

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256da206-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

64/100-Pin, 16-Bit Flash Microcontrollers with Graphics Controller and USB On-The-Go (OTG)

Graphics Controller Features:

- Three Graphics Hardware Accelerators to Facilitate Rendering of Block Copying, Text and Unpacking of Compressed Data
- · Color Look-up Table (CLUT) with Maximum of 256 Entries
- 1/2/4/8/16 bits-per-pixel (bpp) Color Depth Set at
- Run Time
 Display Resolution Programmable According to
 Frame Buffer:
 - Supports direct access to external memory on devices with EPMP
 - Resolution supported is up to 480x272 @ 60 Hz, 16 bpp; 640x480 @ 30 Hz, 16 bpp or 640x480 @ 60 Hz, 8 bpp
- Supports Various Display Interfaces:
- 4/8/16-bit Monochrome STN
- 4/8/16-bit Color STN
- 9/12/18/24-bit Color TFT (18 and 24-bit displays are connected as 16-bit, 5-6-5 RGB color format)

Universal Serial Bus Features:

- USB v2.0 On-The-Go (OTG) Compliant
- Dual Role Capable Can act as either Host or Peripheral
- Low-Speed (1.5 Mbps) and Full-Speed (12 Mbps) USB Operation in Host mode
- Full-Speed USB Operation in Device mode
- High-Precision PLL for USB
- Supports up to 32 Endpoints (16 bidirectional):
- USB module can use the internal RAM location from 0x800 to 0xFFFF as USB endpoint buffers
- On-Chip USB Transceiver with Interface for Off-Chip Transceiver
- Supports Control, Interrupt, Isochronous and Bulk
 Transfers
- On-Chip Pull-up and Pull-Down Resistors

Peripheral Features:

- Enhanced Parallel Master Port/Parallel Slave Port (EPMP/PSP), 100-pin devices only:
 - Direct access from CPU with an Extended Data Space (EDS) interface
 - 4, 8 and 16-bit wide data bus
 - Up to 23 programmable address lines
 - Up to 2 chip select lines
 - Up to 2 Acknowledgement lines (one per chip select)
 - Programmable address/data multiplexing
 - Programmable address and data Wait states
 - Programmable polarity on control signals
- · Peripheral Pin Select:
 - Up to 44 available pins (100-pin devices)
- Three 3-Wire/4-Wire SPI modules (supports 4 Frame modes)
- Three I²C[™] modules Supporting Multi-Master/Slave modes and 7-Bit/10-Bit Addressing
- Four UART modules:
 - Supports RS-485, RS-232, LIN/J2602 protocols and $\text{IrDA}^{\textcircled{R}}$
- Five 16-Bit Timers/Counters with Programmable Prescaler
- Nine 16-Bit Capture Inputs, each with a Dedicated Time Base
- Nine 16-Bit Compare/PWM Outputs, each with a Dedicated Time Base
- Hardware Real-Time Clock and Calendar (RTCC)
- Enhanced Programmable Cyclic Redundancy Check (CRC) Generator
- Up to 5 External Interrupt Sources

				Re	emappa	ble Per	iphera	s							9r	
PIC24FJ Device	Pins	Program Memory (bytes)	SRAM (bytes)	Remappable Pins	16-Bit Timers	IC/OC PWM	UART w/IrDA [®]	IdS	I²C™	10-Bit A/D (ch)	Comparators	CTMU	EPMP/PSP	RTCC	Graphics Controller	USB OTG
PIC24FJ128DA106	64	128K	24K	29	5	9/9	4	3	3	16	3	Y	Ν	Y	Y	Y
PIC24FJ256DA106	64	256K	24K	29	5	9/9	4	3	3	16	3	Y	Ν	Y	Y	Y
PIC24FJ128DA110	100/121	128K	24K	44	5	9/9	4	3	3	24	3	Y	Y	Y	Y	Y
PIC24FJ256DA110	100/121	256K	24K	44	5	9/9	4	3	3	24	3	Y	Y	Y	Y	Y
PIC24FJ128DA206	64	128K	96K	29	5	9/9	4	3	3	16	3	Y	Ν	Y	Y	Y
PIC24FJ256DA206	64	256K	96K	29	5	9/9	4	3	3	16	3	Y	Ν	Y	Y	Y
PIC24FJ128DA210	100/121	128K	96K	44	5	9/9	4	3	3	24	3	Y	Y	Υ	Y	Y
PIC24FJ256DA210	100/121	256K	96K	44	5	9/9	4	3	3	24	3	Y	Y	Y	Y	Y

Table of Contents

1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	
6.0	Resets	
7.0	Interrupt Controller	
8.0	Oscillator Configuration	141
9.0	Power-Saving Features	155
10.0	I/O Ports	157
11.0	Timer1	189
12.0		
13.0	Input Capture with Dedicated Timers	197
14.0	Output Compare with Dedicated Timers	201
15.0	Serial Peripheral Interface (SPI)	
16.0	Inter-Integrated Circuit™ (I ² C™)	223
17.0	Universal Asynchronous Receiver Transmitter (UART)	
18.0	Universal Serial Bus with On-The-Go Support (USB OTG)	
19.0	Enhanced Parallel Master Port (EPMP)	
20.0	Real-Time Clock and Calendar (RTCC)	
21.0	32-Bit Programmable Cyclic Redundancy Check (CRC) Generator	
22.0	Graphics Controller Module (GFX)	
23.0	10-Bit High-Speed A/D Converter	
24.0	Triple Comparator Module	
25.0	Comparator Voltage Reference	
26.0	Charge Time Measurement Unit (CTMU)	
27.0	Special Features	
28.0	Development Support	
	Instruction Set Summary	
	Electrical Characteristics	
	Packaging Information	
Appe	endix A: Revision History	
	Χ	
The I	Microchip Web Site	405
	omer Change Notification Service	
	omer Support	
	der Response	
Prod	uct Identification System	407

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

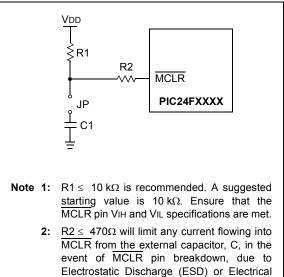
The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including microcontrollers to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.


2.3 Master Clear (MCLR) Pin

The MCLR pin provides two specific device functions: device Reset, and device programming and debugging. If programming and debugging are not required in the end application, a direct connection to VDD may be all that is required. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R1 and C1 will need to be adjusted based on the application and PCB requirements. For example, it is recommended that the capacitor, C1, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations by using a jumper (Figure 2-2). The jumper is replaced for normal run-time operations.

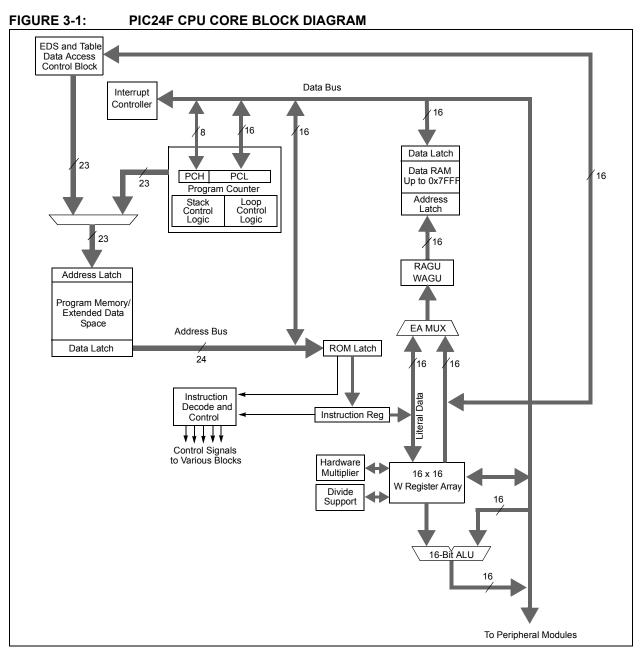

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

FIGURE 2-2: EXAMPLE OF MCLR PIN CONNECTIONS

Overstress (EOS). Ensure that the MCLR pin

VIH and VIL specifications are met.

TABLE 3-1:	CPU CORE REGISTERS
------------	---------------------------

Register(s) Name	Description			
W0 through W15	Working Register Array			
PC	23-Bit Program Counter			
SR	ALU STATUS Register			
SPLIM	Stack Pointer Limit Value Register			
TBLPAG	Table Memory Page Address Register			
RCOUNT	Repeat Loop Counter Register			
CORCON	CPU Control Register			
DISICNT	Disable Interrupt Count Register			
DSRPAG	Data Space Read Page Register			
DSWPAG	Data Space Write Page Register			

REGISTER 3-2: CORCON: CPU CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	R/C-0, HSC	R-1	U-0	U-0
—	_	—	—	IPL3 ⁽¹⁾	r	—	—
bit 7							bit 0

Legend:	C = Clearable bit	r = Reserved bit	HSC = Hardware Settable/Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

- bit 3 IPL3: CPU Interrupt Priority Level Status bit⁽¹⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less
- bit 2 Reserved: Read as '1'
- bit 1-0 Unimplemented: Read as '0'
- **Note 1:** The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level; see Register 3-1 for bit description.

3.3 Arithmetic Logic Unit (ALU)

The PIC24F ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU may affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array, or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

The PIC24F CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.3.1 MULTIPLIER

The ALU contains a high-speed, 17-bit x 17-bit multiplier. It supports unsigned, signed or mixed sign operation in several multiplication modes:

- 1. 16-bit x 16-bit signed
- 2. 16-bit x 16-bit unsigned
- 3. 16-bit signed x 5-bit (literal) unsigned
- 4. 16-bit unsigned x 16-bit unsigned
- 5. 16-bit unsigned x 5-bit (literal) unsigned
- 6. 16-bit unsigned x 16-bit signed
- 7. 8-bit unsigned x 8-bit unsigned

REGISTER 7-21: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0				
oit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
	SPF1IP2	SPF1IP1	SPF1IP0		T3IP2	T3IP1	T3IP0				
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	Unimplemen	ted: Read as ')'								
bit 14-12	U1RXIP<2:0	>: UART1 Rece	iver Interrupt F	Priority bits							
	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•										
	001 = Interrupt is priority 1										
		pt source is dis									
bit 11	Unimplemen	ited: Read as 'o)'								
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Interru	pt is priority 7 (highest priority	interrupt)							
	•										
	•										
	001 = Interru		ablad								
bit 7		ipt source is dis ited: Read as '(
				hita							
bit 6-4	SPF1IP<2:0>: SPI1 Fault Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)										
	•		ingricor priority	menuply							
	•										
	• 001 = Interru	pt is priority 1									
		ipt source is dis	abled								
		ited: Read as 'o									
DIT 3	-	imer3 Interrupt									
		•	•	interrunt)							
	111 = Interru	pt is priority 7 (nignest priority	interrupt)							
	111 = Interru •	ipt is priority 7 (nignest priority	interrapt)							
	111 = Interru •	ipt is priority 7 (nignest priority	interrupt/							
bit 3 bit 2-0		ıpt is priority 7 (ıpt is priority 1	nignest priority	interrupt)							

REGISTER 7-35: IPC18: INTERRUPT PRIORITY CONTROL REGISTER 18

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15		•					bit 8
11.0	11.0	11.0	11.0	11.0			

t	oit 7							bit 0
	_	_	_	_	_	LVDIP2	LVDIP1	LVDIP0
	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0

Legend:

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-3 Unimplemented: Read as '0'

- bit 2-0 LVDIP<2:0>: Low-Voltage Detect Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
 - •
 - •
 - 001 = Interrupt is priority 1
 - 000 = Interrupt source is disabled

REGISTER 7-36: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15	•						bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CTMUIP2	CTMUIP1	CTMUIP0	—	—	—	—
bit 7 bit							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

bit 6-4	CTMUIP<2:0>: CTMU Interrupt Priority bits
	111 = Interrupt is priority 7 (highest priority interrupt)
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

13.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own 16-bit timer. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (ICx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (ICy) provides the Most Significant 16 bits. Wrap-arounds of the ICx registers cause an increment of their corresponding ICy registers.

Cascaded operation is configured in hardware by setting the IC32 bits (ICxCON2<8>) for both modules.

13.2 Capture Operations

The input capture module can be configured to capture timer values and generate interrupts on rising edges on ICx or all transitions on ICx. Captures can be configured to occur on all rising edges or just some (every 4th or 16th). Interrupts can be independently configured to generate on each event or a subset of events.

To set up the module for capture operations:

- 1. Configure the ICx input for one of the available Peripheral Pin Select pins.
- 2. If Synchronous mode is to be used, disable the sync source before proceeding.
- 3. Make sure that any previous data has been removed from the FIFO by reading ICxBUF until the ICBNE bit (ICxCON1<3>) is cleared.
- 4. Set the SYNCSEL bits (ICxCON2<4:0>) to the desired sync/trigger source.
- 5. Set the ICTSEL bits (ICxCON1<12:10>) for the desired clock source.
- 6. Set the ICI bits (ICxCON1<6:5>) to the desired interrupt frequency
- 7. Select Synchronous or Trigger mode operation:
 - a) Check that the SYNCSEL bits are not set to '00000'.
 - b) For Synchronous mode, clear the ICTRIG bit (ICxCON2<7>).
 - c) For Trigger mode, set ICTRIG, and clear the TRIGSTAT bit (ICxCON2<6>).
- 8. Set the ICM bits (ICxCON1<2:0>) to the desired operational mode.
- 9. Enable the selected sync/trigger source.

For 32-bit cascaded operations, the setup procedure is slightly different:

- 1. Set the IC32 bits for both modules (ICyCON2<8>) and (ICxCON2<8>), enabling the even numbered module first. This ensures the modules will start functioning in unison.
- 2. Set the ICTSEL and SYNCSEL bits for both modules to select the same sync/trigger and time base source. Set the even module first, then the odd module. Both modules must use the same ICTSEL and SYNCSEL settings.
- Clear the ICTRIG bit of the even module (ICyCON2<7>). This forces the module to run in Synchronous mode with the odd module, regardless of its trigger setting.
- 4. Use the odd module's ICI bits (ICxCON1<6:5>) to set the desired interrupt frequency.
- Use the ICTRIG bit of the odd module (ICxCON2<7>) to configure Trigger or Synchronous mode operation.
- Note: For Synchronous mode operation, enable the sync source as the last step. Both input capture modules are held in Reset until the sync source is enabled.
- Use the ICM bits of the odd module (ICxCON1<2:0>) to set the desired capture mode.

The module is ready to capture events when the time base and the sync/trigger source are enabled. When the ICBNE bit (ICxCON1<3>) becomes set, at least one capture value is available in the FIFO. Read input capture values from the FIFO until the ICBNE clears to '0'.

For 32-bit operation, read both the ICxBUF and ICyBUF for the full 32-bit timer value (ICxBUF for the Isw, ICyBUF for the msw). At least one capture value is available in the FIFO buffer when the odd module's ICBNE bit (ICxCON1<3>) becomes set. Continue to read the buffer registers until ICBNE is cleared (performed automatically by hardware).

R/W-0	U-0 R/W-0 R/W-1, HC R/W-0 R/W-0 R/W-0 R/W									
I2CEN	- I2CSIDL SCLREL IPMIEN A10M DISSLW SMEN									
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC	R/W-0, HC			
GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN			
bit 7							bit (
Legend:		HC = Hardwa	are Clearable bi	t						
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	own			
bit 15	12CEN: 12Cx	Enable bit								
	1 = Enables 0 = Disables	the I2Cx modu	lle and configure ule. All l ² C™ pir	es the SDAx ar	nd SCLx pins a	s serial port pir	IS			
bit 14		nted: Read as '	•		a by port funct	10113				
bit 13	-	p in Idle Mode								
			peration when d ation in Idle mo		n Idle mode					
bit 12		•			C slave)					
	SCLREL: SCLx Release Control bit (when operating as I ² C slave) 1 = Releases SCLx clock									
	0 = Holds SCLx clock low (clock stretch)									
	If STREN = 1: Bit is R/W (i.e., software may write '0' to initiate stretch and write '1' to release clock). Hardware is clea									
			nsmission. Hard							
	<u>If STREN = 0</u>									
	transmission		ay only write '1	to release clo	ock). Hardware	e clear at begi	nning of slave			
bit 11	IPMIEN: Inte	lligent Platform	Management I	nterface (IPMI)	Enable bit					
		•	enabled; all addr	resses are Ack	nowledged					
bit 10	0 = IPMI mode is disabled A10M: 10-Bit Slave Addressing bit									
	1 = I2CxADD is a 10-bit slave address									
	0 = I2CxADI	D is a 7-bit slav	e address							
bit 9	DISSLW: Disable Slew Rate Control bit									
		e control disabl e control enabl								
bit 8		us Input Levels								
		•	olds compliant w	vith SMBus spe	cifications					
		the SMBus in								
bit 7			e bit (when operation	•	,					
	1 = Enables reception		a general call a	address is rece	ived in the I2C	xRSR (module	is enabled for			
			sabled							
	 General call address disabled STREN: SCL x Clock Stretch Enable bit (when operating as I²C slave) 									
bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with the SCLREL bit.									
bit 6	Used in conju	unction with the			s I ² C slave)					

17.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated, 16-bit Baud Rate Generator. The UxBRG register controls the period of a free-running, 16-bit timer. Equation 17-1 shows the formula for computation of the baud rate with BRGH = 0.

EQUATION 17-1: UART BAUD RATE WITH BRGH = $0^{(1,2)}$

Baud Rate =
$$\frac{FCY}{16 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{16 \cdot Baud Rate} - 1$

Note 1: FCY denotes the instruction cycle clock frequency (FOSC/2).

2: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

Example 17-1 shows the calculation of the baud rate error for the following conditions:

- Fcy = 4 MHz
- Desired Baud Rate = 9600

The maximum baud rate (BRGH = 0) possible is FCY/16 (for UxBRG = 0) and the minimum baud rate possible is FCY/(16 * 65536).

Equation 17-2 shows the formula for computation of the baud rate with BRGH = 1.

EQUATION 17-2: UART BAUD RATE WITH BRGH = $1^{(1,2)}$

Baud Rate =
$$\frac{FCY}{4 \cdot (UxBRG + 1)}$$

UxBRG = $\frac{FCY}{4 \cdot Baud Rate} - 1$

- **Note 1:** FCY denotes the instruction cycle clock frequency.
 - **2:** Based on FCY = FOSC/2; Doze mode and PLL are disabled.

The maximum baud rate (BRGH = 1) possible is FCY/4 (for UxBRG = 0) and the minimum baud rate possible is FCY/(4 * 65536).

Writing a new value to the UxBRG register causes the BRG timer to be reset (cleared). This ensures the BRG does not wait for a timer overflow before generating the new baud rate.

EXAMPLE 17-1: BAUD RATE ERROR CALCULATION (BRGH = 0)⁽¹⁾

Desired Baud Rate	= FCY/(16 (BRGx + 1))
Solving for BRGx Va	lue:
BRGx BRGx	= ((FCY/Desired Baud Rate)/16) - 1 = ((4000000/9600)/16) - 1
BRGx	= 25
Calculated Baud Rate	= 4000000/(16(25+1)) = 9615
Error	 = (Calculated Baud Rate – Desired Baud Rate) Desired Baud Rate = (9615 – 9600)/9600
Note: Based or	FCY = FOSC/2; Doze mode and PLL are disabled.

18.0 UNIVERSAL SERIAL BUS WITH ON-THE-GO SUPPORT (USB OTG)

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 27. "USB On-The-Go (OTG)" (DS39721). The information in this data sheet supersedes the information in the FRM.

PIC24FJ256DA210 family devices contain a full-speed and low-speed compatible, On-The-Go (OTG) USB Serial Interface Engine (SIE). The OTG capability allows the device to act either as a USB peripheral device or as a USB embedded host with limited host capabilities. The OTG capability allows the device to dynamically switch from device to host operation using OTG's Host Negotiation Protocol (HNP).

For more details on OTG operation, refer to the "On-The-Go Supplement to the USB 2.0 Specification", published by the USB-IF. For more details on USB operation, refer to the "Universal Serial Bus Specification", v2.0.

The USB OTG module offers these features:

- USB functionality in Device and Host modes, and OTG capabilities for application-controlled mode switching
- Software-selectable module speeds of full speed (12 Mbps) or low speed (1.5 Mbps, available in Host mode only)
- Support for all four USB transfer types: control, interrupt, bulk and isochronous
- 16 bidirectional endpoints for a total of 32 unique endpoints
- · DMA interface for data RAM access
- Queues up to sixteen unique endpoint transfers without servicing
- Integrated, on-chip USB transceiver with support for off-chip transceivers via a digital interface
- Integrated VBUS generation with on-chip comparators and boost generation, and support of external VBUS comparators and regulators through a digital interface
- Configurations for on-chip bus pull-up and pull-down resistors

A simplified block diagram of the USB OTG module is shown in Figure 18-1.

The USB OTG module can function as a USB peripheral device or as a USB host, and may dynamically switch between Device and Host modes under software control. In either mode, the same data paths and Buffer Descriptors (BDs) are used for the transmission and reception of data.

In discussing USB operation, this section will use a controller-centric nomenclature for describing the direction of the data transfer between the microcontroller and the USB. RX (Receive) will be used to describe transfers that move data from the USB to the microcontroller and TX (Transmit) will be used to describe transfers that move data from the microcontroller to the USB. Table 18-1 shows the relationship between data direction in this nomenclature and the USB tokens exchanged.

TABLE 18-1:CONTROLLER-CENTRIC
DATA DIRECTION FOR USB
HOST OR TARGET

USB Mode	Direction				
OSD MODE	RX	тх			
Device	OUT or SETUP	IN			
Host	IN	OUT or SETUP			

This chapter presents the most basic operations needed to implement USB OTG functionality in an application. A complete and detailed discussion of the USB protocol and its OTG supplement are beyond the scope of this data sheet. It is assumed that the user already has a basic understanding of USB architecture and the latest version of the protocol.

Not all steps for proper USB operation (such as device enumeration) are presented here. It is recommended that application developers use an appropriate device driver to implement all of the necessary features. Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to <u>www.microchip.com/usb</u> for the latest firmware and driver support.

21.0 32-BIT PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

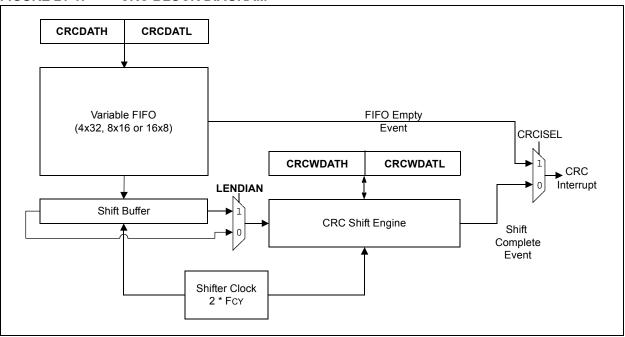
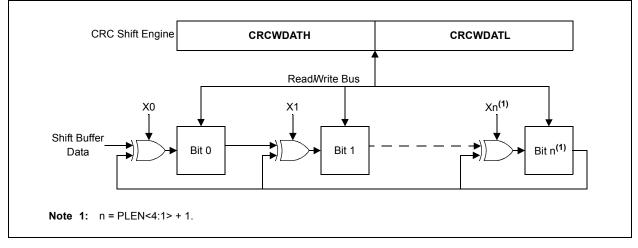

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 41. "32-Bit Programmable Cyclic Redundancy Check (CRC)" (DS39729). The information in this data sheet supersedes the information in the FRM.

FIGURE 21-1:	CRC BLOCK DIAGRAM


The 32-bit programmable CRC generator provides a hardware implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable interrupt output
- Data FIFO

Figure 21-1 displays a simplified block diagram of the CRC generator. A simple version of the CRC shift engine is displayed in Figure 21-2.

REGISTER 22-23: G1VSYNC: VERTICAL SYNCHRONIZATION CONTROL REGISTER

VSLEN7 VSLEN6 VSLEN5 VSLEN4 VSLEN3 VSLEN2 VSLEN1 VSLEN0 bit 15 bit 15	R/W-0							
bit 15 bi	VSLEN7	VSLEN6	VSLEN5	VSLEN4	VSLEN3	VSLEN2	VSLEN1	VSLEN0
	bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| VSST7 | VSST6 | VSST5 | VSST4 | VSST3 | VSST2 | VSST1 | VSST0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

 bit 15-8
 VSLEN<7:0>: VSYNC Pulse-Width Configuration bits (in lines) The DPVSOE bit (G1CON3<1>) must be set for the VSYNC signal to toggle; minimum value is 1.

 bit 7-0
 VSST<7:0>: VSYNC Start Delay Configuration bits (in lines) This is the number of lines from the start of vertical blanking to the start of VSYNC active.

REGISTER 22-24: G1DBLCON: DISPLAY BLANKING CONTROL REGISTER

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| VENST7 | VENST6 | VENST5 | VENST4 | VENST3 | VENST2 | VENST1 | VENST0 |
| bit 15 | | | | | | | bit 8 |
| | | | | | | | |
| R/W-0 |

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| HENST7 | HENST6 | HENST5 | HENST4 | HENST3 | HENST2 | HENST1 | HENST0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 **VENST<7:0>:** Vertical Blanking Start to First Displayed Line Configuration bits (in lines) This is the number of lines from the start of vertical blanking to the first displayed line of a frame.

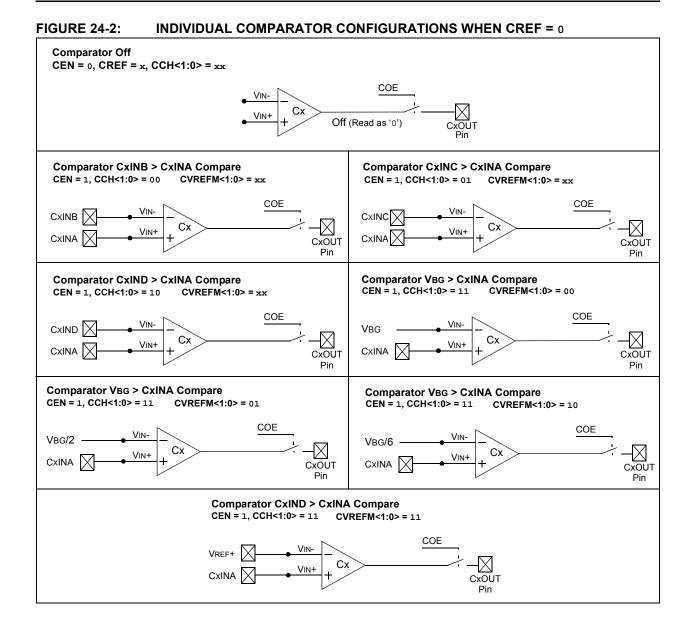
bit 7-0 **HENST<7:0>:** Horizontal Blanking Start to First Displayed Pixel Configuration bits (in DISPCLKs) This is the number of GCLK cycles from the start of horizontal blanking to the first displayed pixel of each displayed line.

REGISTER 22-32: G1DBEN: DATA I/O PAD ENABLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GDBEN15	GDBEN14	GDBEN13	GDBEN12	GDBEN11	GDBEN10	GDBEN9	GDBEN8
bit 15							bit 8

| R/W-0 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| GDBEN7 | GDBEN6 | GDBEN5 | GDBEN4 | GDBEN3 | GDBEN2 | GDBEN1 | GDBEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 15-0 **GDBEN<15:0>:** Display Data Pads Output Enable bits

1 = Corresponding display data (GD<x>) pin is enabled

0 = Corresponding display data (GD<x>) pin is disabled

GDBEN<15:0> can be used to disable or enable specific data signals while the DPPINOE bit (G1CON3<9>) is set.

DPPINOE	GDBENx (where x = 0 to 15)	
1	1	Display data signal (GD) associated with GDBENx is enabled.
1	0	Display data signal (GD) associated with GDBENx is disabled.
0	x	Display data signal (GD) associated with GDBENx is disabled.

REGISTER 27-1:	CW1: FLASH CONFIGURATION WORD 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

r-x	R/PO-1	R/PO-1	R/PO-1	R/PO-1	r-1	R/PO-1	R/PO-1
reserved	JTAGEN	GCP	GWRP	DEBUG	reserved	ICS1	ICS0
bit 15							bit 8

R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1	R/PO-1
FWDTEN	WINDIS	ALTVREF ⁽¹⁾	FWPSA	WDTPS3	WDTPS2	WDTPS1	WDTPS0
bit 7							bit 0

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16	Unimplemented: Read as '1'
bit 15	Reserved: The value is unknown; program as '0'
bit 14	JTAGEN: JTAG Port Enable bit
	1 = JTAG port is enabled0 = JTAG port is disabled
bit 13	GCP: General Segment Program Memory Code Protection bit
	 1 = Code protection is disabled 0 = Code protection is enabled for the entire program memory space
bit 12	GWRP: General Segment Code Flash Write Protection bit
	1 = Writes to program memory are allowed0 = Writes to program memory are not allowed
bit 11	DEBUG : Background Debugger Enable bit
	1 = Device resets into Operational mode0 = Device resets into Debug mode
bit 10	Reserved: Always maintain as '1'
bit 9-8	ICS<1:0>: Emulator Pin Placement Select bits
	 11 = Emulator functions are shared with PGEC1/PGED1 10 = Emulator functions are shared with PGEC2/PGED2 01 = Emulator functions are shared with PGEC3/PGED3 00 = Reserved; do not use
bit 7	FWDTEN: Watchdog Timer Enable bit
	1 = Watchdog Timer is enabled0 = Watchdog Timer is disabled
bit 6	WINDIS: Windowed Watchdog Timer Disable bit
	 1 = Standard Watchdog Timer is enabled 0 = Windowed Watchdog Timer is enabled; FWDTEN must be '1'
bit 5	ALTVREF: Alternate VREF Pin Selection bit ⁽¹⁾
	1 = VREF is on a default pin (VREF+ on RA10 and VREF- on RA9)
	0 = VREF is on an alternate pin (VREF+ on RB0 and VREF- on RB1)

Note 1: Unimplemented in 64-pin devices, maintain at '1' (VREF+ on RB0 and VREF- on RB1).

U-0

R FAMID0

R

bit 16

bit 8

REGISTER 27-5: DEVID: DEVICE ID REGISTER										
U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—	—	—	—	—	—				
bit 23			•		•	•				
R	R	R	R	R	R	R				
FAMID7	FAMID6	FAMID5	FAMID4	FAMID3	FAMID2	FAMID1	Γ			
bit 15										
R	R	R	R	R	R	R				
DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	Γ			

DEV7	DEV6	DEV5	DEV4	DEV3	DEV2	DEV1	DEV0
bit 7							bit 0

Legend:	R = Readable bit	U = Unim	plemented bit

bit 23-16	Unimplemented: Read as '1'
-----------	----------------------------

- bit 15-8 **FAMID<7:0>:** Device Family Identifier bits 01000001 = PIC24FJ256DA210 family
- bit 7-0 **DEV<7:0>:** Individual Device Identifier bits 00001000 = PIC24FJ128DA206 00001001 = PIC24FJ128DA106 00001010 = PIC24FJ128DA210 00001011 = PIC24FJ128DA110 00001100 = PIC24FJ256DA206 00001101 = PIC24FJ256DA106 00001110 = PIC24FJ256DA210 00001111 = PIC24FJ256DA110

29.0 INSTRUCTION SET SUMMARY

Note:	This chapter is a brief summary of the					
	PIC24F instruction set architecture and is					
	not intended to be a comprehensive					
	reference source.					

The PIC24F instruction set adds many enhancements to the previous PIC[®] MCU instruction sets, while maintaining an easy migration from previous PIC MCU instruction sets. Most instructions are a single program memory word. Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction. The instruction set is highly orthogonal and is grouped into four basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- Control operations

Table 29-1 shows the general symbols used in describing the instructions. The PIC24F instruction set summary in Table 29-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand which is typically a register 'Wb' without any address modifier
- The second source operand which is typically a register 'Ws' with or without an address modifier
- The destination of the result which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could either be the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement may use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by the value of 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand which is a register 'Wb' without any address modifier
- The second source operand which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The control instructions may use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

All instructions are a single word, except for certain double-word instructions, which were made double-word instructions so that all the required information is available in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles, with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes, and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles.

Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No. Symbol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions		
	Vol	Output Low Voltage						
DO10		I/O Ports	—	_	0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			_	_	0.4	V	IOL = 5.0 mA, VDD = 2.2V	
DO16		OSCO/CLKO	—	—	0.4	V	IOL = 6.6 mA, VDD = 3.6V	
			_	_	0.4	V	IOL = 5.0 mA, VDD = 2.2V	
	Vон	Output High Voltage						
DO20		I/O Ports	3.0	—	—	V	ІОН = -3.0 mA, VDD = 3.6V	
			2.4	—	—	V	IOH = -6.0 mA, VDD = 3.6V	
			1.65	—	—	V	Iон = -1.0 mA, Vdd = 2.2V	
			1.4	—		V	Юн = -3.0 mA, VDD = 2.2V	
DO26		OSCO/CLKO	2.4	—	_	V	IOH = -6.0 mA, VDD = 3.6V	
			1.4	—	_	V	IOH = -1.0 mA, VDD = 2.2V	

TABLE 30-8: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 30-9: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHARACTERISTICS			stated)			nditions: 2.2V to 3.6V (unless otherwise $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial		
Param No. Symbol Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions		
		Program Flash Memory						
D130	Eр	Cell Endurance	10000	—	_	E/W	-40°C to +85°C	
D131	Vpr	VDD for Read	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D132B		VDD for Self-Timed Write	VMIN	—	3.6	V	VMIN = Minimum operating voltage	
D133A	Tiw	Self-Timed Word Write Cycle Time	—	20	—	μS		
		Self-Timed Row Write Cycle Time	—	1.5	—	ms		
D133B	TIE	Self-Timed Page Erase Time	20	—	40	ms		
D134	TRETD	Characteristic Retention	20	-	—	Year	If no other specifications are violated	
D135	IDDP	Supply Current during Programming	_	16	—	mA		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10