

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256КВ (85.5К х 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256da110t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin	Function	Pin	Function
1	GCLK/CN82/RG15	41	AN12/PMA11/CTEDG2/CN30/RB12
2	VDD	42	AN13/PMA10/CTEDG1/CN31/RB13
3	PMD5/CN63/RE5	43	AN14/CTPLS/RP14/PMA1/CN32/RB14
4	SCL3/PMD6/CN64/RE6	44	AN15/REFO/ RP29 /PMA0/CN12/RB15
5	SDA3/PMD7/CN65/RE7	45	Vss
6	RPI38/GD0/CN45/RC1	46	VDD
7	RPI39/GD8/CN46/RC2	47	RPI43/GD14/CN20/RD14
8	RPI40/GD1/CN47/RC3	48	RP5/GD15/CN21/RD15
9	AN16/RPI41/PMCS2/PMA22 ⁽²⁾ /CN48/RC4	49	RP10 /PMA9/CN17/RF4
10	AN17/C1IND/ RP21 /PMA5/PMA18 ⁽²⁾ /CN8/RG6	50	RP17 /PMA8/CN18/RF5
11	AN18/C1INC/ RP26 /PMA4/PMA20 ⁽²⁾ /CN9/RG7	51	RP16/USBID/CN71/RF3
12	AN19/C2IND/ RP19 /PMA3/PMA21 ⁽²⁾ /CN10/RG8	52	RP30/GD3/CN70/RF2
13	MCLR	53	RP15/GD9/CN74/RF8
14	AN20/C2INC/RP27/PMA2/CN11/RG9	54	VBUS/CN73/RF7
15	Vss	55	VUSB
16	VDD	56	D-/CN84/RG3
17	TMS/CN33/RA0	57	D+/CN83/RG2
18	RPI33/PMCS1/CN66/RE8	58	SCL2/CN35/RA2
19	AN21/RPI34/PMA19/CN67/RE9	59	SDA2/PMA20/PMA4 ⁽²⁾ /CN36/RA3
20	PGEC3/AN5/C1INA/VBUSON/RP18/CN7/RB5	60	TDI/PMA21/PMA3 ⁽²⁾ /CN37/RA4
21	PGED3/AN4/C1INB/USBOEN/RP28/GD4/CN6/RB4	61	TDO/CN38/RA5
22	AN3/C2INA/GD5/VPIO/CN5/RB3	62	VDD
23	AN2/C2INB/VMIO/RP13/GD6/CN4/RB2	63	OSCI/CLKI/CN23/RC12
24	PGEC1/AN1/VREF- ⁽¹⁾ / RP1 /CN3/RB1	64	OSCO/CLKO/CN22/RC15
25	PGED1/AN0/VREF+ ⁽¹⁾ /RP0/CN2/RB0	65	Vss
26	PGEC2/AN6/ RP6 /CN24/RB6	66	SCL1/ RPI36 /PMA22/PMCS2 ⁽²⁾ /CN43/RA14
27	PGED2/AN7/RP7/RCV/GPWR/CN25/RB7	67	SDA1/ RPI35 /PMBE1/CN44/RA15
28	VREF-/PMA7/CN41/RA9	68	DMLN/RTCC/ RP2 /CN53/RD8
29	VREF+/PMA6/CN42/RA10	69	DPLN/ RP4 /GD10/PMACK2/CN54/RD9
30	AVdd	70	RP3/PMA15/PMCS2 ⁽³⁾ /CN55/RD10
31	AVss	71	RP12/PMA14/PMCS1 ⁽³⁾ /CN56/RD11
32	AN8/ RP8 /GD12/CN26/RB8	72	DMH/ RP11 /INT0/CN49/RD0
33	AN9/ RP9 /GD13/CN27/RB9	73	SOSCI/C3IND/CN1/RC13
34	AN10/CVREF/PMA13/CN28/RB10	74	SOSCO/SCLKI/T1CK/C3INC/RPI37/CN0/RC14
35	AN11/PMA12/CN29/RB11	75	Vss
36	Vss	76	VCPCON/RP24/GD7/VBUSCHG/CN50/RD1
37	VDD	77	DPH/ RP23 /GD11/PMACK1/CN51/RD2
38	TCK/CN34/RA1	78	RP22/PMBE0/CN52/RD3
39	RP31/GD2/CN76/RF13	79	RPI42/PMD12/CN57/RD12
40	RPI32/PMA18/PMA5 ⁽²⁾ /CN75/RF12	80	PMD13/CN19/RD13

COMPLETE PIN FUNCTION DESCRIPTIONS FOR 100-PIN DEVICES TABLE 2:

Legend:

RPn and RPIn represent remappable pins for Peripheral Pin Select (PPS) functions.

Alternate pin assignments for VREF+ and VREF- when the ALTVREF Configuration bit is programmed. Alternate pin assignments for EPMP when the ALTPMP Configuration bit is programmed. Note 1:

2:

3: Pin assignment for PMCSx when CSF<1:0> is not equal to '00'.

		Pin Number			I	
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Buffer	Description
PGEC1	15	24	K1	I/O	ST	In-Circuit Debugger/Emulator/ICSP™ Programming Clock 1.
PGED1	16	25	K2	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data 1.
PGEC2	17	26	L1	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock 2.
PGED2	18	27	J3	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data 2.
PGEC3	11	20	H1	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Clock 3.
PGED3	12	21	H2	I/O	ST	In-Circuit Debugger/Emulator/ICSP Programming Data 3.
PMA0	—	44	L8	I/O	ST	Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	—	43	K7	I/O	ST	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2	—	14	F3	0	_	
PMA3	—	12, 60 ⁽¹⁾	F2, G11 ⁽¹⁾	0	_	
PMA4	—	11,59 ⁽¹⁾	F4,G10 ⁽¹⁾	0	_	
PMA5	—	10,40 ⁽¹⁾	E3,K6 ⁽¹⁾	0	_	
PMA6	—	29	K3	0	_	
PMA7	—	28	L2	0		
PMA8	—	50	L11	0	_	
PMA9	—	49	L10	0	_	
PMA10	—	42	L7	0		
PMA11	—	41	J7	0	_	
PMA12	—	35	J5	0	_	Parallel Master Port Address bits<22:2>.
PMA13	—	34	L5	0	_	
PMA14	—	71	C11	0	_	
PMA15	—	70	D11	0	_	
PMA16	—	95	C4	0	_	
PMA17	—	92	B5	0	—	
PMA18	—	40,10 ⁽¹⁾	K6,E3 ⁽¹⁾	0	_	
PMA19	—	19	G2	0	_	
PMA20	—	59, 11 ⁽¹⁾	G10, F4 ⁽¹⁾	0	_	
PMA21	—	60,12 ⁽¹⁾	G11,F2 ⁽¹⁾	0	_	
PMA22	—	66,9 ⁽¹⁾	E11,E1 ⁽¹⁾	0	_	
PMACK1	—	77	A10	Ι	ST/TTL	Parallel Master Port Acknowledge Input 1.
PMACK2	—	69	E10	Ι	ST/TTL	Parallel Master Port Acknowledge Input 2.
PMALL	—	44	L8	0	_	Parallel Master Port Lower Address Latch Strobe.
PMALH	—	43	K7	0	—	Parallel Master Port Higher Address Latch Strobe.
PMALU	—	14	F3	0	_	Parallel Master Port Upper Address Latch Strobe.
PMBE0	—	78	B9	0		Parallel Master Port Byte Enable Strobe 0.
PMBE1	—	67	E8	0		Parallel Master Port Byte Enable Strobe 1.
PMCS1	—	71 ⁽³⁾ ,18	C11 ⁽³⁾ ,G1	I/O	ST/TTL	Parallel Master Port Chip Select Strobe 1.
PMCS2	-	70 ⁽²⁾ ,9, 66 ⁽¹⁾	D11 ⁽²⁾ ,E1, E11 ⁽¹⁾	0	_	Parallel Master Port Chip Select Strobe 2.
Legend:	TTL = TTL inpu ANA = Analog	ut buffer level input/out	put		ST = I ² C™	Schmitt Trigger input buffer = I ² C/SMBus input buffer
Note 1:	The alternate E	EPMP pins are	selected whe	n the A	ALTPMP (CW3<12>) bit is programmed to '0'.

TABLE 1-3: PIC24FJ256DA210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word and addresses are incremented or decremented by two during code execution. This arrangement also provides compatibility with data memory space addressing and makes it possible to access data in the program memory space.

4.1.2 HARD MEMORY VECTORS

All PIC24F devices reserve the addresses between 0x00000 and 0x000200 for hard coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user at 0x000000 with the actual address for the start of code at 0x000002.

PIC24F devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the many device interrupt sources to be handled by separate ISRs. A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table"**.

4.1.3 FLASH CONFIGURATION WORDS

In PIC24FJ256DA210 family devices, the top four words of on-chip program memory are reserved for configuration information. On device Reset, the configuration information is copied into the appropriate Configuration register. The addresses of the Flash Configuration Word for devices in the PIC24FJ256DA210 family are shown in Table 4-1. Their location in the memory map is shown with the other memory vectors in Figure 4-1.

The Configuration Words in program memory are a compact format. The actual Configuration bits are mapped in several different registers in the configuration memory space. Their order in the Flash Configuration Words does not reflect a corresponding arrangement in the configuration space. Additional details on the device Configuration Words are provided in **Section 27.1** "Configuration Bits".

TABLE 4-1:	FLASH CONFIGURATION
	WORDS FOR
	PIC24FJ256DA210 FAMILY
	DEVICES

Device	Program Memory (Words)	Configuration Word Addresses			
PIC24FJ128DAXXX	44,032	0x0157F8:0x0157FE			
PIC24FJ256DAXXX	87,552	0x02ABF8:0x02ABFE			

FIGURE 4-2:	PROGRAM MEMORY ORGANIZATION
-------------	-----------------------------

Address	most signi					(Isw Address
	r	23	16	8	0	
0x000001	00000000					0x000000
0x000003	0000000					0x000002
0x000005	0000000					0x000004
0x000007	0000000					0x000006
	$\underbrace{\qquad}$	<u> </u>		-~		
	Program Memory 'Phantom' Byte (read as '0')	,	Instr	uction Width		

TABLE 4-31: GRAPHICS REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
G1CMDL	0700							Graph	ics Command	Register<15:0	>							0000
G1CMDH	0702							Graphi	ics Command F	Register<31:16	>							0000
G1CON1	0704	G1EN	_	G1SIDL	GCMDWMK4	GCMDWMK3	GCMDWMK2	GCMDWMK1	GCMDWMK0	PUBPP2	PUBPP1	PUBPP0	GCMDCNT4	GCMDCNT3	GCMDCNT2	GCMDCNT1	GCMDCNTC	0000
G1STAT	0706	PUBUSY	_	_	_	—	_	_	_	IPUBUSY	RCCBUSY	CHRBUSY	VMRGN	HMRGN	CMDLV	CMDFUL	CMDMPT	0000
G1IE	0708	PUIE	_	—	_	_	_	_	—	IPUIE	RCCIE	CHRIE	VMRGNIE	HMRGNIE	CMDLVIE	CMDFULIE	CMDMPTIE	. 0000
G1IR	070A	PUIF	—	_	—	_	—	—	—	IPUIF	RCCIF	CHRIF	VMRGNIF	HMRGNIF	CMDLVIF	CMDFULIF	CMDMPTIF	0000
G1W1ADRL	070C		_	GPU Work Area 1 Start Address Register<15:0> 0										0000				
G1W1ADRH	070E	—	—	—	—	—	—	—	—			GPU Wo	ork Area 1 Star	t Address Regi	ster<23:16>			0000
G1W2ADRL	0710				-		-	GPU Work /	Area 2 Start Ad	dress Register	<15:0>							0000
G1W2ADRH	0712	_	_		_	_	_	—	_			GPU Wo	ork Area 2 Star	t Address Regi	ster<23:16>			0000
G1PUW	0714	—	—		—	—					GPU Wo	rk Area Widtl	n Register					0000
G1PUH	0716	—	—	—	—	—					GPU Wo	k Area Heigh	nt Register					0000
G1DPADRL	0718							Display B	uffer Start Addr	ess Register<1	5:0>							0000
G1DPADRH	071A	_	_		_	_	_	—	—			Displa	y Buffer Start /	Address Regist	er<23:16>			0000
G1DPW	071C	—	—	_	—	—					Display	Frame Width	Register					0000
G1DPH	071E	—	—	_	—	—					Display I	Frame Height	Register					0000
G1DPWT	0720	—	—	_	—	—					Display	Total Width I	Register					0000
G1DPHT	0722	_	—	_	_	_					Display	Total Height	Register					0000
G1CON2	0724	DPGWDTH1	DPGWDTH0	DPSTGER1	DPSTGER0	—	—	DPTEST1	DPTEST0	DPBPP2	DPBPP1	DPBPP0	—	—	DPMODE2	DPMODE1	DPMODE0	0000
G1CON3	0726	—	-	—	—	—	—	DPPINOE	DPPOWER	DPCLKPOL	DPENPOL	DPVSPOL	DPHSPOL	DPPWROE	DPENOE	DPVSOE	DPHSOE	0000
G1ACTDA	0728			Number of	Lines Before t	he First Active L	ine Register					Number of	Pixels Before	the First Active	Plxel Register			0000
G1HSYNC	072A			HSYN	IC Pulse-Width	Configuration F	Register					HSY	NC Start Delay	Configuration	Register			0000
G1VSYNC	072C			VSYN	IC Pulse-Width	Configuration F	Register					VSY	NC Start Delay	Configuration	Register			0000
G1DBLCON	072E		Ver	tical Blanking	Start to First Dis	splayed Line Co	nfiguration Reg	siter			Horizo	ontal Blanking	Start to First	Displayed Line	Configuration F	Regsiter		0000
G1CLUT	0730	CLUTEN	CLUTBUSY	—	—	—	—	CLUTTRD	CLUTRWEN			Color L	ook-Up Table	Memory Addre	ss Register			0000
G1CLUTWR	0732							Color Look-u	ıp Table Memo	ry Write Data F	Register							0000
G1CLUTRD	0734							Color Look-u	ip Table Memo	ry Read Data F	Register							0000
G1MRGN	0736			V	ertical Blanking	Advance Regi	ster					Ho	orizontal Blank	ing Advance R	egister			0000
G1CHRX	0738	_	_	_	_	_				Curre	ent Character	X-Coordinat	e Position Reg	ister				0000
G1CHRY	073A	—	_	_	—	_				Cum	ent Characte	Y-Coordinate	e Position Reg	ister				0000
G1IPU	073C	_	_	_	_	_	_	_	_	_	_	HUFFERR	BLCKERR	LENERR	WRAPERR	IPUDONE	BFINAL	0000
G1DBEN	073E	GDBEN15	GDBEN14	GDBEN13	GDBEN12	GDBEN11	GDBEN10	GDBEN9	GDBEN8	GDBEN7	GDBEN6	GDBEN5	GDBEN4	GDBEN3	GDBEN2	GDBEN1	GDBEN0	0000

Legend:

DS39969B-page 69

: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.3.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two, 16-bit word-wide address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space which contains the least significant data word, and TBLRDH and TBLWTH access the space which contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

 TBLRDL (Table Read Low): In Word mode, it maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>). In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when byte select is '1'; the lower byte is selected when it is '0'. TBLRDH (Table Read High): In Word mode, it maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom' byte, will always be '0'. In Byte mode, it maps the upper or lower byte of the program word to D<7:0> of the data address, as above. Note that the data will always be '0' when the upper 'phantom' byte is selected (byte select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are described in **Section 5.0 "Flash Program Memory"**.

For all table operations, the area of program memory space to be accessed is determined by the Table Memory Page Address register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

Note: Only table read operations will execute in the configuration memory space, where Device IDs are located. Table write operations are not allowed.

	\$20-\$	atam Space
78:0945a []2		
	23 34 0 00000h 020000h 030000h 030000h 030000h	23 16 8 0 00000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000 Phantom' Byte (Phantom' Byte 00000000 00000000 00000000 00000000 00000000 00000000 Phantom' Byte 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000000 000000000 00000000 00000000 000000000 00000000 00000000 00000000 000000000 00000000 000000000 00000000 000000000 00000000 00000000 00000000 000000000 00000000 00000000 00000000 00000000000 000000000 000000000 000000000 00000000000000 0000000000 0000000000 0000000000 000000000000000000000000000000000000

FIGURE 4-9: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.6.2 PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

If a Flash location has been erased, it can be programmed using table write instructions to write an instruction word (24-bit) into the write latch. The TBLPAG register is loaded with the 8 Most Significant Bytes (MSB) of the Flash address. The TBLWTL and TBLWTH instructions write the desired data into the write latches and specify the lower 16 bits of the program memory address to write to. To configure the NVMCON register for a word write, set the NVMOP bits (NVMCON<3:0>) to '0011'. The write is performed by executing the unlock sequence and setting the WR bit (see Example 5-5). An equivalent procedure in 'C' compiler, using the MPLAB C30 compiler and built-in hardware functions is shown in Example 5-6.

EXAMPLE 5-5: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY

;	Setup a p	pointer to data Program Memory		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize a register with program memory address
	MOV	#LOW WORD N. W2	;	
	MOV	HIGH BYTE N. W3	;	
	TBLWTL	W2. [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	Setup NVN	ACON for programming one word t	to	data Program Memory
	MOV	#0x4003, W0	;	
	MOV	W0, NVMCON	;	Set NVMOP bits to 0011
	DISI	#5	;	Disable interrupts while the KEY sequence is written
	MOV.B	#0x55, W0	;	Write the key sequence
	MOV	W0, NVMKEY		
	MOV.B	#0xAA, W0		
	MOV	W0, NVMKEY		
	BSET	NVMCON, #WR	;	Start the write cycle
	NOP		;	Required delays
	NOP			

EXAMPLE 5-6: PROGRAMMING A SINGLE WORD OF FLASH PROGRAM MEMORY ('C' LANGUAGE CODE)

// C example using MPLAB C30	
unsigned int offset;	
unsigned long progAddr = 0xXXXXXX;	// Address of word to program
unsigned int progDataL = 0xXXXX;	// Data to program lower word
unsigned char progDataH = 0xXX;	// Data to program upper byte
//Set up NVMCON for word programming	
NVMCON = 0x4003;	// Initialize NVMCON
//Set up pointer to the first memory locatio	n to be written
TBLPAG = progAddr>>16;	// Initialize PM Page Boundary SFR
offset = progAddr & 0xFFFF;	// Initialize lower word of address
//Perform TBLWT instructions to write latche	S
<pre>builtin_tblwtl(offset, progDataL);</pre>	// Write to address low word
<pre>builtin_tblwth(offset, progDataH);</pre>	// Write to upper byte
asm("DISI #5");	// Block interrupts with priority <7
	// for next 5 instructions
builtin_write_NVM();	// C30 function to perform unlock
	// sequence and set WR
	-

U-0	U-0	R/W-0, HS	U-0	U-0	U-0	U-0	R/W-0, HS
_	_	CTMUIF	_		_		LVDIF
bit 15					•	•	bit 8
U-0	U-0	U-0	U-0	R/W-0, HS	R/W-0, HS	R/W-0, HS	U-0
	_	—	_	CRCIF	U2ERIF	U1ERIF	—
bit 7							bit 0
Legend:		HS = Hardwar	e Settable bit				
R = Readab	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '0)'				
bit 13	CTMUIF: CTI	MU Interrupt Fla	ag Status bit				
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has not	toccurred				
bit 12-9	Unimplemen	ted: Read as 'o)'				
bit 8	LVDIF: Low-\	/oltage Detect I	nterrupt Flag S	Status bit			
	1 = Interrupt	request has occurrent has not	curred				
hit 7 4		request has not	,				
		O a restar late					
DIL 3		Generator Inter	Tupt Flag Stat	us dit			
	1 = Interrupt 0 = Interrupt	request has not	toccurred				
hit 2	U2FRIF: UAF	RT2 Error Interri	int Flag Status	s bit			
5.12	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has not	t occurred				
bit 1	U1ERIF: UAF	RT1 Error Interro	upt Flag Status	s bit			
	1 = Interrupt	request has oc	curred				
	0 = Interrupt	request has no	t occurred				
bit 0	Unimplemen	ted: Read as '0)'				

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	_				INT4IP2	INT4IP1	INT4IP0
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	INT3IP2	INT3IP1	INT3IP0	—		—	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is				'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as '	כי				
bit 10-8	INT4IP<2:0>:	External Interr	upt 4 Priority b	oits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	abled				
bit 7	Unimplemen	ted: Read as '), – – – – – – – –				
bit 6-4	INT3IP<2:0>:	External Interr	upt 3 Priority b	oits			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1	ablad				
		pt source is dis	abled				
DIT 3-0	Unimplemen	tea: Read as '	٠. ١				

REGISTER 7-32: IPC13: INTERRUPT PRIORITY CONTROL REGISTER 13

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽¹⁾	—	TSIDL ⁽¹⁾	—	—	—	—	—		
bit 15		•					bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0		
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾	—	—	TCS ^(1,2)	—		
bit 7 bit 0									
Legend:									
R = Readable	bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown		
bit 15	bit 15 TON: Timery On bit ⁽¹⁾								

bit 15	TON: Timery On bit ⁽¹⁾
	1 = Starts 16-bit Timery
	0 = Stops 16-bit Timery
bit 14	Unimplemented: Read as '0'
bit 13	TSIDL: Stop in Idle Mode bit ⁽¹⁾
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12-7	Unimplemented: Read as '0'
bit 6	TGATE: Timery Gated Time Accumulation Enable bit ⁽¹⁾
	When TCS = 1:This bit is ignored.When TCS = 0:1 = Gated time accumulation enabled0 = Gated time accumulation disabled
bit 5-4	TCKPS<1:0>: Timery Input Clock Prescale Select bits ⁽¹⁾
	11 = 1:256
	10 = 1:64
	01 = 1:8
DIT 3-2	Unimplemented: Read as 10
bit 1	TCS: Timery Clock Source Select bit ^(1,2)
	1 = External clock from pin, TyCK (on the rising edge)0 = Internal clock (Fosc/2)
bit 0	Unimplemented: Read as '0'
Note 1:	When 32-bit operation is enabled (T2CON<3> or T4CON<3> = 1), these bits have no effect on Timery

operation; all timer functions are set through T2CON and T4CON.
2: If TCS = 1, RPINRx (TxCK) must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

FIGURE 14-1: OUTPUT COMPARE BLOCK DIAGRAM (16-BIT MODE)

2: The OCFA/OCFB fault inputs must be assigned to an available RPn/RPIn pin before use. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

14.2 Compare Operations

In Compare mode (Figure 14-1), the output compare module can be configured for single-shot or continuous pulse generation. It can also repeatedly toggle an output pin on each timer event.

To set up the module for compare operations:

- 1. Configure the OCx output for one of the available Peripheral Pin Select pins.
- Calculate the required values for the OCxR and (for Double Compare modes) OCxRS Duty Cycle registers:
 - a) Determine the instruction clock cycle time. Take into account the frequency of the external clock to the timer source (if one is used) and the timer prescaler settings.
 - b) Calculate time to the rising edge of the output pulse relative to the timer start value (0000h).
 - c) Calculate the time to the falling edge of the pulse based on the desired pulse width and the time to the rising edge of the pulse.

- 3. Write the rising edge value to OCxR and the falling edge value to OCxRS.
- 4. Set the Timer Period register, PRy, to a value equal to or greater than the value in OCxRS.
- 5. Set the OCM<2:0> bits for the appropriate compare operation (= 0xx).
- For Trigger mode operations, set OCTRIG to enable Trigger mode. Set or clear TRIGMODE to configure trigger operation and TRIGSTAT to select a hardware or software trigger. For Synchronous mode, clear OCTRIG.
- Set the SYNCSEL<4:0> bits to configure the trigger or synchronization source. If free-running timer operation is required, set the SYNCSEL bits to '00000' (no sync/trigger source).
- Select the time base source with the OCTSEL<2:0> bits. If necessary, set the TON bits for the selected timer, which enables the compare time base to count. Synchronous mode operation starts as soon as the time base is enabled; Trigger mode operation starts after a trigger source event occurs.

14.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the OCxRS and OCxR registers. The OCxRS and OCxR registers can be written to at any time, but the duty cycle value is not latched until a match between PRy and TMRy occurs (i.e., the period is complete). This provides a double buffer for the PWM duty cycle and is essential for glitchless PWM operation.

Some important boundary parameters of the PWM duty cycle include:

- If OCxR, OCxRS, and PRy are all loaded with 0000h, the OCx pin will remain low (0% duty cycle).
- If OCxRS is greater than PRy, the pin will remain high (100% duty cycle).

See Example 14-1 for PWM mode timing details. Table 14-1 and Table 14-2 show example PWM frequencies and resolutions for a device operating at 4 MIPS and 10 MIPS, respectively.

EQUATION 14-2: CALCULATION FOR MAXIMUM PWM RESOLUTION⁽¹⁾

Maximum PWM Resolution (bits) = $\frac{\log_{10} \left(\frac{FCY}{FPWM \cdot (Timer Prescale Value)} \right)}{\log_{10}^{(2)}}$ bits

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

EXAMPLE 14-1: PWM PERIOD AND DUTY CYCLE CALCULATIONS⁽¹⁾

1. Find the Timer Period register value for a desired PWM frequency of 52.08 kHz, where Fosc = 8 MHz with PLL (32 MHz device clock rate) and a Timer2 prescaler setting of 1:1.

$$TCY = 2 * TOSC = 62.5 \text{ ns}$$

PWM Period = 1/PWM Frequency = 1/52.08 kHz = 19.2 ms

PWM Period = $(PR2 + 1) \bullet TCY \bullet (Timer2 Prescale Value)$

 $19.2 \text{ ms} = \text{PR2} + 1) \cdot 62.5 \text{ ns} \cdot 1$

PR2 = 306

2. Find the maximum resolution of the duty cycle that can be used with a 52.08 kHz frequency and a 32 MHz device clock rate:

PWM Resolution = $log_{10}(FCY/FPWM)/log_{10}2)$ bits

 $= (\log_{10}(16 \text{ MHz}/52.08 \text{ kHz})/\log_{10}2) \text{ bits}$

= 8.3 bits

Note 1: Based on TCY = 2 * TOSC; Doze mode and PLL are disabled.

PWM Frequency	7.6 Hz	61 Hz	122 Hz	977 Hz	3.9 kHz	31.3 kHz	125 kHz			
Timer Prescaler Ratio	8	1	1	1	1	1	1			
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh			
Resolution (bits)	16	16	15	12	10	7	5			

TABLE 14-1: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 4 MIPS (Fcy = 4 MHz)⁽¹⁾

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 14-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 16 MIPS (Fcy = 16 MHz)⁽¹⁾

PWM Frequency	30.5 Hz	244 Hz	488 Hz	3.9 kHz	15.6 kHz	125 kHz	500 kHz
Timer Prescaler Ratio	8	1	1	1	1	1	1
Period Register Value	FFFFh	FFFFh	7FFFh	0FFFh	03FFh	007Fh	001Fh
Resolution (bits)	16	16	15	12	10	7	5

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

REGISTER 14-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits
 - 11111 = This OC module⁽¹⁾
 - 11110 = Input Capture 9⁽²⁾
 - 11101 = Input Capture 6⁽²⁾
 - 11100 = CTMU⁽²⁾ 11011 = A/D⁽²⁾

 - 11010 = Comparator 3⁽²⁾
 - 11001 = Comparator 2⁽²⁾
 - 11000 = Comparator 1⁽²⁾ 10111 = Input Capture 4⁽²⁾
 - 10110 = Input Capture 3⁽²⁾

 - 10101 = Input Capture 2⁽²⁾
 - 10100 = Input Capture 1⁽²⁾
 - 10011 = Input Capture 8⁽²⁾ 10010 = Input Capture 7⁽²⁾

 - 1000x = Reserved
 - 01111 = Timer5
 - 01110 = Timer4
 - 01101 = Timer3 01100 = Timer2
 - 01011 = Timer1

 - 01010 =Input Capture $5^{(2)}$
 - 01001 = Output Compare 9⁽¹⁾
 - 01000 = Output Compare 8⁽¹⁾ 00111 = Output Compare 7⁽¹⁾
 - $00110 = Output Compare 6^{(1)}$
 - 00101 = Output Compare 5⁽¹⁾
 - 00100 = Output Compare 4⁽¹⁾
 - 00011 = Output Compare 3⁽¹⁾
 - 00010 = Output Compare $2^{(1)}$
 - 00001 = Output Compare 1⁽¹⁾

 - 00000 = Not synchronized to any other module
- Note 1: Never use an OC module as its own trigger source, either by selecting this mode or another equivalent SYNCSEL setting.
 - 2: Use these inputs as trigger sources only and never as sync sources.
 - 3: The DCB<1:0> bits are double-buffered in the PWM modes only (OCM<2:0> (OCxCON1<2:0>) = 111, 110).

18.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 27. "USB On-The-Go (OTG)" (DS39721). The information in this data sheet supersedes the information in the FRM.

PIC24FJ256DA210 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act either as a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement to the USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.

The USB OTG module offers these features:

- USB functionality in Device and Host modes, and OTG capabilities for application-controlled mode switching
- Software-selectable module speeds of full speed (12 Mbps) or low speed (1.5 Mbps, available in Host mode only)
- Support for all four USB transfer types: control, interrupt, bulk and isochronous
- 16 bidirectional endpoints for a total of 32 unique endpoints
- · DMA interface for data RAM access
- Queues up to sixteen unique endpoint transfers without servicing
- Integrated, on-chip USB transceiver with support for off-chip transceivers via a digital interface
- Integrated VBUS generation with on-chip comparators and boost generation, and support of external VBUS comparators and regulators through a digital interface
- Configurations for on-chip bus pull-up and pull-down resistors

A simplified block diagram of the USB OTG module is shown in Figure 18-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 18-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.

TABLE 18-1:CONTROLLER-CENTRIC
DATA DIRECTION FOR USB
HOST OR TARGET

	Direction				
USD Mode	RX	тх			
Device	OUT or SETUP	IN			
Host	IN	OUT or SETUP			

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to <u>www.microchip.com/usb</u> for the latest firmware and driver support.

FIGURE 18-1: USB OTG MODULE BLOCK DIAGRAM

REGISTER 18-15: U1OTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE
bit 7							bit 0

Legend:				
R = Readable	bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at	POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15-8	Unimplemen	ted: Read as '0'		
bit 7	IDIE: ID Intern	rupt Enable bit		
	1 = Interrupt	is enabled		
	0 = Interrupt			
bit 6	T1MSECIE: 1	Millisecond Timer Interru	upt Enable bit	
	1 = Interrupt	is enabled		
bit 5		ine State Stable Interrunt	Enable bit	
bit 0	1 = Interrupt	is enabled		
	0 = Interrupt	is disabled		
bit 4	ACTVIE: Bus	Activity Interrupt Enable	bit	
	1 = Interrupt	is enabled		
	0 = Interrupt	is disabled		
bit 3	SESVDIE: Se	ession Valid Interrupt Ena	ble bit	
	1 = Interrupt	is enabled		
hit 0			orrupt Epoblo bit	
DIL 2		a oneblod	errupt Enable bit	
	0 = Interrupt	is disabled		
bit 1	Unimplemen	ted: Read as '0'		
bit 0	VBUSVDIE: A	A-Device VBUS Valid Inter	rupt Enable bit	
· · ·	1 = Interrupt	is enabled	. F	
	0 = Interrupt	is disabled		

20.1.5 ALRMVAL REGISTER MAPPINGS

REGISTER 20-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0	
bit 15							bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0	
bit 7							bit 0	
Legend:								
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown								
bit 15-13	Unimplemer	nted: Read as '	כי					
bit 12	MTHTENO: E	Binary Coded De	ecimal Value o	f Month's Tens	Digit bit			
	Contains a va	alue of 0 or 1.						
bit 11-8	MTHONE<3:	0>: Binary Cod	ed Decimal Va	lue of Month's	Ones Digit bits			
	Contains a va	alue from 0 to 9						
bit 7-6	Unimplemer	nted: Read as '	כי					
bit 5-4	DAYTEN<1:0	0>: Binarv Code	d Decimal Val	ue of Dav's Ten	is Diait bits			
	Contains a va	alue from 0 to 3		, ,	9			
bit 3-0	DAYONE<3:	0>: Binary Code	ed Decimal Val	ue of Day's On	es Digit bits			
	Contains a va	alue from 0 to 9						
Note 1: A	write to this reg	gister is only allo	owed when RT	CWREN = 1.				

REGISTER 22-23: G1VSYNC: VERTICAL SYNCHRONIZATION CONTROL REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VSLEN7 | VSLEN6 | VSLEN5 | VSLEN4 | VSLEN3 | VSLEN2 | VSLEN1 | VSLEN0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| VSST7 | VSST6 | VSST5 | VSST4 | VSST3 | VSST2 | VSST1 | VSST0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 VSLEN<7:0>: VSYNC Pulse-Width Configuration bits (in lines) The DPVSOE bit (G1CON3<1>) must be set for the VSYNC signal to toggle; minimum value is 1.

 bit 7-0
 VSST<7:0>: VSYNC Start Delay Configuration bits (in lines) This is the number of lines from the start of vertical blanking to the start of VSYNC active.

REGISTER 22-24: G1DBLCON: DISPLAY BLANKING CONTROL REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VENST7 | VENST6 | VENST5 | VENST4 | VENST3 | VENST2 | VENST1 | VENST0 |
| bit 15 | -
- | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| HENST7 | HENST6 | HENST5 | HENST4 | HENST3 | HENST2 | HENST1 | HENST0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **VENST<7:0>:** Vertical Blanking Start to First Displayed Line Configuration bits (in lines) This is the number of lines from the start of vertical blanking to the first displayed line of a frame.

bit 7-0 **HENST<7:0>:** Horizontal Blanking Start to First Displayed Pixel Configuration bits (in DISPCLKs) This is the number of GCLK cycles from the start of horizontal blanking to the first displayed pixel of each displayed line.

DC CHARACTERISTICS		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions			
Operating Cur	rent (IDD) ⁽²⁾						
DC20D	0.8	1.3	mA	-40°C			
DC20E	0.8	1.3	mA	+25°C	3.3∨ ⁽³⁾	1 MIPS	
DC20F	0.8	1.3	mA	+85°C			
DC23D	3.0	4.8	mA	-40°C	3.3V ⁽³⁾	4 MIPS	
DC23E	3.0	4.8	mA	+25°C			
DC23F	3.0	4.8	mA	+85°C			
DC24D	12.0	18	mA	-40°C		16 MIPS	
DC24E	12.0	18	mA	+25°C	3.3∨ ⁽³⁾		
DC24F	12.0	18	mA	+85°C			
DC31D	55	95	μA	-40°C			
DC31E	55	95	μA	+25°C	3.3∨ ⁽³⁾	LPRC (31 kHz)	
DC31F	135	225	μA	+85°C			

TABLE 30-4: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSCI driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD; WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating and all of the Peripheral Module Disable (PMD) bits are set.

3: On-chip voltage regulator enabled (ENVREG tied to VDD). Brown-out Reset (BOR) is enabled.

31.0 PACKAGING INFORMATION

31.1 Package Marking Information

64-Lead TQFP (10x10x1 mm) Example MICROCHIP MICROCHIP XXXXXXXXXX PIC24FJ256 XXXXXXXXXXX DA106-I/ XXXXXXXXXXX PT_{@3} → YYWWNNN 1020017 \bigcirc 64-Lead QFN (9x9x0.9 mm) Example $\langle M \rangle$ \mathcal{M} PIC24FJ256 XXXXXXXXXXXX XXXXXXXXXXXX DA206-I/MR_{@3} XXXXXXXXXXXX 1010017 YYWWNNN 100-Lead TQFP (12x12x1 mm) Example Σ MICROCHIP MICROCHIP PIC24FJ256DA XXXXXXXXXXXXX XXXXXXXXXXXXX 110-I/PT@3 1020017 YYWWNNN 0 121-BGA (10x10x1.1 mm) Example ΔT MICROCHIP MICROCHIP XXXXXXXXXXXXX PIC24FJ256DA XXXXXXXXXXXXX 110-I/BG@3 YYWWNNN 1020017 ()Г

Legend:	XXX	Customer-specific information
	Y	Year code (last digit of calendar year)
	ΥY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	(e3)	Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ((e_3))
		can be found on the outer packaging for this package.
Note:	In the ever	nt the full Microchip part number cannot be marked on one line, it will
	be carried	d over to the next line, thus limiting the number of available
	characters	for customer-specific information.

NOTES: