

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256da106t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

High-Performance CPU

- Modified Harvard Architecture
- Up to 16 MIPS Operation at 32 MHz
- 8 MHz Internal Oscillator
- 17-Bit x 17-Bit Single-Cycle Hardware Multiplier
- 32-Bit by 16-Bit Hardware Divider
- 16 x 16-Bit Working Register Array
- C Compiler Optimized Instruction Set Architecture with Flexible Addressing modes
- Linear Program Memory Addressing, up to 12 Mbytes
- Data Memory Addressing, up to 16 Mbytes:
 - 2K SFR space
 - 30K linear data memory
 - 66K extended data memory
 - Remaining (from 16 Mbytes) memory (external) can be accessed using extended data Memory (EDS) and EPMP (EDS is divided into 32-Kbyte pages)
- Two Address Generation Units for Separate Read and Write Addressing of Data Memory

Power Management:

- On-Chip Voltage Regulator of 1.8V
- Switch between Clock Sources in Real Time
- Idle, Sleep and Doze modes with Fast Wake-up and Two-Speed Start-up
- + Run Mode: 800 $\mu\text{A}/\text{MIPS},$ 3.3V Typical
- + Sleep mode Current Down to 20 $\mu\text{A},$ 3.3V Typical
- Standby Current with 32 kHz Oscillator: 22 $\mu\text{A},$ 3.3V Typical

Analog Features:

- 10-Bit, up to 24-Channel Analog-to-Digital (A/D) Converter at 500 ksps:
 - Operation is possible in Sleep mode
 - Band gap reference input feature
- Three Analog Comparators with Programmable Input/Output Configuration
- Charge Time Measurement Unit (CTMU):
 - Supports capacitive touch sensing for touch screens and capacitive switches
 - Minimum time measurement setting at 100 ps
- Available LVD Interrupt VLVD Level

Special Microcontroller Features:

- Operating Voltage Range of 2.2V to 3.6V
- 5.5V Tolerant Input (digital pins only)
- Configurable Open-Drain Outputs on Digital I/O
 Ports
- High-Current Sink/Source (18 mA/18 mA) on all I/O Ports
- Selectable Power Management modes:
 Sleep, Idle and Doze modes with fast wake-up
- Fail-Safe Clock Monitor (FSCM) Operation:
- Detects clock failure and switches to on-chip, FRC oscillator
- On-Chip LDO Regulator
- Power-on Reset (POR) and Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Flexible Watchdog Timer (WDT) with On-Chip Low-Power RC Oscillator for Reliable Operation
- In-Circuit Serial Programming[™] (ICSP[™]) and In-Circuit Debug (ICD) via 2 Pins
- JTAG Boundary Scan Support
- Flash Program Memory:
 - 10,000 erase/write cycle endurance (minimum)
 - 20-year data retention minimum
 - Selectable write protection boundary
 - Self-reprogrammable under software control
 - Write protection option for Configuration Words

TABLE 4-6: **INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)**

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	-	—	4440
IPC18	00C8	—	_	-	—	_	—		—	—	—	_	—	—	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	_	_	_	_	_	_	_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_		_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0	_	MI2C3IP2	MI2C3IP1	MI2C3IP0	_	SI2C3IP2	SI2C3IP1	SI2C3IP0	4444
IPC22	00D0	—	SPI3IP2	SPI3IP1	SPI3IP0	—	SPF3IP2	SPF3IP1	SPF3IP0	—	U4TXIP2	U4TXIP1	U4TXIP0	—	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC23	00D2	_	_		_	_	_	_	_	_	IC9IP2	IC9IP1	IC9IP0	_	OC9IP2	OC9IP1	OC9IP0	0044
IPC25	00D6	_	_		—	_	_		_	_	_	_	_	_	GFX1IP2	GFX1IP1	GFX1IP0	0004
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

 – = unimplemented, read as '0'. Reset values are shown in hexadecimal.
 Unimplemented in 64-pin devices, read as '0'.
 The Reset value in 64-pin devices are '0004'. Legend:

Note 1:

2:

TABLE 4-7: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1 I	Register								0000
PR1	0102								Timer1 Peri	od Register								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Time	er3 Holding	Register (for	32-bit timer	operations o	only)						0000
TMR3	010A		Timer3 Register 0											0000				
PR2	010C		Timer2 Period Register F											FFFF				
PR3	010E								Timer3 Peri	od Register								FFFF
T2CON	0110	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4 I	Register								0000
TMR5HLD	0116						Т	imer5 Holdir	ng Register (for 32-bit ope	erations only	/)						0000
TMR5	0118								Timer5 I	Register								0000
PR4	011A								Timer4 Peri	od Register								FFFF
PR5	011C	Timer5 Period Register FF										FFFF						
T4CON	011E	TON	_	TSIDL	_	_	_		—	_	TGATE	TCKPS1	TCKPS0	T45		TCS		0000
T5CON	0120	TON	_	TSIDL	_		_		_	—	TGATE	TCKPS1	TCKPS0	_		TCS		0000

Legend:

- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI REGISTER MAPS

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI1CON2	0244	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI1BUF	0248							SPI	1 Transmit ar	nd Receive B	uffer							0000
SPI2STAT	0260	SPIEN	—	SPISIDL	—	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI2CON1	0262	_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	СКР	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI2CON2	0264	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_		_	_	SPIFE	SPIBEN	0000
SPI2BUF	0268							SPI	2 Transmit ar	nd Receive B	uffer							0000
SPI3STAT	0280	SPIEN	_	SPISIDL	_	_	SPIBEC2	SPIBEC1	SPIBEC0	SRMPT	SPIROV	SRXMPT	SISEL2	SISEL1	SISEL0	SPITBF	SPIRBF	0000
SPI3CON1	0282	—	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN	SPRE2	SPRE1	SPRE0	PPRE1	PPRE0	0000
SPI3CON2	0284	FRMEN	SPIFSD	SPIFPOL	_	_	_	_	_	_	_	_	_	_	_	SPIFE	SPIBEN	0000
SPI3BUF	0288	SPI3 Transmit and Receive Buffer 0000																

Legend: - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PORTA REGISTER MAP⁽¹⁾

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit2	Bit 1	Bit 0	All Resets
TRISA	02C0	TRISA15	TRISA14	_	_	—	TRISA10	TRISA9	—	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	02C2	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	ODA15	ODA14	_	_	—	ODA10	ODA9	_	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	0000

 Legend:
 -- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Reset values shown are for 100-pin devices.

 Note
 1:
 PORTA and all associated bits are unimplemented on 64-pin devices and read as '0'. Bits are available on 100-pin devices only, unless otherwise noted.

TABLE 4-14: PORTB REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODB15	ODB14	ODB13	ODB12	ODB11	ODB10	ODB9	ODB8	ODB7	ODB6	ODB5	ODB4	ODB3	ODB2	ODB1	ODB0	0000

Legend: Reset values are shown in hexadecimal.

TABLE 4-30: PERIPHERAL PIN SELECT REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_		RP1R5	RP1R4	RP1R3	RP1R2	RP1R1	RP1R0		_	RP0R5	RP0R4	RP0R3	RP0R2	RP0R1	RP0R0	0000
RPOR1	06C2	_	-	RP3R5	RP3R4	RP3R3	RP3R2	RP3R1	RP3R0	-	-	RP2R5	RP2R4	RP2R3	RP2R2	RP2R1	RP2R0	0000
RPOR2	06C4	_	_	RP5R5 ⁽¹⁾	RP5R4 ⁽¹⁾	RP5R3 ⁽¹⁾	RP5R2 ⁽¹⁾	RP5R1 ⁽¹⁾	RP5R0 ⁽¹⁾	_	_	RP4R5	RP4R4	RP4R3	RP4R2	RP4R1	RP4R0	0000
RPOR3	06C6	_	_	RP7R5	RP7R4	RP7R3	RP7R2	RP7R1	RP7R0	_	_	RP6R5	RP6R4	RP6R3	RP6R2	RP6R1	RP6R0	0000
RPOR4	06C8	_	_	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0	_	_	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0	0000
RPOR5	06CA	_	_	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0	_	_	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0	0000
RPOR6	06CC	_	_	RP13R5	RP13R4	RP13R3	RP13R2	RP13R1	RP13R0	_	_	RP12R5	RP12R4	RP12R3	RP12R2	RP12R1	RP12R0	0000
RPOR7	06CE	_	_	RP15R5 ⁽¹⁾	RP15R4 ⁽¹⁾	RP15R3 ⁽¹⁾	RP15R2 ⁽¹⁾	RP15R1 ⁽¹⁾	RP15R0 ⁽¹⁾	_	_	RP14R5	RP14R4	RP14R3	RP14R2	RP14R1	RP14R0	0000
RPOR8	06D0	_	_	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0	_	_	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0	0000
RPOR9	06D2	_	_	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0	_	_	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0	0000
RPOR10	06D4	_	_	RP21R5	RP21R4	RP21R3	RP21R2	RP21R1	RP21R0	_	_	RP20R5	RP20R4	RP20R3	RP20R2	RP20R1	RP20R0	0000
RPOR11	06D6	_	_	RP23R5	RP23R4	RP23R3	RP23R2	RP23R1	RP23R0	_	_	RP22R5	RP22R4	RP22R3	RP22R2	RP22R1	RP22R0	0000
RPOR12	06D8	_	_	RP25R5	RP25R4	RP25R3	RP25R2	RP25R1	RP25R0	_	_	RP24R5	RP24R4	RP24R3	RP24R2	RP24R1	RP24R0	0000
RPOR13	06DA	_	_	RP27R5	RP27R4	RP27R3	RP27R2	RP27R1	RP27R0	_	_	RP26R5	RP26R4	RP26R3	RP26R2	RP26R1	RP26R0	0000
RPOR14	06DC	_	_	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0	_	_	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0	0000
RPOR15 ⁽¹⁾	06DE	_	_	RP31R5 ⁽¹⁾	RP31R4 ⁽¹⁾	RP31R3 ⁽¹⁾	RP31R2 ⁽¹⁾	RP31R1 ⁽¹⁾	RP31R0 ⁽¹⁾	_	_	RP30R5 ⁽¹⁾	RP30R4 ⁽¹⁾	RP30R3 ⁽¹⁾	RP30R2 ⁽¹⁾	RP30R1 ⁽¹⁾	RP30R0 ⁽¹⁾	0000

 Legend:
 -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Bits are unimplemented in 64-pin devices; read as '0'.

4.3.3 READING DATA FROM PROGRAM MEMORY USING EDS

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This provides transparent access of stored constant data from the data space without the need to use special instructions (i.e., TBLRDL/H).

Program space access through the data space occurs when the MSb of EA is '1' and the DSRPAG<9> is also '1'. The lower 8 bits of DSRPAG are concatenated to the Wn<14:0> bits to form a 23-bit EA to access program memory. The DSRPAG<8> decides which word should be addressed; when the bit is '0', the lower word and when '1', the upper word of the program memory is accessed.

The entire program memory is divided into 512 EDS pages, from 0x200 to 0x3FF, each consisting of 16K words of data. Pages, 0x200 to 0x2FF, correspond to the lower words of the program memory, while 0x300 to 0x3FF correspond to the upper words of the program memory.

Using this EDS technique, the entire program memory can be accessed. Previously, the access to the upper word of the program memory was not supported. Table 4-37 provides the corresponding 23-bit EDS address for program memory with EDS page and source addresses.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions will require one instruction cycle in addition to the specified execution time. All other instructions will require two instruction cycles in addition to the specified execution time.

For operations that use PSV, which are executed inside a REPEAT loop, there will be some instances that require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction accessing data, using PSV, to execute in a single cycle.

DSRPAG (Data Space Read Register)	Source Address while Indirect Addressing	23-Bit EA Pointing to EDS	Comment
0x200		0x000000 to 0x007FFE	
•		•	Lower words of 4M
•		•	program instructions;
•		•	operations only
0x2FF	0x8000 to 0xFFFF	0x7F8000 to 0x7FFFFE	
0x300		0x000001 to 0x007FFF	Upper words of 4M
•		•	program instructions
•		•	(4 Mbytes remaining,
•		•	4 Mbytes are phantom
0x3FF		0x7F8001 to 0x7FFFFF	operations only.
0x000		Invalid Address	Address error trap ⁽¹⁾

TABLE 4-37: EDS PROGRAM ADDRESS WITH DIFFERENT PAGES AND ADDRESSES

Note 1: When the source/destination address is above 0x8000 and DSRPAG/DSWPAG is '0', an address error trap will occur.

REGISTER 8-2: CLKDIV: CLOCK DIVIDER REGISTER (CONTINUED)

bit 5	PLLEN: 96 MHz PLL Enable bit
	The 96 MHz PLL must be enabled when the USB or graphics controller module is enabled. This control bit can be overridden by the PLL96MHZ (Configuration Word 2 <11>) Configuration bit. 1 = Enable the 96 MHz PLL for USB, graphics controller or HSPLL/ECPLL/FRCPLL operation 0 = Disable the 96 MHz PLL
bit 4	G1CLKSEL: Display Controller Module Clock Select bit
	1 = Use the 96 MHz clock as a graphics controller module clock

- 0 = Use the 48 MHz clock as a graphics controller module clock
- bit 3-0 Unimplemented: Read as '0'
- **Note 1:** This bit is automatically cleared when the ROI bit is set and an interrupt occurs.
 - 2: This setting is not allowed while the USB module is enabled.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	TUN5 ⁽¹⁾	TUN4 ⁽¹⁾	TUN3 ⁽¹⁾	TUN2 ⁽¹⁾	TUN1 ⁽¹⁾	TUN0 ⁽¹⁾
bit 7	÷	•		·	•		bit 0
Legend:							
R = Readabl	le bit	W = Writable I	bit	U = Unimplem	nented bit, read	1 as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-6	Unimplemen	ted: Read as 'd)'				
bit 5-0	TUN<5:0>: FI	RC Oscillator T	uning bits ⁽¹⁾				
	011111 = Ma	aximum frequei	ncy deviation				
	011110 =						
	000001 =						
	000000 = Ce	enter frequency	, oscillator is r	unning at factor	y calibrated fre	quency	
	111111 =						
	100001 =						
	100000 = Mi	nimum frequen	cy deviation				

REGISTER 8-3: OSCTUN: FRC OSCILLATOR TUNE REGISTER

Note 1: Increments or decrements of TUN<5:0> may not change the FRC frequency in equal steps over the FRC tuning range and may not be monotonic.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = Input Capture 9⁽²⁾
 - 11101 = Input Capture 6⁽²⁾
 - 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾

 - 11010 = Comparator 3⁽²⁾
 - 11001 = Comparator 2⁽²⁾
 - 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾
 - 10110 = Input Capture 3⁽²⁾

 - 10101 = Input Capture 2⁽²⁾
 - 10100 = Input Capture 1⁽²⁾
 - 10011 = Input Capture 8⁽²⁾ 10010 = Input Capture 7⁽²⁾

 - 1000x = Reserved
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3
 - 01100 = Timer2 01011 = Timer1

 - 01010 =Input Capture $5^{(2)}$ 01001 = Output Compare 9⁽¹⁾
 - 01000 = Output Compare 8⁽¹⁾
 - 00111 = Output Compare 7⁽¹⁾
 - $00110 = Output Compare 6^{(1)}$
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare $2^{(1)}$
 - 00001 = Output Compare 1⁽¹⁾
 - 00000 = Not synchronized to any other module
- Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

FIGURE 15-4: SPI MASTER/SLAVE CONNECTION (ENHANCED BUFFER MODES)

REGISTER 17-1: UXMODE: UARTX MODE REGISTER (CONTINUED)

- bit 4 **RXINV:** Receive Polarity Inversion bit
 - 1 = UxRX Idle state is '0'
 - 0 = UxRX Idle state is '1'
- bit 3 BRGH: High Baud Rate Enable bit
 - 1 = High-Speed mode (4 BRG clock cycles per bit)
 - 0 = Standard-Speed mode (16 BRG clock cycles per bit)
- bit 2-1 **PDSEL<1:0>:** Parity and Data Selection bits
 - 11 = 9-bit data, no parity
 - 10 = 8-bit data, odd parity
 - 01 = 8-bit data, even parity
 - 00 = 8-bit data, no parity
- bit 0 STSEL: Stop Bit Selection bit
 - 1 = Two Stop bits
 - 0 = One Stop bit
- Note 1: If UARTEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

18.3.1 CLEARING USB OTG INTERRUPTS

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set only bits. Additionally, these bits can only be cleared in

software by writing a '1' to their locations (i.e., performing a MOV type instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this data sheet, a bit that can only be cleared by writing a '1' to its location is referred to as "Write 1 to clear". In register descriptions, this function is indicated by the descriptor, "K".

FIGURE 18-10: EXAMPLE OF A USB TRANSACTION AND INTERRUPT EVENTS

18.4 Device Mode Operation

The following section describes how to perform a common Device mode task. In Device mode, USB transfers are performed at the transfer level. The USB module automatically performs the status phase of the transfer.

18.4.1 ENABLING DEVICE MODE

- Reset the Ping-Pong Buffer Pointers by setting, then clearing, the Ping-Pong Buffer Reset bit, PPBRST (U1CON<1>).
- 2. Disable all interrupts (U1IE and U1EIE = 00h).
- 3. Clear any existing interrupt flags by writing FFh to U1IR and U1EIR.
- 4. Verify that VBUS is present (non OTG devices only).

- 5. Enable the USB module by setting the USBEN bit (U1CON<0>).
- Set the OTGEN bit (U1OTGCON<2>) to enable OTG operation.
- Enable the endpoint zero buffer to receive the first setup packet by setting the EPRXEN and EPHSHK bits for Endpoint 0 (U1EP0<3,0> = 1).
- 8. Power up the USB module by setting the USBPWR bit (U1PWRC<0>).
- 9. Enable the D+ pull-up resistor to signal an attach by setting DPPULUP bit (U10TGCON<7>).

18.5.3 SEND A FULL-SPEED BULK DATA TRANSFER TO A TARGET DEVICE

- Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" and Section 18.5.2 "Complete a Control Transaction to a Connected Device" to discover and configure a device.
- To enable transmit and receive transfers with handshaking enabled, write 1Dh to U1EP0. If the target device is a low-speed device, also set the LSPD (U1EP0<7>) bit. If you want the hardware to automatically retry indefinitely if the target device asserts a NAK on the transfer, clear the Retry Disable bit, RETRYDIS (U1EP0<6>).
- 3. Set up the BD for the current (even or odd) TX EP0 to transfer up to 64 bytes.
- 4. Set the USB device address of the target device in the address register (U1ADDR<6:0>).
- 5. Write an OUT token to the desired endpoint to U1TOK. This triggers the module's transmit state machines to begin transmitting the token and the data.
- 6. Wait for the Transfer Done Interrupt Flag, TRNIF. This indicates that the BD has been released back to the microprocessor and the transfer has completed. If the retry disable bit is set, the handshake (ACK, NAK, STALL or ERROR (0Fh)) is returned in the BD PID field. If a STALL interrupt occurs, the pending packet must be dequeued and the error condition in the target device cleared. If a detach interrupt occurs (SE0 for more than 2.5 μs), then the target has detached (U1IR<0> is set).
- 7. Once the transfer done interrupt occurs (TRNIF is set), the BD can be examined and the next data packet queued by returning to step 2.
- **Note:** USB speed, transceiver and pull-ups should only be configured during the module setup phase. It is not recommended to change these settings while the module is enabled.

18.6 OTG Operation

18.6.1 SESSION REQUEST PROTOCOL (SRP)

An OTG A-device may decide to power down the VBUS supply when it is not using the USB link through the Session Request Protocol (SRP). Software may do this by clearing VBUSON (U10TGCON<3>). When the VBUS supply is powered down, the A-device is said to have ended a USB session.

An OTG A-device or embedded host may repower the VBUS supply at any time (initiate a new session). An OTG B-device may also request that the OTG A-device repower the VBUS supply (initiate a new session). This is accomplished via Session Request Protocol (SRP).

Prior to requesting a new session, the B-device must first check that the previous session has definitely ended. To do this, the B-device must check for two conditions:

1. VBUS supply is below the session valid voltage, and

2. Both D+ and D- have been low for at least 2 ms.

The B-device will be notified of Condition 1 by the SESENDIF (U1OTGIR<2>) interrupt. Software will have to manually check for Condition 2.

Note:	When the A-device powers down the VBUS
	supply, the B-device must disconnect its
	pull-up resistor from power. If the device is
	self-powered, it can do this by clearing
	DPPULUP (U1OTGCON<7>) and
	DMPULUP (U1OTGCON<6>).

The B-device may aid in achieving Condition 1 by discharging the VBUS supply through a resistor. Software may do this by setting VBUSDIS (U1OTGCON<0>).

After these initial conditions are met, the B-device may begin requesting the new session. The B-device begins by pulsing the D+ data line. Software should do this by setting DPPULUP (U10TGCON<7>). The data line should be held high for 5 to 10 ms.

The B-device then proceeds by pulsing the VBUS supply. Software should do this by setting PUVBUS (U1CNFG2<4>). When an A-device detects SRP signaling (either via the ATTACHIF (U1IR<6>) interrupt or via the SESVDIF (U1OTGIR<3>) interrupt), the A-device must restore the VBUS supply by either setting VBUSON (U1OTGCON<3>) or by setting the I/O port controlling the external power source.

The B-device should not monitor the state of the VBUS supply while performing VBUS supply pulsing. When the B-device does detect that the VBUS supply has been restored (via the SESVDIF (U1OTGIR<3>) interrupt), the B-device must reconnect to the USB link by pulling up D+ or D- (via the DPPULUP or DMPULUP).

The A-device must complete the SRP by driving USB Reset signaling.

PIC24FJ256DA210 FAMILY

REGISTER	18-8: U1CC	ON: USB CON	TROL REGI	STER (HOST		Y)	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_			_	_	_	
bit 15							bit 8
R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
JSIAIE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN
DIT /							DITU
Legend:		U = Unimplem	ented bit read	1 as '0'			
R = Readable	e bit	W = Writable I	oit	HSC = Hardw	are Settable/C	learable bit	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15-8	Unimplemen	ted: Read as 'd)'				
bit 7	JSTATE: Live	e Differential Re	ceiver J State	Flag bit			
	1 = J state (c	differential '0' in	low speed, dif	ferential '1' in fu	ull speed) is de	tected on the U	ISB
	0 = No J stat	e is detected					
bit 6	SE0: Live Sin	igle-Ended Zero	o Flag bit	D h			
	1 = Single-er 0 = No single	nded zero is act	detected	3 DUS			
bit 5	TOKBUSY: T	oken Busy Stat	us bit				
	1 = Token is	being executed	by the USB m	odule in On-Th	ie-Go state		
	0 = No token	is being execu	ted				
bit 4	USBRST: Mo	dule Reset bit					
	1 = USB Res	set has been ge	enerated; for s	oftware Reset,	application mu	st set this bit fo	or 50 ms, then
		set is terminated	ł				
bit 3	HOSTEN: Ho	ost Mode Enable	e bit				
	1 = USB hos	t capability is er	nabled; pull-do	wns on D+ and	I D- are activate	ed in hardware	
	0 = USB hos	t capability is di	sabled				
bit 2	RESUME: Re	esume Signaling	g Enable bit				
	1 = Resume	signaling is act	ivated; softwa	re must set bit	for 10 ms and	then clear to e	enable remote
	0 = Resume	signaling is disa	abled				
bit 1	PPBRST: Pin	ig-Pong Buffers	Reset bit				
	1 = Reset al	I Ping-Pong Bu	ffer Pointers to	the even BD b	anks		
	0 = Ping-Po	ng Buffer Pointe	ers are not res	et			
bit 0	SOFEN: Star	t-Of-Frame Ena	ble bit				
	1 = Start-Of-	Frame token is	sent every one	e 1 ms			

PIC24FJ256DA210 FAMILY

REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE
bit 7							bit 0

Legend:							
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15-8	Unimplemen	ted: Read as '0'					
bit 7	IDIE: ID Intern	rupt Enable bit					
	1 = Interrupt	is enabled					
	0 = Interrupt						
bit 6	T1MSECIE: 1	Millisecond Timer Interro	upt Enable bit				
	1 = Interrupt	is enabled					
bit 5	U = Interrupt is disabled						
bit 0	1 = Interrupt	is enabled					
	0 = Interrupt is disabled						
bit 4	ACTVIE: Bus	Activity Interrupt Enable	bit				
	1 = Interrupt	is enabled					
	0 = Interrupt	is disabled					
bit 3	SESVDIE: Se	ession Valid Interrupt Ena	ble bit				
	1 = Interrupt	is enabled					
hit 0			orrupt Epoblo bit				
DIL 2		a oneblod	errupt Enable bit				
	0 = Interrupt is enabled						
bit 1	Unimplemen	ted: Read as '0'					
bit 0	VBUSVDIE: A	A-Device VBUS Valid Inter	rupt Enable bit				
· · ·	1 = Interrupt	is enabled	. F				
	0 = Interrupt	is disabled					

REGISTER 18-17: U1IR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	R-0	R/K-0, HS					
STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
bit 7							bit 0

Legend:	U = Unimplemented bit, read	l as '0'	
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable bit	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	 1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode 0 = A STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit
	 1 = A peripheral attachment has been detected by the module; it is set if the bus state is not SE0 and there has been no bus activity for 2.5 μs 0 = No peripheral attacement has been detected
bit 5	RESUMEIF: Resume Interrupt bit
	 1 = A K-state is observed on the D+ or D- pin for 2.5 μs (differential '1' for low speed, differential '0' for full speed) 0 = No K-state is observed
hit 4	U - Nu K-slale is ubserved
	 1 = Idle condition is detected (constant Idle state of 3 ms or more) 0 = No Idle condition is detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of the current token is complete; read the U1STAT register for endpoint information 0 = Processing of the current token not complete; clear the U1STAT register or load the next token from U1STAT
bit 2	SOFIF: Start-Of-Frame Token Interrupt bit
	 1 = A Start-Of-Frame token received by the peripheral or the Start-Of-Frame threshold reached by the host 0 = No Start-Of-Frame token received or threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the U1EIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	1 = A peripheral detachment has been detected by the module; Reset state must be cleared before
	 0 = No peripheral detachment is detected. Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.
Note:	Individual bits can only be cleared by writing a '1' to the bit position as part of a word write operation on the entire register. Using Boolean instructions or bitwise operations to write to a single bit position will cause all set bits at the moment of the write to become cleared.

REGISTER 22-5: G1CON3: DISPLAY CONTROL REGISTER 3 (CONTINUED)

bit 1	DPVSOE: Display Vertical Synchronization Port Enable bit
	1 = VSYNC port is enabled
	0 = VSYNC port is disabled
bit 0	DPHSOE: Display Horizontal Synchronization Port Enable bit
	1 = HSYNC port is enabled
	0 = HSYNC port is disabled

REGISTER 22-6: G1STAT: GFX STATUS REGISTER

R-0, HSC	U-0						
PUBUSY	—	—	—	—	—	—	—
bit 15							bit 8

bit

IPUBUSY	RCCBUSY	CHRBUSY	VMRGN	HMRGN	CMDLV	CMDFUL	CMDMPT
bit 7							bit 0

Legend:	HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 15 PUBUS	Y: Processing Units are Bus	y Status bit					

	This bit is logically equivalent to the ORed combination of IPUBUSY, RCCBUSY or CHRBUSY. 1 = At least one processing unit is busy 0 = None of the processing units are busy
bit 14-8	Unimplemented: Read as '0'
bit 7	IPUBUSY: Inflate Processing Unit Busy Status bit
	1 = IPU is busy0 = IPU is not busy
bit 6	RCCBUSY: Rectangle Copy Graphics Processing Unit Busy Status bit
	1 = RCCGPU is busy 0 = RCCGPU is not busy
bit 5	CHRBUSY: Character Graphics Processing Unit Busy Status bit
	1 = CHRGPU is busy 0 = CHRGPU is not busy
bit 4	VMRGN: Vertical Blanking Status bit
	 1 = Display interface is in the vertical blanking period 0 = Display interface is not in the vertical blanking period
bit 3	HMRGN: Horizontal Blanking Status bit
	 1 = Display interface is in the horizontal blanking period 0 = Display interface is not in the horizontal blanking period
bit 2	CMDLV: Command Watermark Level Status bit
	The number of commands in the command FIFO changed from equal (=) to the command watermark value to less than (<) the Command Watermark value set in CMDWMK (G1CON1<12:8>) register bits. 1 = Command in FIFO is less than the set CMDWMK value 0 = Command in FIFO is equal to or greater than the set CMDWMK value
bit 1	CMDFUL: Command FIFO Full Status bit
	 1 = Command FIFO is full 0 = Command FIFO is not full
bit 0	CMDMPT: Command FIFO Empty Status bit
	1 = Command FIFO is empty
	0 = Command FIFO is not empty

PIC24FJ256DA210 FAMILY

REGISTER 22-28: G1MRGN: INTERRUPT ADVANCE REGISTER

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| VBAMGN7 | VBAMGN6 | VBAMGN5 | VBAMGN4 | VBAMGN3 | VBAMGN2 | VBAMGN1 | VBAMGN0 |
| bit 15 | | | | | | | bit 8 |

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| HBAMGN7 | HBAMGN6 | HBAMGN5 | HBAMGN4 | HBAMGN3 | HBAMGN2 | HBAMGN1 | HBAMGN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	VBAMGN<7:0>: Vertical Blanking Advance bits
	The number of DISPCLK cycles in advance that the vertical blanking interrupt will assert ahead of the
	actual start of the vertical blanking.
bit 7-0	HBAMGN<7:0>: Horizontal Blanking Advance bits

The number of DISPCLK cycles in advance that the horizontal blanking interrupt will assert ahead of the actual start of the horizontal blanking.

REGISTER 22-29: G1CHRX: CHARACTER-X COORDINATE PRINT POSITION REGISTER

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	CURPOSX10	CURPOSX9	CURPOSX8
bit 15							bit 8

| R-0, HSC |
|----------|----------|----------|----------|----------|----------|----------|----------|
| CURPOSX7 | CURPOSX6 | CURPOSX5 | CURPOSX4 | CURPOSX3 | CURPOSX2 | CURPOSX1 | CURPOSX0 |
| bit 7 | | | | | | | bit 0 |

Legend:	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-11 Unimplemented: Read as '0'

bit 10-0 CURPOSX<10:0>: Current Character Position in the X-Coordinate bits

22.2 Display Resolution and Memory Requirements

The PIC24FJ256DA210 family of devices has two variants in terms of on-board RAM (24-Kbyte and 96-Kbyte variants). The 24-Kbyte variant supports monochrome displays while the 96-Kbyte variant supports Quarter VGA (QVGA) color displays, up to 256 colors. Support of higher resolution displays with higher color depth requirements are available by extending the data space through external memory. Table 22-1 provides the summary of image buffer memory requirements of different display resolutions and color depth requirements.

22.3 Display Clock (GCLK) Source

Frequency of the Graphics Controller Display Clock (GCLK) signal is determined by programming the GCLKDIV bits (CLKDIV2<15:9>). For more information, refer to the "*PIC24F Family Reference Manual*", **Section 6. "Oscillator" (**DS39700).

22.4 Display Buffer and Work Areas Memory Locations

The PIC24FJ256DA210 family of devices has variants with two on-board RAM sizes. These are the 24-Kbyte and 96-Kbyte variants. These two RAM variants are further divided in terms of pin counts. The 100-pin count device will have the EPMP module available for extending RAM for applications. The 64-pin count device will not have the EPMP modules. Extending the RAM size is necessary for applications that require larger display buffers and work areas. It is recommended that the display buffers and work areas are not mapped into an area that overlaps the internal RAM and the external RAM. The external RAM can be interfaced using the EPMP module. For details, refer to the "PIC24F Family Reference Manual", Section 42. "Enhanced Parallel Master Port (EPMP)" (DS39730).

Display Resolution	Display Buffer Memory Requirements (Bytes)							
Display Resolution	1 Врр	2 Врр	4 Врр	8 Врр	16 Bpp			
480x272 (WQVGA)	16320	32640	65280	130560	261120			
320x240 (QVGA)	9600	19200	38400	76800	153600			
240x160 (HQVGA)	4800	9600	19200	38400	76800			
160x160	3200	6400	12800	25600	51200			
160x120 (QQVGA)	2400	4800	9600	19200	38400			
128x64	1024	2048	4096	8192	16384			

TABLE 22-1: BUFFER MEMORY REQUIREMENTS vs. DISPLAY CONFIGURATION

Legend:

Less than 24-Kbyte RAM variants (PIC24FJXXXDA106)

Less than 96-Kbyte RAM variants (PIC24FJXXXDA2XX)

External Memory with 96 Kbytes/24 Kbytes of RAM variants (PIC24FJXXXDAX10)

REGISTER 27-2: CW2: FLASH CONFIGURATION WORD 2 (CONTINUED)

- bit 4 IOL1WAY: IOLOCK One-Way Set Enable bit
 - 1 = The IOLOCK bit (OSCCON<6>) can be set once, provided the unlock sequence has been completed. Once set, the Peripheral Pin Select registers cannot be written to a second time.
 - 0 = The IOLOCK bit can be set and cleared as needed, provided the unlock sequence has been completed
- bit 3-2 Reserved: Always maintain as '1'
- bit 1-0 **POSCMD<1:0>:** Primary Oscillator Configuration bits
 - 11 = Primary oscillator is disabled
 - 10 = HS Oscillator mode is selected
 - 01 = XT Oscillator mode is selected
 - 00 = EC Oscillator mode is selected

REGISTER 27-3: CW3: FLASH CONFIGURATION WORD 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
WPEND	WPCFG	WPDIS	ALTPMP ⁽¹⁾	WUTSEL1	WUTSEL0	SOSCSEL1	SOSCSEL0
bit 15	•					•	bit 8

| R/PO-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| WPFP7 | WPFP6 | WPFP5 | WPFP4 | WPFP3 | WPFP2 | WPFP1 | WPFP0 |
| bit 7 | | | | | | | bit 0 |

Legend:	PO = Program-Once bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	WPEND: Segment Write Protection End Page Select bit
	1 = Protected code segment upper boundary is at the last page of program memory; the lower boundary is the code page specified by WPFP<7:0>
	 0 = Protected code segment lower boundary is at the bottom of the program memory (000000h); upper boundary is the code page specified by WPFP<7:0>
bit 14	WPCFG: Configuration Word Code Page Write Protection Select bit
	 1 = Last page (at the top of program memory) and Flash Configuration Words are not write-protected⁽³⁾ 0 = Last page and Flash Configuration Words are write-protected, provided WPDIS = '0'
bit 13	WPDIS: Segment Write Protection Disable bit
	1 = Segmented code protection is disabled
	 0 = Segmented code protection is enabled; protected segment is defined by the WPEND, WPCFG and WPFPx Configuration bits
bit 12	ALTPMP: Alternate EPMP Pin Mapping bit ⁽¹⁾
	 1 = EPMP pins are in default location mode 0 = EPMP pins are in alternate location mode
Note 1:	Unimplemented in 64-pin devices, maintain at '1'.
2:	Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-1.
3:	Regardless of WPCFG status, if WPEND = 1 or if WPFP corresponds to the Configuration Word's page, the Configuration Word's page is protected.

28.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

28.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

28.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

28.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

28.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

28.10 PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.