

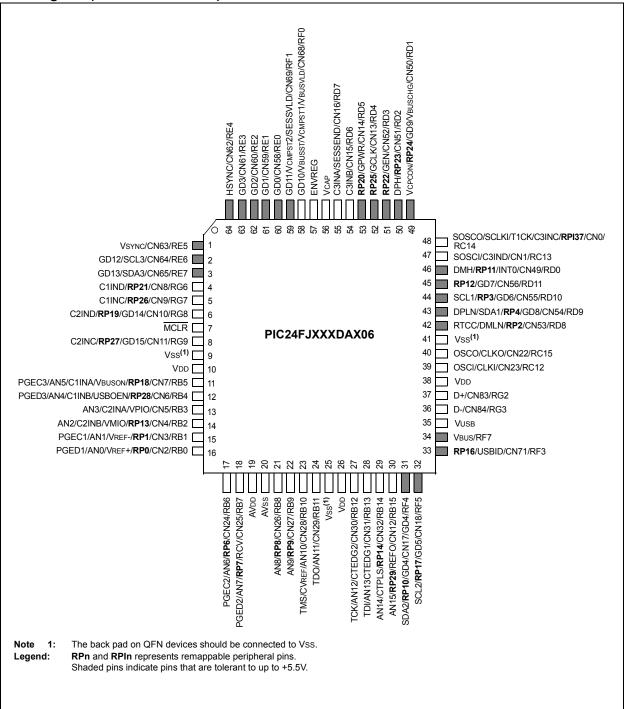
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

2 0 0 0 0 0	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256da110-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (64-Pin TQFP/QFN)

		Pin Number			Incret	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description
AN0	16	25	K2	I	ANA	
AN1	15	24	K1	I	ANA	
AN2	14	23	J2	I	ANA	
AN3	13	22	J1	I	ANA	
AN4	12	21	H2	I	ANA	
AN5	11	20	H1	Ι	ANA	
AN6	17	26	L1	I	ANA	
AN7	18	27	J3	I	ANA	
AN8	21	32	K4	I	ANA	
AN9	22	33	L4	I	ANA	
AN10	23	34	L5	I	ANA	
AN11	24	35	J5	I	ANA	
AN12	27	41	J7	I	ANA	A/D Analog Inputs.
AN13	28	42	L7	Ι	ANA	
AN14	29	43	K7	I	ANA	
AN15	30	44	L8	Ι	ANA	
AN16	—	9	E1	Ι	ANA	
AN17	—	10	E3	I	ANA	
AN18	—	11	F4	I	ANA	
AN19	—	12	F2	I	ANA	
AN20	—	14	F3	Ι	ANA	
AN21	—	19	G2	I	ANA	
AN22	—	92	B5	I	ANA	
AN23	—	91	C5	Ι	ANA	
AVdd	19	30	J4	Р	_	Positive Supply for Analog modules.
AVss	20	31	L3	Р	_	Ground Reference for Analog modules.
C1INA	11	20	H1	Ι	ANA	Comparator 1 Input A.
C1INB	12	21	H2	I	ANA	Comparator 1 Input B.
C1INC	5	11	F4	I	ANA	Comparator 1 Input C.
C1IND	4	10	E3	I	ANA	Comparator 1 Input D.
C2INA	13	22	J1	I	ANA	Comparator 2 Input A.
C2INB	14	23	J2	Ι	ANA	Comparator 2 Input B.
C2INC	8	14	F3	I	ANA	Comparator 2 Input C.
C2IND	6	12	F2	I	ANA	Comparator 2 Input D.
C3INA	55	84	C7	I	ANA	Comparator 3 Input A.
C3INB	54	83	D7	I	ANA	Comparator 3 Input B.
C3INC	48	74	B11	I	ANA	Comparator 3 Input C.
C3IND	47	73	C10	I	ANA	Comparator 3 Input D.
CLKI	39	63	F9	I	ST	Main Clock Input Connection.
CLKO	40	64	F11	0	—	System Clock Output.
	TTL = TTL inpu ANA = Analog	ut buffer level input/out	put			Schmitt Trigger input buffer = I ² C/SMBus input buffer

TABLE 1-3:	PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS
IADLL I-J.	FICZAI JZJODAZIU I AWILI FINOUI DLJCKIFIIONJ

 $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

To maintain backward compatibility with $PIC^{\textcircled{O}}$ MCUs and improve data space memory usage efficiency, the PIC24F instruction set supports both word and byte operations. As a consequence of byte accessibility, all EA calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word, which contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel, byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register which matches the byte address.

All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap will be generated. If the error occurred on a read, the instruction underway is completed; if it occurred on a write, the instruction will be executed but the write will not occur. In either case, a trap is then executed, allowing the system and/or user to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The Most Significant Byte (MSB) is not modified.

A sign-extend instruction (SE) is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a zero-extend (\mathbb{ZE}) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions operate only on words.

4.2.3 NEAR DATA SPACE

The 8-Kbyte area between 0000h and 1FFFh is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. The remainder of the data space is addressable indirectly. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

4.2.4 SPECIAL FUNCTION REGISTER (SFR) SPACE

The first 2 Kbytes of the near data space, from 0000h to 07FFh, are primarily occupied with Special Function Registers (SFRs). These are used by the PIC24F core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'. A diagram of the SFR space, showing where the SFRs are actually implemented, is shown in Table 4-3. Each implemented area indicates a 32-byte region where at least one address is implemented as an SFR. A complete list of implemented SFRs, including their addresses, is shown in Tables 4-4 throughTable 4-34.

			SFR	Space Add	ess						
	xx00	xx20	xx40	xx60	хх	80	xxA0	xxC0	xxE0		
000h		Core			Interrupts						
100h	Tim	ners	(Capture			C	ompare			
200h	I ² C™	UART	SPI/UART	SPI/I ² C	S	PI	UART	I/	0		
300h		ADC/CTMU		—	_	_	—	_			
400h	—	—	_	—			USB		ANSEL		
500h	—	—		—	_	_	_	_	—		
600h	EPMP	RTC/Comp	CRC	_			PPS		_		
700h	GFX C	ontroller	System	NVM/PMD	_	_	_	_	_		

TABLE 4-3:IMPLEMENTED REGIONS OF SFR DATA SPACE

Legend: — = No implemented SFRs in this block

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working R	egister 0							-	0000
WREG1	0002								Working R	egister 1								0000
WREG2	0004								Working R	egister 2								0000
WREG3	0006								Working R	egister 3								0000
WREG4	0008								Working R	egister 4								0000
WREG5	000A								Working R	egister 5								0000
WREG6	000C								Working R	egister 6								0000
WREG7	000E								Working R	egister 7								0000
WREG8	0010								Working R	egister 8								0000
WREG9	0012								Working R	egister 9								0000
WREG10	0014								Working Re	egister 10								0000
WREG11	0016								Working Re	egister 11								0000
WREG12	0018								Working Re	egister 12								0000
WREG13	001A								Working Re	egister 13								0000
WREG14	001C								Working Re	egister 14								0000
WREG15	001E								Working Re	egister 15								0800
SPLIM	0020							Stack	Pointer Limi	it Value Reg	gister							xxxx
PCL	002E							Progran	n Counter L	ow Word Re	egister							0000
PCH	0030	_	_	—	—	—	_	_	—			Program	n Counter F	Register Hig	h Byte			0000
DSRPAG	0032	_	_	_	—	—	_			Exte	nded Data	Space Rea	d Page Add	dress Regis	ter			0001
DSWPAG ⁽¹⁾	0034	_	_	_	—	—	_	_			Extended	d Data Spac	e Write Pag	e Address F	Register			0001
RCOUNT	0036							Repe	eat Loop Co	unter Regis	ster							xxxx
SR	0042	—	_	—	_	_	—	_	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	—	_	—	—	—	—	—	—	_	—	—	—	IPL3	r	—	-	0004
DISICNT	0052	—	Disable Interrupts Counter Register							xxxx								
TBLPAG	0054	_	_	_	_	_	_	_	_			Table M	emory Page	e Address R	egister			0000

DS39969B-page 50

— = unimplemented, read as '0'; r = Reserved bit. Reset values are shown in hexadecimal. Reserved in PIC24FJXXXDA106 devices; do not use. Legend:

Note 1:

TABLE 4-21: ADC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Da	ta Buffer 0								xxxx
ADC1BUF1	0302								ADC Da	ta Buffer 1								xxxx
ADC1BUF2	0304								ADC Da	ta Buffer 2								xxxx
ADC1BUF3	0306								ADC Da	ta Buffer 3								xxxx
ADC1BUF4	0308								ADC Da	ta Buffer 4								xxxx
ADC1BUF5	030A								ADC Da	ta Buffer 5								xxxx
ADC1BUF6	030C								ADC Da	ta Buffer 6								xxxx
ADC1BUF7	030E								ADC Da	ta Buffer 7								xxxx
ADC1BUF8	0310								ADC Da	ta Buffer 8								xxxx
ADC1BUF9	0312								ADC Da	ta Buffer 9								xxxx
ADC1BUFA	0314								ADC Dat	a Buffer 10								xxxx
ADC1BUFB	0316								ADC Dat	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Dat	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Dat	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Dat	a Buffer 14								xxxx
ADC1BUFF	031E								ADC Dat	a Buffer 15								xxxx
ADC1BUF10	0340								ADC Dat	a Buffer 16								xxxx
ADC1BUF11	0342								ADC Dat	a Buffer 17								xxxx
ADC1BUF12	0344								ADC Dat	a Buffer 18								xxxx
ADC1BUF13	0346								ADC Dat	a Buffer 19								xxxx
ADC1BUF14	0348								ADC Dat	a Buffer 20								xxxx
ADC1BUF15	034A								ADC Dat	a Buffer21								xxxx
ADC1BUF16	034C								ADC Dat	a Buffer 22								xxxx
ADC1BUF17	034E								ADC Dat	a Buffer 23								xxxx
ADC1BUF18	0350								ADC Dat	a Buffer 24								xxxx
ADC1BUF19	0352								ADC Dat	a Buffer 25								xxxx
ADC1BUF1A	0354								ADC Dat	a Buffer 26								xxxx
ADC1BUF1B	0356								ADC Dat	a Buffer 27								xxxx
ADC1BUF1C	0358								ADC Dat	a Buffer 28								xxxx
ADC1BUF1D	035A								ADC Dat	a Buffer 29								xxxx
ADC1BUF1E	035C								ADC Dat	a Buffer 30								xxxx
ADC1BUF1F	035E								ADC Dat	a Buffer 31								xxxx

PIC24FJ256DA210 FAMILY

 Legend:
 -- = unimplemented, read as '0', r = reserved, maintain as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Unimplemented in 64-pin devices, read as '0'

TABLE 4-31: GRAPHICS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
G1CMDL	0700							Graph	ics Command F	Register<15:0>	,							0000
G1CMDH	0702							Graphi	cs Command F	Register<31:16	>							0000
G1CON1	0704	G1EN	_	G1SIDL	GCMDWMK4	GCMDWMK3	GCMDWMK2	GCMDWMK1	GCMDWMK0	PUBPP2	PUBPP1	PUBPP0	GCMDCNT4	GCMDCNT3	GCMDCNT2	GCMDCNT1	GCMDCNT0	0000
G1STAT	0706	PUBUSY	_		_	_	-	_	_	IPUBUSY	RCCBUSY	CHRBUSY	VMRGN	HMRGN	CMDLV	CMDFUL	CMDMPT	0000
G1IE	0708	PUIE			_	_		_	_	IPUIE	RCCIE	CHRIE	VMRGNIE	HMRGNIE	CMDLVIE	CMDFULIE	CMDMPTIE	0000
G1IR	070A	PUIF	-		—	—		—	—	IPUIF	RCCIF	CHRIF	VMRGNIF	HMRGNIF	CMDLVIF	CMDFULIF	CMDMPTIF	0000
G1W1ADRL	070C							GPU Work A	Area 1 Start Ado	dress Register∙	<15:0>							0000
G1W1ADRH	070E	—	—	-	-	—	—	—	—			GPU Wo	rk Area 1 Star	Address Regi	ster<23:16>			0000
G1W2ADRL	0710							GPU Work A	Area 2 Start Ado	dress Register	<15:0>							0000
G1W2ADRH	0712	—	_	—	—	—	_	_	—			GPU Wo	rk Area 2 Star	Address Regi	ster<23:16>			0000
G1PUW	0714	—	_	—	—	—					GPU Wor	k Area Width	Register					0000
G1PUH	0716	_	—	_	_	_					GPU Wor	k Area Heigh	t Register					0000
G1DPADRL	0718							Display Bu	uffer Start Addre	ess Register<1	5:0>							0000
G1DPADRH	071A	_	—	_	—	_	_	—	—			Display	Buffer Start A	ddress Registe	er<23:16>			0000
G1DPW	071C	—	_	_	—	—					Display F	Frame Width	Register					0000
G1DPH	071E	—	_	_	—	—					Display F	rame Height	Register					0000
G1DPWT	0720	—	_	_	—	—					Display	Total Width F	Register					0000
G1DPHT	0722	—	—	—	—	—					Display	Total Height F	Register					0000
G1CON2	0724	DPGWDTH1	DPGWDTH0	DPSTGER1	DPSTGER0	_	_	DPTEST1	DPTEST0	DPBPP2	DPBPP1	DPBPP0	—	—	DPMODE2	DPMODE1	DPMODE0	0000
G1CON3	0726	—	—	—	—	—	—	DPPINOE	DPPOWER	DPCLKPOL	DPENPOL	DPVSPOL	DPHSPOL	DPPWROE	DPENOE	DPVSOE	DPHSOE	0000
G1ACTDA	0728			Number of	Lines Before th	ne First Active L	ine Register					Number of	Pixels Before t	he First Active	Plxel Register			0000
G1HSYNC	072A			HSYN	IC Pulse-Width	Configuration F	Register					HSYN	IC Start Delay	Configuration	Register			0000
G1VSYNC	072C			VSYN	IC Pulse-Width	Configuration F	Register					VSYN	IC Start Delay	Configuration	Register			0000
G1DBLCON	072E			ical Blanking S	Start to First Dis	played Line Co	nfiguration Reg		1		Horizo	ntal Blanking	Start to First D	Displayed Line	Configuration F	Regsiter		0000
G1CLUT	0730	CLUTEN	CLUTBUSY	—	_	_	—	CLUTTRD	CLUTRWEN			Color Lo	ook-Up Table N	Memory Addres	ss Register			0000
G1CLUTWR	0732								p Table Memor		•							0000
G1CLUTRD	0734							Color Look-u	p Table Memor	y Read Data R	Register							0000
G1MRGN	0736			V	ertical Blanking	Advance Regis	ster					Но	rizontal Blanki	ng Advance Re	egister			0000
G1CHRX	0738	-	—	—	-	_				Curre	ent Character	X-Coordinate	Position Reg	ister				0000
G1CHRY	073A	_	_	_	_	_				Curre	ent Character	Y-Coordinate	Position Regi	ster				0000
G1IPU	073C	_	_	_	_	_	_	_	_	_	_	HUFFERR	BLCKERR	LENERR	WRAPERR	IPUDONE	BFINAL	0000
G1DBEN	073E	GDBEN15	GDBEN14	GDBEN13	GDBEN12	GDBEN11	GDBEN10	GDBEN9	GDBEN8	GDBEN7	GDBEN6	GDBEN5	GDBEN4	GDBEN3	GDBEN2	GDBEN1	GDBEN0	0000

Legend:

DS39969B-page 69

: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes (MSB) of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-5). An equivalent procedure in 'C' compiler, using the MPLAB C30 compiler and built-in hardware functions is shown in Example 5-6.

EXAMPLE 5-5: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

; Setup a MOV MOV MOV		; ;Initialize PM Page Boundary SFR ;Initialize a register with program memory address
MOV	#LOW_WORD_N, W2	;
MOV	#HIGH_BYTE_N, W3	;
TBLWTL	W2, [W0]	; Write PM low word into program latch
TBLWTH	W3, [W0++]	; Write PM high byte into program latch
; Setup NV MOV MOV	MCON for programming one word to #0x4003, W0 W0, NVMCON	o data Program Memory ; ; Set NVMOP bits to 0011
DISI	#5	; Disable interrupts while the KEY sequence is written
MOV.B	#0x55, W0	; Write the key sequence
MOV	W0, NVMKEY	
MOV.B	#0xAA, W0	
MOV	W0, NVMKEY	
BSET	NVMCON, #WR	; Start the write cycle
NOP		; Required delays
NOP		

EXAMPLE 5-6: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

// C example using MPLAB C30	
unsigned int offset;	
unsigned long progAddr = 0xXXXXXX;	// Address of word to program
unsigned int progDataL = 0xXXXX;	// Data to program lower word
unsigned char progDataH = 0xXX;	// Data to program upper byte
//Set up NVMCON for word programming	
NVMCON = 0x4003;	// Initialize NVMCON
//Set up pointer to the first memory locatio	n to be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	// Initialize lower word of address
//Perform TBLWT instructions to write latche	S
<pre>builtin_tblwtl(offset, progDataL);</pre>	// Write to address low word
<pre>builtin_tblwth(offset, progDataH);</pre>	// Write to upper byte
asm("DISI #5");	// Block interrupts with priority <7
	// for next 5 instructions
builtin_write_NVM();	// C30 function to perform unlock
	// sequence and set WR
	-

REGISTER 7-17: IEC5: INTERRUPT ENABLE CONTROL REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U4ERIE	USB1IE	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	_
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as ')'				
bit 13	IC9IE: Input C	Capture Channe	el 9 Interrupt E	nable bit			
		request enable request not ena					
bit 12	•	ut Compare Ch		ipt Enable bit			
	1 = Interrupt	request enable request not ena	d				
bit 11	•	Event Interrupt					
		request enable					
	•	request not ena					
bit 10		3 Fault Interrupt					
		request enable request not ena					
bit 9	•	RT4 Transmitter		ble bit			
	•	request enable					
	-	request not ena					
bit 8		RT4 Receiver Ir	•	e bit			
		request enable request not ena					
bit 7		RT4 Error Interr					
		request enable	-				
	0 = Interrupt	request not ena	abled				
bit 6		B1 (USB OTG)	•	le bit			
		request enable					
bit 5	•	request not ena ster I2C3 Even		hle hit			
bit 0		request enable	-				
		request not ena					
bit 4	SI2C3IE: Slav	ve I2C3 Event I	nterrupt Enabl	e bit			
	•	request enable request not ena					
bit 3	-	RT3 Transmitter		ble bit			
	•	request enable request not ena					
bit 2	-	RT3 Receiver Ir		e bit			
		request enable	-				
		request not ena					

8.4 Clock Switching Operation

With few limitations, applications are free to switch between any of the four clock sources (POSC, SOSC, FRC and LPRC) under software control and at any time. To limit the possible side effects that could result from this flexibility, PIC24F devices have a safeguard lock built into the switching process.

Note: The Primary Oscillator mode has three different submodes (XT, HS and EC) which are determined by the POSCMDx Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch between the different primary submodes without reprogramming the device.

8.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in CW2 must be programmed to '0'. (Refer to **Section 27.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSCx (OSCCON<10:8>) control bits do not control the clock selection when clock switching is disabled. However, the COSCx (OSCCON<14:12>) control bits will reflect the clock source selected by the FNOSCx Configuration bits.

The OSWEN (OSCCON<0>) control bit has no effect when clock switching is disabled; It is held at '0' at all times.

8.4.2 OSCILLATOR SWITCHING SEQUENCE

At a minimum, performing a clock switch requires this basic sequence:

- If desired, read the COSCx (OSCCON<14:12>) control bits to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSCx (OSCCON<10:8>) control bits for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

- 1. The clock switching hardware compares the COSCx bits with the new value of the NOSCx bits. If they are the same, then the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.
- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and CF (OSCCON<3>) bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware will wait until the OST expires. If the new source is using the PLL, then the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- 5. The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSCx bit values are transferred to the COSCx bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or SOSC (if SOSCEN remains set).
 - Note 1: The processor will continue to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any Primary Oscillator mode with PLL and FRCPLL modes are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 10-29 through Register 10-44). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 10-4 :	SELECTABLE OUTPUT SOURCES ((MAPS FUNCTION TO OUTPUT)

Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request To Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request To Send
7	SDO1	SPI1 Data Output
8	SCK10UT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
18	OC1	Output Compare 1
19	OC2	Output Compare 2
20	OC3	Output Compare 3
21	OC4	Output Compare 4
22	OC5	Output Compare 5
23	OC6	Output Compare 6
24	OC7	Output Compare 7
25	OC8	Output Compare 8
28	U3TX	UART3 Transmit
29	U3RTS ⁽³⁾	UART3 Request To Send
30	U4TX	UART4 Transmit
31	U4RTS ⁽³⁾	UART4 Request To Send
32	SDO3	SPI3 Data Output
33	SCK3OUT	SPI3 Clock Output
34	SS3OUT	SPI3 Slave Select Output
35	OC9	Output Compare 9
36	C3OUT	Comparator 3 Output
37-63	(unused)	NC

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

REGISTER 10-33: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP9R5	RP9R4	RP9R3	RP9R2	RP9R1	RP9R0
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP8R5	RP8R4	RP8R3	RP8R2	RP8R1	RP8R0
bit 7						•	bit 0
Legend:							

Legenu.					
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

- bit 13-8**RP9R<5:0>:** RP9 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP9 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'
- bit 5-0 **RP8R<5:0>:** RP8 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP8 (see Table 10-4 for peripheral function numbers).

REGISTER 10-34: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP11R5	RP11R4	RP11R3	RP11R2	RP11R1	RP11R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP10R5	RP10R4	RP10R3	RP10R2	RP10R1	RP10R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP11R<5:0>:** RP11 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP11 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP10R<5:0>:** RP10 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP10 (see Table 10-4 for peripheral function numbers).

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾

R/W-0 L TON ⁽¹⁾ bit 15	J-0 R/W-0 — TSIDL ⁽¹⁾	U-0	U-0	U-0	U-0	U-0	
	- TSIDL ⁽¹⁾	_	_	—	_	—	
bit 15							
Γ						bit 8	
U-0 R/	W-0 R/W-0	R/W-0	U-0	U-0	R/W-0	U-0	
— TG/	TE ⁽¹⁾ TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,2)	—	
bit 7						bit 0	
Legend:							
R = Readable bit	W = Writable	e bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	

bit 15	TON: Timery On bit ⁽¹⁾
	1 = Starts 16-bit Timery
	0 = Stops 16-bit Timery
bit 14	Unimplemented: Read as '0'
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾
	When TCS = 1:
	This bit is ignored.
	When TCS = 0: 1 = Gated time accumulation enabled
	0 = Gated time accumulation disabled
bit 5-4	TCKPS<1:0>: Timery Input Clock Prescale Select bits ⁽¹⁾
	11 = 1:256
	10 = 1:64 01 = 1:8
	01 - 1.8 00 = 1.1
bit 3-2	Unimplemented: Read as '0'
bit 1	TCS: Timery Clock Source Select bit ^(1,2)
	1 = External clock from pin, TyCK (on the rising edge)
	0 = Internal clock (Fosc/2)
bit 0	Unimplemented: Read as '0'
Note 1:	When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery executions and through T2CON and T4CON

operation; all timer functions are set through T2CON and T4CON.
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software

bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾

- 111 = Center-Aligned PWM mode on OCx⁽²⁾
 - 110 = Edge-Aligned PWM Mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initialize the OCx pin low, the toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize the OCx pin low, toggle the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6 channels; Comparator 3 output controls the OC7-OC9 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

18.5.2 COMPLETE A CONTROL TRANSACTION TO A CONNECTED DEVICE

- 1. Follow the procedure described in Section 18.5.1 "Enable Host Mode and Discover a Connected Device" to discover a device.
- Set up the Endpoint Control register for bidirectional control transfers by writing 0Dh to U1EP0 (this sets the EPCONDIS, EPTXEN and EPHSHK bits).
- 3. Place a copy of the device framework setup command in a memory buffer. See *"Chapter 9 of the USB 2.0 Specification"* for information on the device framework command set.
- 4. Initialize the Buffer Descriptor (BD) for the current (even or odd) TX EP0 to transfer the eight bytes of command data for a device framework command (i.e., GET DEVICE DESCRIPTOR):
 - a) Set the BD data buffer address (BD0ADR) to the starting address of the 8-byte memory buffer containing the command.
 - b) Write 8008h to BD0STAT (this sets the UOWN bit and sets a byte count of 8).
- Set the USB device address of the target device in the address register (U1ADDR<6:0>). After a USB bus Reset, the device USB address will be zero. After enumeration, it will be set to another value between 1 and 127.
- 6. Write D0h to U1TOK; this is a SETUP token to Endpoint 0, the target device's default control pipe. This initiates a SETUP token on the bus, followed by a data packet. The device handshake is returned in the PID field of BD0STAT after the packets are complete. When the USB module updates BD0STAT, a transfer done interrupt is asserted (the TRNIF flag is set). This completes the setup phase of the setup transaction as referenced in *"Chapter 9 of the USB Specification"*.
- 7. To initiate the data phase of the setup transaction (i.e., get the data for the GET DEVICE DESCRIPTOR command), set up a buffer in memory to store the received data.

- 8. Initialize the current (even or odd) RX or TX (RX for IN, TX for OUT) EP0 BD to transfer the data.
 - a) Write C040h to BD0STAT. This sets the UOWN, configures Data Toggle (DTS) to DATA1 and sets the byte count to the length of the data buffer (64 or 40h in this case).
 - b) Set BD0ADR to the starting address of the data buffer.
- 9. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 90h to U1TOK for an IN token for a GET DEVICE DESCRIPTOR command). This initiates an IN token on the bus followed by a data packet from the device to the host. When the data packet completes, the BD0STAT is written and a transfer done interrupt is asserted (the TRNIF flag is set). For control transfers with a single packet data phase, this completes the data phase of the setup transaction as referenced in *"Chapter 9 of the USB Specification"*. If more data needs to be transferred, return to step 8.
- 10. To initiate the status phase of the setup transaction, set up a buffer in memory to receive or send the zero length status phase data packet.
- 11. Initialize the current (even or odd) TX EP0 BD to transfer the status data:
 - a) Set the BDT buffer address field to the start address of the data buffer.
 - b) Write 8000h to BD0STAT (set UOWN bit, configure DTS to DATA0 and set byte count to 0).
- 12. Write the Token register with the appropriate IN or OUT token to Endpoint 0, the target device's default control pipe (e.g., write 01h to U1TOK for an OUT token for a GET DEVICE DESCRIPTOR command). This initiates an OUT token on the bus followed by a zero length data packet from the host to the device. When the data packet completes, the BD is updated with the handshake from the device and a transfer done interrupt is asserted (the TRNIF flag is set). This completes the status phase of the setup transaction as described in *"Chapter 9 of the USB Specification"*.
 - Note: Only one control transaction can be performed per frame.

REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	—	—	_	—		
bit 15	bit 15 bit								

R/W-0, HS	U-0	U-0	R/W-0	U-0	U-0	R/W-0, HC	R/W-0	
UACTPND	—	—	USLPGRD	_	-	USUSPND	USBPWR	
bit 7 bit 0								

Legend: HS = Hardware Settable bit		HC = Hardware Clearable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: Sleep/Suspend Guard bit
	 1 = Indicate to the USB module that it is about to be suspended or powered down 0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state 0 = Normal USB OTG operation
bit 0	USBPWR: USB Operation Enable bit
	1 = USB OTG module is enabled
	$0 = \text{USB OTG module is disabled}^{(1)}$
Note 1:	Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>)

are all cleared.

REGISTER	19-7: PMCSxMD	CHIP SELECT x	MODE REGIS	TER					
R/W-0	R/W-0 R/W	/-0 R/W-0	R/W-0	U-0	U-0	U-0			
ACKM1	ACKM0 AMW	AIT2 AMWAIT1	AMWAIT0	—	—	—			
bit 15						bit 8			
						D/M/ O			
R/W-0	R/W-0 R/W		R/W-0	R/W-0	R/W-0	R/W-0			
DWAITB1	DWAITB0 DWAI	TM3 DWAITM2	DWAITM1	DWAITM0	DWAITE1	DWAITE0			
bit 7						bit 0			
Legend:									
R = Readab	le bit W = Wi	itable bit	U = Unimplem	ented bit, read	as '0'				
-n = Value a			'0' = Bit is clea		x = Bit is unkn	own			
		10 001			X Bit io diliti	own			
bit 15-14	ACKM<1:0>: Chip S	elect x Acknowledge	e Mode bits						
	11 = Reserved	· ·							
	10 = PMACKx is use	d to determine wher	n a read/write op	eration is comp	olete				
	01 = PMACKx is use								
		> = 0000, the maxin	num time-out is 2	255 TCY, else it	is DWAITM<3:	0> cycles.			
h:1 1 0 11	00 = PMACKx is not		Acaton Mait Ctata	a hita					
bit 13-11	AMWAIT<2:0>: Chip 111 = Wait of 10 alte		viaster wait State	IS DITS					
	111 = Wait of 10 alternate master cycles								
	001 = Wait of 4 altern 000 = Wait of 3 altern	•							
bit 10-8	Unimplemented: Re	ad as '0'							
bit 7-6	DWAITB<1:0>: Chip Select x Data Setup Before Read/Write Strobe Wait States bits								
	11 = Wait of 3¼ TCY								
	10 = Wait of 21/4 Tcy								
	01 = Wait of 1 ¹ / ₄ TCY								
h # E O	00 = Wait of ¹ / ₄ TCY	Colorty Data Daad	1/10/mite Otrobe 10/	it Chataa hita					
bit 5-2	DWAITM<3:0>: Chip		/write Strobe wa	all States Dits					
	For Write operations:								
	 0001 = Wait of 1½ Tcy								
	$0001 = \text{Wait of } \frac{1}{2} \text{ ICY}$ $0000 = \text{Wait of } \frac{1}{2} \text{ ICY}$								
	For Read operations:								
		1111 = Wait of 15^{3}_{4} Tcy							
	 0001 = Wait of 1¾ To	v							
	0001 = Wait of 1/4 R0000 = Wait of 3/4 Tc								
bit 1-0	DWAITE<1:0>: Chip		After Read/Write	Strobe Wait St	ates bits				
	For Write operations:								
	11 = Wait of 31/4 TCY								
	10 = Wait of 21/4 TCY								
	01 = Wait of 1¼ TCY								
	00 = Wait of 1/4 TCY								
	For Read operations:								
	11 = Wait of 3 Tcy 10 = Wait of 2 Tcy								
	01 = Wait of 2 TCY								
	00 = Wait of 0 Tcy								

REGISTER 22-12: G1W2ADRH: GPU WORK AREA 2 START ADDRESS REGISTER HIGH

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15 bit i	—	—	_	_	—	—	—	_
	bit 15							bit 8

| R/W-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| W2ADR23 | W2ADR22 | W2ADR21 | W2ADR20 | W2ADR19 | W2ADR18 | W2ADR17 | W2ADR16 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **W2ADR<23:16>:** GPU Work Area 2 Start Address High bits Work area address must point to an even byte address in memory.

REGISTER 22-13: G1PUW: GPU WORK AREA WIDTH REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	—	—	—	—	PUW10	PUW9	PUW8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PUW7 | PUW6 | PUW5 | PUW4 | PUW3 | PUW2 | PUW1 | PUW0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-0 **PUW<10:0>:** GPU Work Area Width bits (in pixels)

REGISTER 22-14: G1PUH: GPU WORK AREA HEIGHT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	—	_	—	PUH10	PUH9	PUH8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PUH7	PUH6	PUH5	PUH4	PUH3	PUH2	PUH1	PUH0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15-11	Unimplemer	ted: Read as '0)'				

bit 10-0 **PUH<10:0>:** GPU Work Area Height bits (in pixels)

REGISTER 24-1: CMxCON: COMPARATOR x CONTROL REGISTERS (COMPARATORS 1 THROUGH 3) (CONTINUED)

- bit 4 **CREF:** Comparator Reference Select bits (non-inverting input)
 - 1 = Non-inverting input connects to the internal CVREF voltage
 - 0 = Non-inverting input connects to the CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = Inverting input of the comparator connects to the internal selectable reference voltage specified by the CVREFM<1:0> bits in the CVRCON register
 - 10 = Inverting input of the comparator connects to the CxIND pin
 - 01 = Inverting input of the comparator connects to the CXINC pin
 - 00 = Inverting input of the comparator connects to the CxINB pin

REGISTER 24-2: CMSTAT: COMPARATOR MODULE STATUS REGISTER

R/W-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
CMIDL	—	—	—	—	C3EVT	C2EVT	C1EVT
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC
—	—	—	—	—	C3OUT	C2OUT	C1OUT
bit 7							bit 0

Legend:	HSC = Hardware Setta	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	CMIDL: Comparator Stop in Idle Mode bit
	 1 = Discontinue operation of all comparators when device enters Idle mode 0 = Continue operation of all enabled comparators in Idle mode
bit 14-11	Unimplemented: Read as '0'
bit 10	C3EVT: Comparator 3 Event Status bit (read-only)
	Shows the current event status of Comparator 3 (CM3CON<9>).
bit 9	C2EVT: Comparator 2 Event Status bit (read-only)
	Shows the current event status of Comparator 2 (CM2CON<9>).
bit 8	C1EVT: Comparator 1 Event Status bit (read-only)
	Shows the current event status of Comparator 1 (CM1CON<9>).
bit 7-3	Unimplemented: Read as '0'
bit 2	C3OUT: Comparator 3 Output Status bit (read-only)
	Shows the current output of Comparator 3 (CM3CON<8>).
bit 1	C2OUT: Comparator 2 Output Status bit (read-only)
	Shows the current output of Comparator 2 (CM2CON<8>).
bit 0	C1OUT: Comparator 1 Output Status bit (read-only)
	Shows the current output of Comparator 1 (CM1CON<8>).

28.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

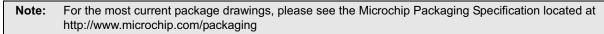
28.12 MPLAB PM3 Device Programmer

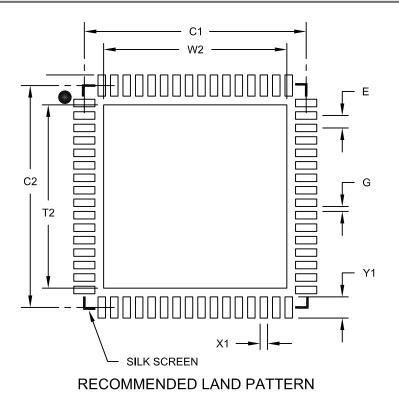
The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

28.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.


The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.


In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

	1	MILLIMETER	S	
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.50 BSC	
Optional Center Pad Width	W2			7.35
Optional Center Pad Length	T2			7.35
Contact Pad Spacing	C1		8.90	
Contact Pad Spacing	C2		8.90	
Contact Pad Width (X64)	X1			0.30
Contact Pad Length (X64)	Y1			0.85
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A