Interru	pt Enable bit			
	1 = Enables	the command F	IFO empty inte	rrupt			
	0 = Disables	the command l	FIFO empty inte	errupt			

REGISTER 22-25: G1CLUT: COLOR LOOK-UP TABLE CONTROL REGISTER

R/W-0	R-0, HSC	U-0	U-0	U-0	U-0	R/W-0	R/W-0
CLUTEN	CLUTBUSY	_	_	—	_	CLUTTRD	CLUTRWEN
bit 15							bit 8

| R/W-0 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CLUTADR7 | CLUTADR6 | CLUTADR5 | CLUTADR4 | CLUTADR3 | CLUTADR2 | CLUTADR1 | CLUTADR0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	CLUTEN: Color Look-up Table Enable Control bit
	1 = Color look-up table is enabled
	0 = Color look-up table is disabled
bit 14	CLUTBUSY: Color Look-up Table Busy Status bit
	1 = A CLUT entry read/write access is being executed
	0 = No CLUT entry read/write access is being executed
bit 13-10	Unimplemented: Read as '0'
bit 9	CLUTTRD: Color Look-up Table Read Trigger bit
	Enabling this bit will trigger a read to the CLUT location determined by the CLUTADR bits (G1CLUT<7:0>) with CLUTRWEN enabled.
	 1 = CLUT read trigger is enabled (must be cleared in software after reading data in the G1CLUTRD register)
	0 = CLUT read trigger is disabled
bit 8	CLUTRWEN: Color Look-up Table Read/Write Enable Control bit
	This bit must be set when reading or modifying entries on the CLUT and it must also be cleared when CLUT is used by the display controller.
	 1 = Color look-up table read/write enabled; display controller cannot access the CLUT 0 = Color look-up table read/write disabled; display controller can access the CLUT
bit 7-0	CLUTADR<7:0>: Color Look-up Table Memory Address bits

REGISTER 23-5: ANCFG: A/D BAND GAP REFERENCE CONFIGURATION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_		—	_			_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	—		VBG6EN	VBG2EN	VBGEN
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3	Unimplemented: Read as '0'
bit 2	VBG6EN: A/D Input VBG/6 Enable bit
	 1 = Band gap voltage divided-by-six reference (VBG/6) is enabled 0 = Band gap divided-by-six reference (VBG/6) is disabled
bit 1	VBG2EN: A/D Input VBG/2 Enable bit
	 1 = Band gap voltage divided-by-two reference (VBG/2) is enabled 0 = Band gap divided-by-two reference (VBG/2) is disabled
bit 0	VBGEN: A/D Input VBG Enable bit
	1 = Band gap voltage reference (VBG) is enabled0 = Band gap reference (VBG) is disabled

REGISTER 23-6: AD1CSSL: A/D INPUT SCAN SELECT REGISTER (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL15	CSSL14	CSSL13	CSSL12	CSSL11	CSSL10	CSSL9	CSSL8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSSL7	CSSL6	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

- CSSL<15:0>: A/D Input Pin Scan Selection bits
- 1 = Corresponding analog channel is selected for input scan
- 0 = Analog channel is omitted from input scan

REGISTER 27-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed
- bit 3-2 Reserved: Always maintain as '1'
- bit 1-0 **POSCMD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = EC Oscillator mode is selected

REGISTER 27-3: CW3: FLASH CONFIGURATION WORD 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WPEND	WPCFG	WPDIS	ALTPMP ⁽¹⁾	WUTSEL1	WUTSEL0	SOSCSEL1	SOSCSEL0
bit 15	•					•	bit 8

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| WPFP7 | WPFP6 | WPFP5 | WPFP4 | WPFP3 | WPFP2 | WPFP1 | WPFP0 |
| bit 7 | | | | | | | bit 0 |

Legend:	PO = Program-Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	WPEND: Segment Write Protection End Page Select bit
	1 = Protected code segment upper boundary is at the last page of program memory; the lower boundary is the code page specified by WPFP<7:0>
	 0 = Protected code segment lower boundary is at the bottom of the program memory (000000h); upper boundary is the code page specified by WPFP<7:0>
bit 14	WPCFG: Configuration Word Code Page Write Protection Select bit
	 1 = Last page (at the top of program memory) and Flash Configuration Words are not write-protected⁽³⁾ 0 = Last page and Flash Configuration Words are write-protected, provided WPDIS = '0'
bit 13	WPDIS: Segment Write Protection Disable bit
	1 = Segmented code protection is disabled
	 0 = Segmented code protection is enabled; protected segment is defined by the WPEND, WPCFG and WPFPx Configuration bits
bit 12	ALTPMP: Alternate EPMP Pin Mapping bit ⁽¹⁾
	 1 = EPMP pins are in default location mode 0 = EPMP pins are in alternate location mode
Note 1:	Unimplemented in 64-pin devices, maintain at '1'.
2:	Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-1.
3:	Regardless of WPCFG status, if WPEND = 1 or if WPFP corresponds to the Configuration Word's page, the Configuration Word's page is protected.

28.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

28.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

28.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
ADD	ADD	f	f = f + WREG	1	1	C, DC, N, OV, Z
	ADD	f,WREG	WREG = f + WREG	1	1	C, DC, N, OV, Z
	ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C, DC, N, OV, Z
	ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C, DC, N, OV, Z
	ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C, DC, N, OV, Z
ADDC	ADDC	f	f = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C, DC, N, OV, Z
	ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C, DC, N, OV, Z
	ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C, DC, N, OV, Z
AND	AND	f	f = f .AND. WREG	1	1	N, Z
	AND	f,WREG	WREG = f .AND. WREG	1	1	N, Z
	AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N, Z
	AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N, Z
	AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N, Z
ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C, N, OV, Z
	ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C, N, OV, Z
	ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N, Z
	ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N, Z
BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
	BRA	GE, Expr	Branch if Greater than or Equal	1	1 (2)	None
	BRA	GEU, Expr	Branch if Unsigned Greater than or Equal	1	1 (2)	None
	BRA	GT,Expr	Branch if Greater than	1	1 (2)	None
	BRA	GTU, Expr	Branch if Unsigned Greater than	1	1 (2)	None
	BRA	LE,Expr	Branch if Less than or Equal	1	1 (2)	None
	BRA	LEU,Expr	Branch if Unsigned Less than or Equal	1	1 (2)	None
	BRA	LT,Expr	Branch if Less than	1	1 (2)	None
	BRA	LTU, Expr	Branch if Unsigned Less than	1	1 (2)	None
	BRA	N,Expr	Branch if Negative	1	1 (2)	None
	BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
	BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
	BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
	BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
	BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
	BRA	Expr	Branch Unconditionally	1	2	None
	BRA	Z,Expr	Branch if Zero	1	1 (2)	None
	BRA	Wn	Computed Branch	1	2	None
BSET	BSET	f,#bit4	Bit Set f	1	1	None
	BSET	Ws,#bit4	Bit Set Ws	1	1	None
BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1	None
					(2 or 3)	
	BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None

TABLE 29-2:	INSTRUCTION SET	OVERVIEW