

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-VQFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256da106-i-mr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number			Innut					
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description			
CN0	48	74	B11	I	ST				
CN1	47	73	C10	Ι	ST				
CN2	16	25	K2	I	ST				
CN3	15	24	K1	Ι	ST				
CN4	14	23	J2	I	ST				
CN5	13	22	J1	I	ST				
CN6	12	21	H2	Ι	ST				
CN7	11	20	H1	Ι	ST				
CN8	4	10	E3	Ι	ST				
CN9	5	11	F4	Ι	ST				
CN10	6	12	F2	Ι	ST				
CN11	8	14	F3	Ι	ST				
CN12	30	44	L8	I	ST				
CN13	52	81	C8	Ι	ST				
CN14	53	82	B8	Ι	ST				
CN15	54	83	D7	I	ST				
CN16	55	84	C7	Ι	ST				
CN17	31	49	L10	Ι	ST				
CN18	32	50	L11	I	ST				
CN19	—	80	D8	I	ST	Interrunt-on-Change Incute			
CN20	—	47	L9	Ι	ST	interrupt-on-onlange inputs.			
CN21	—	48	K9	Ι	ST				
CN22	40	64	F11	Ι	ST				
CN23	39	63	F9	Ι	ST				
CN24	17	26	L1	I	ST				
CN25	18	27	J3	I	ST				
CN26	21	32	K4	I	ST				
CN27	22	33	L4	Ι	ST				
CN28	23	34	L5	Ι	ST				
CN29	24	35	J5	I	ST				
CN30	27	41	J7	Ι	ST				
CN31	28	42	L7	Ι	ST				
CN32	29	43	K7	Ι	ST				
CN33	—	17	G3	Ι	ST				
CN34	—	38	J6	I	ST				
CN35	—	58	H11	I	ST				
CN36	—	59	G10	I	ST				
CN37	—	60	G11	Ι	ST				
CN38	—	61	G9	I	ST				
CN39	—	91	C5	I	ST				
Legend:	Legend:TTL = TTL input bufferST = Schmitt Trigger input bufferANA = Analog level input/output $l^2 C^{TM} = l^2 C/SMBus$ input buffer								

TABLE 1-3: PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0 > = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

	Pin Number			has t						
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description				
CN40	_	92	B5	1	ST					
CN41	_	28	L2	I	ST					
CN42	_	29	K3	Ι	ST					
CN43	_	66	E11	I	ST					
CN44	_	67	E8	I	ST					
CN45	—	6	D1	I	ST					
CN46	—	7	E4	I	ST					
CN47	_	8	E2	Ι	ST					
CN48	—	9	E1	I	ST					
CN49	46	72	D9	Ι	ST					
CN50	49	76	A11	Ι	ST					
CN51	50	77	A10	Ι	ST					
CN52	51	78	B9	Ι	ST					
CN53	42	68	E9	Ι	ST					
CN54	43	69	E10	Ι	ST					
CN55	44	70	D11	Ι	ST					
CN56	45	71	C11	Ι	ST					
CN57	—	79	A9	Ι	ST					
CN58	60	93	A4	Т	ST					
CN59	61	94	B4	Т	ST	Interrunt on Change Inpute				
CN60	62	98	B3	Ι	ST	interrupt-on-oriange inputs.				
CN61	63	99	A2	Ι	ST					
CN62	64	100	A1	Ι	ST					
CN63	1	3	D3	Ι	ST					
CN64	2	4	C1	Ι	ST					
CN65	3	5	D2	Ι	ST					
CN66	—	18	G1	Ι	ST					
CN67	—	19	G2	Ι	ST					
CN68	58	87	B6	Ι	ST					
CN69	59	88	A6	I	ST					
CN70	_	52	K11	I	ST					
CN71	33	51	K10	Ι	ST					
CN73	_	54	H8	I	ST					
CN74	—	53	J10	Ι	ST					
CN75	_	40	K6	I	ST					
CN76	—	39	L6	I	ST					
CN77	—	90	A5	Ι	ST					
CN78	—	89	E6	Ι	ST					
CN79	—	96	C3	Ι	ST					
CN80	—	97	A3	I	ST					
Legend:	Legend:TTL = TTL input bufferST = Schmitt Trigger input bufferANA = Analog level input/output $l^2C^{TM} = l^2C/SMBus$ input buffer									

TABLE 1-3: PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.
4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with $PIC^{\textcircled{O}}$ MCUs and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a zero-extend (\mathbb{ZE}) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-4 throughTable 4-34.

SFR Space Address									
	xx00	xx20	xx40	xx60	хх	80	xxA0	xxC0	xxE0
000h	Core		ICN	Interrupts					
100h	Tim	iers	Capture Compare						
200h	l ² C™	UART	SPI/UART	SPI/I ² C	SPI/I ² C SPI		UART	I/O	
300h		ADC/CTMU				-	_	_	_
400h	-	_	_	_			USB		ANSEL
500h	_		—	—				_	
600h	EPMP	RTC/Comp	CRC	_	- PPS				
700h	GFX Co	ontroller	System	NVM/PMD	_	_	_		

 TABLE 4-3:
 IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

4.2.5.1 Data Read from EDS Space

In order to read the data from the EDS space, first, an Address Pointer is set up by loading the required EDS page number into the DSRPAG register and assigning the offset address to one of the W registers. Once the above assignment is done, the EDS window is enabled by setting bit 15 of the working register, assigned with the offset address; then, the contents of the pointed EDS location can be read.

Figure 4-5 illustrates how the EDS space address is generated for read operations.

FIGURE 4-5: EDS ADDRESS GENERATION FOR READ OPERATIONS

When the Most Significant bit (MSBs) of EA is '1' and DSRPAG<9> = 0, the lower 9 bits of DSRPAG are concatenated to the lower 15 bits of EA to form a 24-bit EDS space address for read operations.

Example 4-1 shows how to read a byte, word and double-word from EDS.

Note:	All read operations from EDS space have							
	an overhead of one instruction cycle.							
	Therefore, a minimum of two instruction							
	cycles is required to complete an EDS							
	read. EDS reads under the REPEAT							
	instruction; the first two accesses take							
	three cycles and the subsequent							
	accesses take one cycle.							

EXAMPLE 4-1: EDS READ CODE IN ASSEMBLY

```
; Set the EDS page from where the data to be read
              #0x0002 , w0
   mov
              w0 , DSRPAG
                             ;page 2 is selected for read
   mov
   mov
              \#0x0800 , w1 ;select the location (0x800) to be read
bset
          wl , #15
                         ;set the MSB of the base address, enable EDS mode
;Read a byte from the selected location
   mov.b
            [w1++] , w2 ;read Low byte
   mov.b
              [w1++] , w3 ;read High byte
;Read a word from the selected location
              [w1] , w2
   mov
                           ;
;Read Double - word from the selected location
   mov.d
              [w1] , w2
                             ;two word read, stored in w2 and w3
```

REGISTER 7-10: IFS5: INTERRUPT FLAG STATUS REGISTER 5

U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	
		IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	
bit 15		11					bit 8	
R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0	
U4ERIF	USB1IF	MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF		
bit 7							bit 0	
Logondu		US - Hardwar	o Cottoblo bit					
R = Readable	a bit	W = Writable k	it	II = I Inimplen	nented hit rear	1 26 'N'		
-n = Value at	POR	'1' = Rit is set	Л	$0^{\circ} = \text{Bit is clear}$	ared	x = Rit is unkr	lown	
n value at								
bit 15-14	Unimplement	ted: Read as '0	3					
bit 13	IC9IF: Input C	Capture Channe	l 9 Interrupt Fl	ag Status bit				
	1 = Interrupt	request has occ	curred					
	0 = Interrupt	request has not	occurred					
bit 12	OC9IF: Outpu	It Compare Cha	annel 9 Interru	pt Flag Status I	bit			
	1 = Interrupt 0 = Interrupt	request has occ request has not	occurred					
bit 11	SPI3IF: SPI3	Event Interrupt	Flag Status bi	t				
	1 = Interrupt	request has occ	curred					
	0 = Interrupt	request has not	occurred					
bit 10	SPF3IF: SPI3	Fault Interrupt	Flag Status bi	t				
	1 = Interrupt	request has occ	curred					
hit Q		T4 Transmitter	Interrunt Flag	Statue bit				
bit 9		request has oc	curred	Status bit				
	0 = Interrupt	request has not	occurred					
bit 8	U4RXIF: UAR	RT4 Receiver In	terrupt Flag St	atus bit				
	1 = Interrupt	request has occ	curred					
h:+ 7		request has not	COCCURRED	- I- :4				
DIT /		U4ERIF: UART4 Error Interrupt Flag Status bit						
	0 = Interrupt	request has not	occurred					
bit 6	USB1IF: USB	81 (USB OTG) I	nterrupt Flag S	Status bit				
	1 = Interrupt	request has occ	curred					
	0 = Interrupt	request has not	occurred					
bit 5	MI2C3IF: Mas	ster I2C3 Event	Interrupt Flag	Status bit				
	1 = Interrupt 0 = Interrupt	request has occ request has not	curred					
bit 4	SI2C3IF: Slav	/e I2C3 Event Ir	nterrupt Flag S	status bit				
	1 = Interrupt	request has occ	curred					
	0 = Interrupt	request has not	occurred					
bit 3	U3TXIF: UAR	T3 Transmitter	Interrupt Flag	Status bit				
	1 = Interrupt	request has occ	curred					
hit 2		T3 Receiver In		atus hit				
	1 = Interrunt	request has on	curred	alus bil				
	0 = Interrupt	request has not	occurred					

REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER (CONTINUED)

bit 5	PLLEN: 96 MHz PLL Enable bit
	The 96 MHz PLL must be enabled when the USB or graphics controller module is enabled. This control bit can be overridden by the PLL96MHZ (Configuration Word 2 <11>) Configuration bit. 1 = Enable the 96 MHz PLL for USB, graphics controller or HSPLL/ECPLL/FRCPLL operation 0 = Disable the 96 MHz PLL
bit 4	G1CLKSEL: Display Controller Module Clock Select bit
	1 = Use the 96 MHz clock as a graphics controller module clock

- 0 = Use the 48 MHz clock as a graphics controller module clock
- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** This bit is automatically cleared when the ROI bit is set and an interrupt occurs.
 - 2: This setting is not allowed while the USB module is enabled.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7	·	•		·	•		bit 0
Legend:							
R = Readabl	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-6	Unimplemen	ted: Read as 'd)'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	aximum frequei	ncy deviation				
	011110 =						
	000001 =						
	000000 = Ce	enter frequency	, oscillator is r	unning at factor	y calibrated fre	quency	
	111111 =						
	100001 =						
	100000 = Mi	nimum frequen	cy deviation				

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

NOTES:

REGISTER 17-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits
	 11 = Interrupt is set on an RSR transfer, making the receive buffer full (i.e., has 4 data characters) 10 = Interrupt is set on an RSR transfer, making the receive buffer 3/4 full (i.e., has 3 data characters) 0x = Interrupt is set when any character is received and transferred from the RSR to the receive buffer; receive buffer has one or more characters
bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode is enabled If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode is disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	 1 = Receiver is Idle 0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	 1 = Framing error has been detected for the current character (character at the top of the receive FIFO) 0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (clear/read-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed (clearing a previously set OERR bit (1 → 0 transition); will reset the receiver buffer and the RSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty
Note 1:	Value of bit only affects the transmit properties of the module when the $IrDA^{\textcircled{R}}$ encoder is enabled (IREN = 1).

2: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 18-19: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	U-0	R/K-0, HS					
BTSEF	—	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF
						EOFEF	
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'						
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-8	Unimplemented: Read as '0'
bit 7	BTSEF: Bit Stuff Error Flag bit
	1 = Bit stuff error has been detected
	0 = No bit stuff error has been detected
bit 6	Unimplemented: Read as '0'
bit 5	 DMAEF: DMA Error Flag bit 1 = A USB DMA error condition is detected; the data size indicated by the BD byte count field is less than the number of received bytes, the received data is truncated 0 = No DMA error
bit 4	BTOEF: Bus Turnaround Time-out Error Flag bit 1 = Bus turnaround time-out has occurred 0 = No bus turnaround time-out
bit 3	DFN8EF: Data Field Size Error Flag bit
	 1 = Data field was not an integral number of bytes 0 = Data field was an integral number of bytes
bit 2	CRC16EF: CRC16 Failure Flag bit
	1 = CRC16 failed
	0 = CRC16 passed
bit 1	For Device mode: CRC5EF: CRC5 Host Error Flag bit
	 1 = Token packet is rejected due to CRC5 error 0 = Token packet is accepted (no CRC5 error)
	For Host mode:
	EOFEF: End-Of-Frame Error Flag bit
	1 = End-Of-Frame error has occurred 0 = End-Of-Frame interrupt is disabled
bit 0	PIDEE: PID Check Failure Flag bit
bit o	1 = PID check failed
	0 = PID check passed
	•

Note: Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

NOTES:

20.1.5 ALRMVAL REGISTER MAPPINGS

REGISTER 20-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0	
bit 15							bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-13	Unimplemer	nted: Read as '	כי					
bit 12	MTHTENO: E	Binary Coded De	ecimal Value o	f Month's Tens	Digit bit			
	Contains a va	alue of 0 or 1.						
bit 11-8	MTHONE<3:	0>: Binary Cod	ed Decimal Va	lue of Month's	Ones Digit bits			
	Contains a va	alue from 0 to 9						
bit 7-6	Unimplemer	nted: Read as '	כי					
bit 5-4	DAYTEN<1:0	0>: Binarv Code	d Decimal Val	ue of Dav's Ten	is Diait bits			
	Contains a va	alue from 0 to 3		,	9			
bit 3-0	DAYONE<3:	0>: Binary Code	ed Decimal Val	ue of Day's On	es Digit bits			
	Contains a va	alue from 0 to 9						
Note 1: A	write to this reg	gister is only allo	owed when RT	CWREN = 1.				

REGISTER	21-1: CRC	CON1: CRC (CONTROL 1	REGISTER						
R/W-0	U-0	R/W-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC			
CRCEN		CSIDL	VWORD4	VWORD3	VWORD2	VWORD1	VWORD0			
bit 15							bit 8			
	D 4 1100			DAVA						
R-0, HSC	R-1, HSC	R/W-U	R/W-0, HC	R/W-U	0-0	0-0	0-0			
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	—	—	— —			
							DILU			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
HC = Hardw	are Cleared	HSC = Hardv	vare Settable/C	learable bit						
bit 15	CRCEN: CR	C Enable bit								
	1 = Enables	module								
	0 = Disables NOT res	et et	ate machines, p	pointers and C	RCWDAT/CRC	DATH reset; o	ther SFRs are			
bit 14	Unimplemen	nted: Read as '	0'							
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit							
	1 = Discontir 0 = Continue	nue module ope e module opera	eration when de tion in Idle mod	evice enters Idl le	e mode					
bit 12-8	VWORD<4:0	>: Pointer Valu	e bits							
	Indicates the 16 when PLE	number of vali N<4:0> \leq 7.	d words in the	FIFO. Has a m	naximum value	of 8 when PLE	N<4:0> ≥ 7 or			
bit 7	CRCFUL: FI	FO Full bit								
	1 = FIFO is f	1 = FIFO is full								
	0 = FIFO is r	not full								
bit 6	CRCMPT: FI	FO Empty bit								
	1 = FIFO is e	empty								
hit 5		PC Interrupt Se	election bit							
DIL J	1 = Interrunt c	n EIEO is empt	v: the final word	of data is still s	hifting through t	he CRC				
	0 = Interrupt c	on shift is compl	ete and results a	are ready	intering through t					
bit 4	CRCGO: Sta	rt CRC bit								
	1 = Start CR	C serial shifter								
	0 = CRC ser	ial shifter is tur	ned off							
bit 3	LENDIAN: D	ata Shift Direct	ion Select bit							
	1 = Data wor 0 = Data wor	rd is shifted into rd is shifted into	o the CRC, star o the CRC, star	ting with the LS ting with the M	Sb (little endian Sb (big endian))				
bit 2-0	Unimplemen	Unimplemented: Read as '0'								

REGISTER 22-12: G1W2ADRH: GPU WORK AREA 2 START ADDRESS REGISTER HIGH

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	_	_	_
bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| W2ADR23 | W2ADR22 | W2ADR21 | W2ADR20 | W2ADR19 | W2ADR18 | W2ADR17 | W2ADR16 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **W2ADR<23:16>:** GPU Work Area 2 Start Address High bits Work area address must point to an even byte address in memory.

REGISTER 22-13: G1PUW: GPU WORK AREA WIDTH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—		— PUW10		PUW9	PUW8
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 R/W-0		R/W-0
PUW7	PUW6	PUW5	PUW4	PUW3	PUW3 PUW2		PUW0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **PUW<10:0>:** GPU Work Area Width bits (in pixels)

REGISTER 22-14: G1PUH: GPU WORK AREA HEIGHT REGISTER

U-0	U-0	U-0	U-0	U-0 R/W-0 R/W-0		R/W-0		
	—	—	—	—	PUH10	PUH9	PUH8	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
PUH7	PUH6	PUH5	PUH4	PUH3	PUH2	PUH1	PUH0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = E		x = Bit is unk	nown	
bit 15-11	bit 15-11 Unimplemented: Read as '0'							

bit 10-0 **PUH<10:0>:** GPU Work Area Height bits (in pixels)

NOTES:

REGISTER 27-6: DEVREV: DEVICE REVISION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	-	—			—
bit 23							bit 16
r							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_				—
bit 15							bit 8
U-0	U-0	U-0	U-0	R	R	R	R
_	_	_		REV3	REV2	REV1	REV0
bit 7							bit 0
Legend: R = Readable bit U = Unimplemented bit							

bit 23-4 Unimplemented: Read as '0'

bit 3-0 **REV<3:0>:** Device revision identifier bits

27.2 On-Chip Voltage Regulator

All PIC24FJ256DA210 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256DA210 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 27-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 30.1 "DC Characteristics"**.

27.2.1 VOLTAGE REGULATOR LOW-VOLTAGE DETECTION

When the on-chip regulator is enabled, it provides a constant voltage of 1.8V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then the regulator output follows VDD with a typical voltage drop of 300 mV.

To provide information about when the regulator voltage starts reducing, the on-chip regulator includes a simple Low-Voltage Detect circuit, which sets the

Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt to trigger an orderly shutdown.

FIGURE 27-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

27.2.2 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WUTSEL Configuration bits (CW3<11:10>). Refer to **Section 30.0 "Electrical Characteristics"** for more information on TVREG.

28.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

DC CH/	DC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	No. Symbol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions		
	Vol	Output Low Voltage	1						
DO10		I/O Ports	_	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V		
			—	—	0.4	V	IOL = 5.0 mA, VDD = 2.2V		
DO16		OSCO/CLKO	—	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V		
			_	—	0.4	V	IOL = 5.0 mA, VDD = 2.2V		
	Vон	Output High Voltage							
DO20		I/O Ports	3.0	—	—	V	юн = -3.0 mA, Vdd = 3.6V		
			2.4	—	_	V	ЮН = -6.0 mA, VDD = 3.6V		
			1.65	—	_	V	IOH = -1.0 mA, VDD = 2.2V		
			1.4	—	—	V	IOH = -3.0 mA, VDD = 2.2V		
DO26		OSCO/CLKO	2.4	—	—	V	юн = -6.0 mA, Vdd = 3.6V		
			1.4	—	_	V	IOH = -1.0 mA, VDD = 2.2V		

TABLE 30-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial				
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130	Eр	Cell Endurance	10000	—	—	E/W	-40°C to +85°C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D132B		VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	—	μS	
		Self-Timed Row Write Cycle Time	—	1.5	—	ms	
D133B	TIE	Self-Timed Page Erase Time	20	-	40	ms	
D134	TRETD	Characteristic Retention	20	-	—	Year	If no other specifications are violated
D135	IDDP	Supply Current during Programming	_	16	—	mA	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

			Standard Operating Conditions: 2.2V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$					
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions	
Clock Parameters								
AD50	Tad	ADC Clock Period	75	_	_	ns	Tcy = 75 ns, AD1CON3 in default state	
AD51	tRC	ADC Internal RC Oscillator Period	—	250	_	ns		
Conversion Rate								
AD55	tCONV	Conversion Time		12	—	Tad		
AD56	FCNV	Throughput Rate	—	—	500	ksps	AVDD > 2.7V	
AD57	tSAMP	Sample Time		1	—	Tad		
Clock Parameters								
AD61	tPSS	Sample Start Delay from Setting Sample bit (SAMP)	2	_	3	TAD		

TABLE 30-20: ADC CONVERSION TIMING REQUIREMENTS⁽¹⁾

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Microchip Trader Architecture — Flash Memory Fa Program Memory Product Group Pin Count — Tape and Reel Fla Temperature Ran Package — Pattern —	PIC 24 FJ 256 DA2 10 T - 1 / PT - XXX nark	Exa a) b) c)	 mples: PIC24FJ128DA206-I/PT: PIC24F device with Graphics Controller and USB On-The-Go, 128-KB program memory, 96-KB data memory, 64-pin, Industrial temp., TQFP package. PIC24FJ256DA110-I/PT: PIC24F device with Graphics Controller and USB On-The-Go, 256-KB program memory, 24-KB data memory, 100-pin, Industrial temp., TQFP package. PIC24FJ256DA210-I/BG: PIC24F device with Graphics Controller and USB On-The-Go, 256-KB program memory, 96-KB data memory, 121-pin, Industrial temp., BGA package.
Architecture	24 = 16-bit modified Harvard without DSP		
Flash Memory Family	FJ = Flash program memory		
Product Group	DA2 = General purpose microcontrollers with Graphics Controller and USB On-The-Go		
Pin Count 06 = 64-pin 10 = 100-pin (TQFP)/121-pin (BGA)			
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial)		
Package PT = 100-lead (12x12x1 mm) TQFP (Thin Quad Flatpack) PT = 64-lead, TQFP (Thin Quad Flatpack) MR = 64-lead (9x9x0.9 mm) QFN (Quad Flatpack, No Lead) BG = 121-pin BGA package			
Pattern Three-digit QTP, SQTP, Code or Special Requirements (blank otherwise) ES = Engineering Sample			