

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, GFX, LVD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256da206t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-1:	CPU COF	RE REGISTERS
------------	---------	--------------

Register(s) Name	Description					
W0 through W15	Working Register Array					
PC	23-Bit Program Counter					
SR	ALU STATUS Register					
SPLIM	Stack Pointer Limit Value Register					
TBLPAG	Table Memory Page Address Register					
RCOUNT	Repeat Loop Counter Register					
CORCON	CPU Control Register					
DISICNT	Disable Interrupt Count Register					
DSRPAG	Data Space Read Page Register					
DSWPAG	Data Space Write Page Register					

TABLE 4-6: **INTERRUPT CONTROLLER REGISTER MAP (CONTINUED)**

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC16	00C4	—	CRCIP2	CRCIP1	CRCIP0	—	U2ERIP2	U2ERIP1	U2ERIP0	—	U1ERIP2	U1ERIP1	U1ERIP0	—	—	-	—	4440
IPC18	00C8	—	_	-	—	_	—		—	—	—	_	—	—	LVDIP2	LVDIP1	LVDIP0	0004
IPC19	00CA	_	_	_	_	_	_	_	_	_	CTMUIP2	CTMUIP1	CTMUIP0	_	_	_	_	0040
IPC20	00CC	_	U3TXIP2	U3TXIP1	U3TXIP0	_	U3RXIP2	U3RXIP1	U3RXIP0	_	U3ERIP2	U3ERIP1	U3ERIP0	_	_		_	4440
IPC21	00CE	_	U4ERIP2	U4ERIP1	U4ERIP0	_	USB1IP2	USB1IP1	USB1IP0	—	MI2C3IP2	MI2C3IP1	MI2C3IP0	_	SI2C3IP2	SI2C3IP1	SI2C3IP0	4444
IPC22	00D0	—	SPI3IP2	SPI3IP1	SPI3IP0	—	SPF3IP2	SPF3IP1	SPF3IP0	—	U4TXIP2	U4TXIP1	U4TXIP0	—	U4RXIP2	U4RXIP1	U4RXIP0	4444
IPC23	00D2	_	_		_	_	_	_	_	_	IC9IP2	IC9IP1	IC9IP0	_	OC9IP2	OC9IP1	OC9IP0	0044
IPC25	00D6	_	_		_	_	_		_	_	_	_	_	_	GFX1IP2	GFX1IP1	GFX1IP0	0004
INTTREG	00E0	CPUIRQ	_	VHOLD	_	ILR3	ILR2	ILR1	ILR0	_	VECNUM6	VECNUM5	VECNUM4	VECNUM3	VECNUM2	VECNUM1	VECNUM0	0000

 – = unimplemented, read as '0'. Reset values are shown in hexadecimal.
 Unimplemented in 64-pin devices, read as '0'.
 The Reset value in 64-pin devices are '0004'. Legend:

Note 1:

2:

TABLE 4-7: TIMER REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100		Timer1 Register												0000			
PR1	0102		Timer1 Period Register											FFFF				
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	TSYNC	TCS	_	0000
TMR2	0106		Timer2 Register 0000												0000			
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only) 00												0000			
TMR3	010A		Timer3 Register												0000			
PR2	010C		Timer2 Period Register F											FFFF				
PR3	010E								Timer3 Peri	od Register								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	T32	_	TCS	_	0000
T3CON	0112	TON	_	TSIDL	—	_	_	_	_	_	TGATE	TCKPS1	TCKPS0	_	_	TCS	_	0000
TMR4	0114								Timer4 I	Register								0000
TMR5HLD	0116						Т	imer5 Holdir	ng Register (for 32-bit ope	erations only	/)						0000
TMR5	0118								Timer5 I	Register								0000
PR4	011A								Timer4 Peri	od Register								FFFF
PR5	011C								Timer5 Peri	od Register								FFFF
T4CON	011E	TON	_	TSIDL	_	_	_		—	_	TGATE	TCKPS1	TCKPS0	T45		TCS		0000
T5CON	0120	TON	_	TSIDL	_		_		_	—	TGATE	TCKPS1	TCKPS0	_		TCS		0000

Legend:

- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

The user can program one row of Flash program memory at a time. To do this, it is necessary to erase the 8-row erase block containing the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to '0010' to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the block to be erased into the TBLPAG and W registers.
 - c) Write 55h to NVMKEY.
 - d) Write AAh to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-3).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 55h to NVMKEY.
 - c) Write AAh to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- 6. Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-4.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY BLOCK (ASSEMBLY LANGUAGE CODE)

	; Set up NVMCON for block erase oper	ration
	MOV #0x4042, W0 ;	
	MOV W0, NVMCON	; Initialize NVMCON
	; Init pointer to row to be ERASED	
	MOV #tblpage(PROG_ADDR), W0	i
	MOV W0, TBLPAG	; Initialize Program Memory (PM) Page Boundary SFR
	MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA<15:0> pointer
	TBLWTL W0, [W0]	; Set base address of erase block
	DISI #5	; Block all interrupts with priority <7
		; for next 5 instructions
	MOV.B #0x55, W0	
	MOV W0, NVMKEY	; Write the 0x55 key
	MOV.B #0xAA, W1 ;	
	MOV W1, NVMKEY	; Write the OxAA key
	BSET NVMCON, #WR	; Start the erase sequence
	NOP	; Insert two NOPs after the erase
l	NOP	; command is asserted
L		

Reset Type	Clock Source	SYSRST Delay	System Clock Delay	Notes
POR ⁽⁷⁾	EC	TPOR + TSTARTUP + TRST	_	1, 2, 3
	ECPLL	TPOR + TSTARTUP + TRST	TLOCK	1, 2, 3, 5
	XT, HS, SOSC	TPOR + TSTARTUP + TRST	Tost	1, 2, 3, 4
	XTPLL, HSPLL	TPOR + TSTARTUP + TRST	Tost + Tlock	1, 2, 3, 4, 5
	FRC, FRCDIV	TPOR + TSTARTUP + TRST	TFRC	1, 2, 3, 6, 7
	FRCPLL	TPOR + TSTARTUP + TRST	TFRC + TLOCK	1, 2, 3, 5, 6
	LPRC	TPOR + TSTARTUP + TRST	TLPRC	1, 2, 3, 6
BOR	EC	Tstartup + Trst	—	2, 3
	ECPLL	Tstartup + Trst	TLOCK	2, 3, 5
	XT, HS, SOSC	Tstartup + Trst	Tost	2, 3, 4
	XTPLL, HSPLL	Tstartup + Trst	Tost + Tlock	2, 3, 4, 5
	FRC, FRCDIV	Tstartup + Trst	TFRC	2, 3, 6, 7
	FRCPLL	Tstartup + Trst	TFRC + TLOCK	2, 3, 5, 6
	LPRC	Tstartup + Trst	TLPRC	2, 3, 6
MCLR	Any Clock	Trst	—	3
WDT	Any Clock	Trst	—	3
Software	Any clock	Trst	—	3
Illegal Opcode	Any Clock	TRST		3
Uninitialized W	Any Clock	Trst	—	3
Trap Conflict	Any Clock	TRST		3

TABLE 6-3: RESET DELAY TIMES FOR VARIOUS DEVICE RESETS

Note 1: TPOR = Power-on Reset delay (10 μ s nominal).

2: TSTARTUP = TVREG (10 μs nominal when VREGS = 1 and when VREGS = 0; depends upon WUTSEL<1:0> bits setting).

- 3: TRST = Internal State Reset time (32 µs nominal).
- **4:** Tos⊤ = Oscillator Start-up Timer. A 10-bit counter counts 1024 oscillator periods before releasing the oscillator clock to the system.
- **5:** TLOCK = PLL lock time.
- 6: TFRC and TLPRC = RC Oscillator start-up times.
- 7: If Two-speed Start-up is enabled, regardless of the primary oscillator selected, the device starts with FRC so the system clock delay is just TFRC, and in such cases, FRC start-up time is valid. It switches to the primary oscillator after its respective clock delay.

6.3.1 POR AND LONG OSCILLATOR START-UP TIMES

The oscillator start-up circuitry and its associated delay timers are not linked to the device Reset delays that occur at power-up. Some crystal circuits (especially low-frequency crystals) will have a relatively long start-up time. Therefore, one or more of the following conditions is possible after SYSRST is released:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

The device will not begin to execute code until a valid clock source has been released to the system. Therefore, the oscillator and PLL start-up delays must be considered when the Reset delay time must be known.

6.3.2 FAIL-SAFE CLOCK MONITOR (FSCM) AND DEVICE RESETS

If the FSCM is enabled, it will begin to monitor the system clock source when SYSRST is released. If a valid clock source is not available at this time, the device will automatically switch to the FRC oscillator and the user can switch to the desired crystal oscillator in the Trap Service Routine (TSR).

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 8. "Interrupts" (DS39707). The information in this data sheet supersedes the information in the FRM.

The PIC24F interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the PIC24F CPU. It has the following features:

- Up to 8 processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- Unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors, consisting of 8 non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority; this is linked to their position in the vector table. All other things being equal, lower addresses have a higher natural priority. For example, the interrupt associated with Vector 0 will take priority over interrupts at any other vector address.

PIC24FJ256DA210 family devices implement non-maskable traps and unique interrupts. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. The ALTIVT (INTCON2<15>) control bit provides access to the AIVT. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The PIC24F devices clear their registers in response to a Reset, which forces the PC to zero. The micro-controller then begins program execution at location, 000000h. The user programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2 (CONTINUED)

bit 8	 IC6IF: Input Capture Channel 6 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 7	IC5IF: Input Capture Channel 5 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 6	 IC4IF: Input Capture Channel 4 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 4-2	Unimplemented: Read as '0'
bit 1	 SPI2IF: SPI2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred
bit 0	 SPF2IF: SPI2 Fault Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred

Note 1: Not available in PIC24FJXXXDAX06 devices.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	T2IP2	T2IP1	T2IP0	—	OC2IP2	OC2IP1	OC2IP0
bit 15	·						bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	IC2IP2	IC2IP1	IC2IP0		—	—	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as '	0'				
bit 14-12	T2IP<2:0>: 1	Fimer2 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	sabled				
bit 11	Unimplemer	nted: Read as '	0'				
bit 10-8	OC2IP<2:0>	: Output Compa	are Channel 2	Interrupt Priori	ty bits		
	111 = Interru	upt is priority 7 (highest priorit	y interrupt)			
	•						
	•						
	001 = Interru	upt is priority 1	sahlad				
hit 7		ted. Read as '	0'				
bit 6-4		Innut Centure (∪ Channel 2 Into	rrunt Priority bi	ts		
	111 = Interri	input capture c	highest priorit	v interrunt)			
	•		gnoot phon				
	•						
	001 = Interru	upt is priority 1					
	000 = Interru	upt source is dis	sabled				
bit 3-0	Unimplemer	nted: Read as '	0'				

REGISTER 7-20: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

9.0 POWER-SAVING FEATURES

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 10. "Power-Saving Features" (DS39698). The information in this data sheet supersedes the information in the FRM.

The PIC24FJ256DA210 family of devices provides the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. All PIC24F devices manage power consumption in four different ways:

- Clock Frequency
- Instruction-Based Sleep and Idle modes
- Software Controlled Doze mode
- · Selective Peripheral Control in Software

Combinations of these methods can be used to selectively tailor an application's power consumption, while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

PIC24F devices allow for a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits. The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in **Section 8.0** "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

PIC24F devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution; Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembly syntax of the PWRSAV instruction is shown in Example 9-1.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to "wake-up".

9.2.1 SLEEP MODE

Sleep mode has these features:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption will be reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode since the system clock source is disabled.
- The LPRC clock will continue to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals may continue to operate in Sleep mode. This includes items such as the input change notification on the I/O ports or peripherals that use an external clock input. Any peripheral that requires the system clock source for its operation will be disabled in Sleep mode. Users can opt to make the voltage regulator enter standby mode on entering Sleep mode by clearing the VREGS bit (RCON<8>). This will decrease current consumption but will add a delay, TVREG, to the wake-up time. For this reason, applications that do not use the voltage regulator should set this bit.

The device will wake-up from Sleep mode on any of the these events:

- On any interrupt source that is individually enabled
- · On any form of device Reset
- On a WDT time-out

On wake-up from sleep, the processor will restart with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1:	PWRSAV INSTRUCTION
	SYNTAX

PWRSAV	#0	;	Put	the	device	into	SLEEF	mode
PWRSAV	#1	;	Put	the	device	into	IDLE	mode

REGISTER 10-24: RPINR22: PERIPHERAL PIN SELECT INPUT REGISTER 22

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SCK2R5	SCK2R4	SCK2R3	SCK2R2	SCK2R1	SCK2R0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SDI2R5	SDI2R4	SDI2R3	SDI2R2	SDI2R1	SDI2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	SCK2R<5:0>: Assign SPI2 Clock Input (SCK2IN) to Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	SDI2R<5:0>: Assign SPI2 Data Input (SDI2) to Corresponding RPn or RPIn Pin bits

REGISTER 10-25: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	SS2R5	SS2R4	SS2R3	SS2R2	SS2R1	SS2R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

bit 5-0 SS2R<5:0>: Assign SPI2 Slave Select Input (SS2IN) to Corresponding RPn or RPIn Pin bits

REGISTER 10-37: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP17R5	RP17R4	RP17R3	RP17R2	RP17R1	RP17R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP16R5	RP16R4	RP16R3	RP16R2	RP16R1	RP16R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

- bit 13-8**RP17R<5:0>:** RP17 Output Pin Mapping bits
Peripheral output number n is assigned to pin, RP17 (see Table 10-4 for peripheral function numbers).bit 7-6**Unimplemented:** Read as '0'bit 5-0**RP16R<5:0>:** RP16 Output Pin Mapping bits
- bit 5-0 **RP16R<5:0>:** RP16 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP16 (see Table 10-4 for peripheral function numbers).

REGISTER 10-38: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	RP19R5	RP19R4	RP19R3	RP19R2	RP19R1	RP19R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP18R5	RP18R4	RP18R3	RP18R2	RP18R1	RP18R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP19R<5:0>:** RP19 Output Pin Mapping bits

Peripheral output number n is assigned to pin, RP19 (see Table 10-4 for peripheral function numbers).

- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP18R<5:0>:** RP18 Output Pin Mapping bits Peripheral output number n is assigned to pin, RP18 (see Table 10-4 for peripheral function numbers).

NOTES:

16.2 Setting Baud Rate When Operating as a Bus Master

To compute the Baud Rate Generator reload value, use Equation 16-1.

EQUATION 16-1:	COMPUTING BAUD RATE
	RELOAD VALUE ^(1,2)

$$FSCL = \frac{FCY}{I2CxBRG + 1 + \frac{FCY}{10,000,000}}$$

or:
$$I2CxBRG = \left(\frac{FCY}{FSCL} - \frac{FCY}{10,000,000} - 1\right)$$

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.

16.3 Slave Address Masking

The I2CxMSK register (Register 16-3) designates address bit positions as "don't care" for both 7-Bit and 10-Bit Addressing modes. Setting a particular bit location (= 1) in the I2CxMSK register causes the slave module to respond whether the corresponding address bit value is a '0' or a '1'. For example, when I2CxMSK is set to '00100000', the slave module will detect both addresses, '0000000' and '0100000'.

To enable address masking, the Intelligent Peripheral Management Interface (IPMI) must be disabled by clearing the IPMIEN bit (I2CxCON<11>).

Note: As a result of changes in the I²C[™] protocol, the addresses in Table 16-2 are reserved and will not be Acknowledged in Slave mode. This includes any address mask settings that include any of these addresses.

Required System FSCL	Fcy	I2CxB	RG Value	
		(Decimal)	(Hexadecimal)	Actual FSCL
100 kHz	16 MHz	157	9D	100 kHz
100 kHz	8 MHz	78	4E	100 kHz
100 kHz	4 MHz	39	27	99 kHz
400 kHz	16 MHz	37	25	404 kHz
400 kHz	8 MHz	18	12	404 kHz
400 kHz	4 MHz	9	9	385 kHz
400 kHz	2 MHz	4	4	385 kHz
1 MHz	16 MHz	13	D	1.026 MHz
1 MHz	8 MHz	6	6	1.026 MHz
1 MHz	4 MHz	3	3	0.909 MHz

TABLE 16-1: I2C[™] CLOCK RATES(1,2)

Note 1: Based on Fcy = Fosc/2; Doze mode and PLL are disabled.

2: These clock rate values are for guidance only. The actual clock rate can be affected by various system level parameters. The actual clock rate should be measured in its intended application.

TABLE 16-2:	I ² C™ RESER	RVED ADDRESSES ⁽¹⁾
-------------	-------------------------	-------------------------------

Slave Address	R/W Bit	Description
0000 000	0	General Call Address ⁽²⁾
0000 000	1	Start Byte
0000 001	x	CBus Address
0000 01x	x	Reserved
0000 1xx	x	HS Mode Master Code
1111 0xx	x	10-Bit Slave Upper Byte ⁽³⁾
1111 1xx	x	Reserved

Note 1: The address bits listed here will never cause an address match, independent of address mask settings.

- **2:** The address will be Acknowledged only if GCEN = 1.
- 3: A match on this address can only occur on the upper byte in 10-Bit Addressing mode.

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER

R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC		
ACKSTAT	TRSTAT	_	—	_	BCL	GCSTAT	ADD10		
bit 15					•		bit 8		
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC		
IWCOL	I2COV	D/A	Р	S	R/W	RBF	TBF		
bit 7							bit 0		
Legend:	Legend: C = Clearable bit HS = Hardware Settable bit								
R = Readab	le bit	W = Writabl	e bit	U = Unimpleme	nted bit, read as	ʻ0'			
-n = Value a	t POR	'1' = Bit is s	et	'0' = Bit is clear	ed	x = Bit is unkno	wn		
HSC = Hard	ware Settable	/Clearable bit							
bit 15	ACKSTAT:	Acknowledge	Status bit						
	1 = NACK	was detected	last						
	0 = ACK wa Hardware is	as detected la	ast at the end of <i>l</i>	cknowledge					
hit 14	TRSTAT: Tr	ansmit Status	s hit	toknowiedge.					
bit 14	(When oper	ating as I ² C [™]	^M master. App	licable to maste	r transmit operat	ion.)			
	1 = Master	transmit is in	progress (8 b	oits + ACK)					
	0 = Master	transmit is no	ot in progress						
	Hardware is	set at the beg	inning of mast	er transmission;	hardware is clear	at the end of slav	e Acknowledge.		
DIT 13-11	Unimpleme	ntea: Read a							
DIT 10		er Bus Collisio	on Detect bit	during a mostor	operation				
	1 = A bus c 0 = No colli	sion		during a master	operation				
	Hardware is	set at the de	tection of a b	us collision.					
bit 9	GCSTAT: G	eneral Call S	tatus bit						
	1 = Genera	l call address	was received	b					
	0 = Genera	I call address	was not rece	eived	coll addrosa; ba	rdwara ia alaar a	t Stan datastian		
hit 8		Bit Address	Status hit	ches the general	call address, fla	iuwale is clear a	l Stop detection.		
DILO	1 = 10-bit a	ddress was r	natched						
	0 = 10-bit a	ddress was r	not matched						
	Hardware is	set at the mate	ch of the 2 nd by	te of the matched	d 10-bit address; h	hardware is clear a	at Stop detection.		
bit 7	IWCOL: Wr	ite Collision E	Detect bit		2				
	1 = An atte	mpt to write to	o the I2CxTRI	N register failed	because the I ² C	module is busy			
	Hardware is	sion set at an occ	currence of w	tite to I2CxTRN	while busv (clear	ed by software).			
bit 6	I2COV: Rec	eive Overflov	v Flag bit						
	1 = A byte	was received	while the I2C	xRCV register is	still holding the	previous byte			
	0 = No ove	rflow							
	Hardware is	set at an atte	empt to transf	er I2CxRSR to I	2CxRCV (cleare	d by software).			
bit 5	D/A: Data/A	ddress bit (w	hen operating	as I ² C slave)					
	⊥ = Indicate	es that the las	st byte receive	eu was data	address				
	Hardware is	s clear at the	e device addr	ess match. Har	dware is set afte	er a transmissio	n finishes or by		
	reception of	a slave byte.		-			,		

18.1.2 HOST AND OTG MODES

18.1.2.1 D+ and D- Pull-Down Resistors

PIC24FJ256DA210 family devices have a built-in 15 kΩ pull-down resistor on the D+ and D- lines. These are used in tandem to signal to the bus that the microcontroller is operating in Host mode. They are engaged by setting the HOSTEN bit (U1CON<3>). If the OTGEN bit (U1OTGCON<2>) is set, then these pull-downs are enabled by setting the DPPULDWN and DMPULDWN bits (U1OTGCON<5:4>).

18.1.2.2 Power Configurations

In Host mode, as well as Host mode in On-The-Go operation, the USB 2.0 Specification requires that the host application should supply power on VBUS. Since

the microcontroller is running below VBUS, and is not able to source sufficient current, a separate power supply must be provided.

When the application is always operating in Host mode, a simple circuit can be used to supply VBUS and regulate current on the bus (Figure 18-6). For OTG operation, it is necessary to be able to turn VBUS on or off as needed, as the microcontroller switches between Device and Host modes. A typical example using an external charge pump is shown in Figure 18-7.

FIGURE 18-6: HOST INTERFACE EXAMPLE

FIGURE 18-7: OTG INTERFACE EXAMPLE

REGISTE	R 19-8: PM	STAT: EPMP	STATUS REG	ISTER (SLAV	/E MODE ON	LY)	
R-0, HSC	R/W-0 HS	U-0	U-0	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IBF	IBOV			IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1, HSC	R/W-0 HS	U-0	U-0	R-1, HSC	R-1, HSC	R-1, HSC	R-1, HSC
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0
Legend:		HS = Hardware	e Settable bit	HSC = Hardw	are Settable/Cl	learable bit	
R = Reada	able bit	W = Writable b	it	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	IBF: Input B 1 = All writa 0 = Some o	uffer Full Status ble input buffer i r all of the writat	bit egisters are ful le input buffer r	l registers are em	vtar		
hit 14	IBOV: Input	Buffer Overflow	Status bit	egiotero die en	ipty		
	1 = A write	attempt to a full i	nput register og	courred (must b	e cleared in so	ftware)	
	0 = No over	flow occurred	inperiogiciei ei				
bit 13-12	Unimpleme	nted: Read as ')'				
bit 11-8	IBxF: Input	Buffer x Status F	ull bit ⁽¹⁾				
	1 = Input bu 0 = Input bu	uffer contains un uffer does not co	read data (read ntain unread da	ing buffer will cl ita	ear this bit)		
bit 7	OBE: Output	t Buffer Empty S	status bit				
	1 = All read 0 = Some o	able output buffe r all of the reada	er registers are ble output buffe	empty er registers are :	full		
bit 6	OBUF: Outp	out Buffer Under	low Status bit				
	1 = A read o 0 = No undo	occurred from ar erflow occurred	empty output i	register (must b	e cleared in so	ftware)	
bit 5-4	Unimpleme	nted: Read as ')'				
bit 3-0	OBxE: Outp	ut Buffer x Statu	s Empty bit				
	1 = Output 0 = Output	buffer is empty (buffer contains u	writing data to t ntransmitted da	he buffer will cle ata	ear this bit)		
Note 1:	Even though a and 1, or byte	n individual bit re 2 and 3) gets cle	epresents the b ared even on b	yte in the buffer oyte reading.	, the bits corres	sponding to the	Word (byte 0

20.1.5 ALRMVAL REGISTER MAPPINGS

REGISTER 20-8: ALMTHDY: ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	—	MTHTEN0	MTHONE3	MTHONE2	MTHONE1	MTHONE0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN1	DAYTEN0	DAYONE3	DAYONE2	DAYONE1	DAYONE0
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	Unimplemer	nted: Read as ')'				
bit 12	MTHTENO: E	Binary Coded De	ecimal Value o	f Month's Tens	Digit bit		
	Contains a va	alue of 0 or 1.					
bit 11-8	MTHONE<3:	0>: Binary Cod	ed Decimal Va	lue of Month's	Ones Digit bits		
	Contains a va	alue from 0 to 9					
bit 7-6	Unimplemer	ted: Read as ')'				
bit 5-4	DAYTEN<1:0)>: Binarv Code	d Decimal Val	ue of Dav's Ten	is Diait bits		
	Contains a va	alue from 0 to 3		, ,	9		
bit 3-0	DAYONE<3:	0>: Binary Code	ed Decimal Val	ue of Day's On	es Digit bits		
	Contains a va	alue from 0 to 9					
Note 1: A	write to this reg	gister is only allo	wed when RT	CWREN = 1.			

20.2 Calibration

The real-time crystal input can be calibrated using the periodic auto-adjust feature. When properly calibrated, the RTCC can provide an error of less than 3 seconds per month. This is accomplished by finding the number of error clock pulses for one minute and storing the value into the lower half of the RCFGCAL register. The 8-bit signed value loaded into the lower half of RCFGCAL is multiplied by four and will either be added or subtracted from the RTCC timer, once every minute. Refer to the following steps for RTCC calibration:

- 1. Using another timer resource on the device, the user must find the error of the 32.768 kHz crystal.
- 2. Once the error is known, it must be converted to the number of error clock pulses per minute and loaded into the RCFGCAL register.

EQUATION 20-1: RTCC CALIBRATION

Error (clocks per minute) = (Ideal Frequency \dagger – Measured Frequency) x 60

†Ideal Frequency = 32,768H

3. a) If the oscillator is faster then ideal (negative result form Step 2), the RCFGCAL register value needs to be negative. This causes the specified number of clock pulses to be subtracted from the timer counter, once every minute.

b) If the oscillator is slower then ideal (positive result from Step 2), the RCFGCAL register value needs to be positive. This causes the specified number of clock pulses to be added to the timer counter, once every minute.

 Divide the number of error clocks per minute by 4 to get the correct CAL value and load the RCFGCAL register with the correct value.

(Each 1-bit increment in CAL adds or subtracts 4 pulses).

Writes to the lower half of the RCFGCAL register should only occur when the timer is turned off or immediately after the rising edge of the seconds pulse.

Note: It is up to the user to include in the error value the initial error of the crystal, drift due to temperature and drift due to crystal aging.

20.3 Alarm

- Configurable from half second to one year
- Enabled using the ALRMEN bit (ALCFGRPT<15>, Register 20-3)
- One-time alarm and repeat alarm options
 available

20.3.1 CONFIGURING THE ALARM

The alarm feature is enabled using the ALRMEN bit. This bit is cleared when an alarm is issued. Writes to ALRMVAL should only take place when ALRMEN = 0.

As shown in Figure 20-2, the interval selection of the alarm is configured through the AMASK bits (ALCFGRPT<13:10>). These bits determine which and how many digits of the alarm must match the clock value for the alarm to occur.

The alarm can also be configured to repeat based on a preconfigured interval. The amount of times this occurs, once the alarm is enabled, is stored in the ARPT bits, ARPT<7:0> (ALCFGRPT<7:0>). When the value of the ARPT bits equals 00h and the CHIME bit (ALCFGRPT<14>) is cleared, the repeat function is disabled and only a single alarm will occur. The alarm can be repeated up to 255 times by loading ARPT<7:0> with FFh.

After each alarm is issued, the value of the ARPT bits is decremented by one. Once the value has reached 00h, the alarm will be issued one last time, after which the ALRMEN bit will be cleared automatically and the alarm will turn off.

Indefinite repetition of the alarm can occur if the CHIME bit = 1. Instead of the alarm being disabled when the value of the ARPT bits reaches 00h, it rolls over to FFh and continues counting indefinitely while CHIME is set.

20.3.2 ALARM INTERRUPT

At every alarm event, an interrupt is generated. In addition, an alarm pulse output is provided that operates at half the frequency of the alarm. This output is completely synchronous to the RTCC clock and can be used as a trigger clock to other peripherals.

Note:	Changing any of the registers, other then the RCFGCAL and ALCFGRPT registers
	and the CHIME bit while the alarm is
	enabled (ALRMEN = 1), can result in a
	false alarm event leading to a false alarm
	interrupt. To avoid a false alarm event, the
	timer and alarm values should only be
	changed while the alarm is disabled
	(ALRMEN = 0). It is recommended that the
	ALCEGRPT register and CHIME bit be
	changed when RTCSYNC = 0.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CTMUEN	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN	CTTRIG
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC
EDG2POL	EDG2SEL1	EDG2SEL0	EDG1POL	EDG1SEL1	EDG1SEL0	EDG2STAT	EDG1STAT
bit 7							bit 0
Legend:		HSC = Hardw	are Settable/C	learable bit			
R = Readable	e bit	W = Writable b	pit	U = Unimpler	mented bit, reac	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15	CTMUEN: CT	MU Enable bit					
	1 = Module is	senabled					
	0 = Module is	s disabled					
bit 14	Unimplement	ted: Read as '0)' 				
bit 13	CTMUSIDL: 8	Stop in Idle Mod	le bit				
	\perp = Discontin	module operat	ration when th	ie device enter: 1e	s lale mode		
bit 12	TGEN: Time (Generation Ena	ble bit ⁽¹⁾				
Sit 12	1 = Enables	edae delav aen	eration				
	0 = Disables	edge delay ger	eration				
bit 10	EDGEN: Edge	e Enable bit					
	1 = Edges are	e not blocked					
	0 = Edges ar	e blocked					
bit 10	EDGSEQEN:	Edge Sequence	e Enable bit				
	$1 = Edge 1 e^{-1}$	vent must occu	r before Edge	2 event can oc	cur		
hit 0		sequence is ne	urco Control k	sit			
bit 9	1 = Analog ci	urrent source of	utout is around	ded			
	0 = Analog cu	urrent source of	utput is not gro	ounded			
bit 8	CTTRIG: Trig	ger Control bit					
	1 = Trigger o	utput is enabled	ł				
	0 = Trigger o	utput is disable	d				
bit 7	EDG2POL: E	dge 2 Polarity S	Select bit				
	1 = Edge 2 is	programmed f	or a positive e	dge response			
		programmed i	or a negative (edge response			
DIT 6-5	EDG25EL<1:	1 nin	lince Select bit	S			
	11 = CTEDG 10 = CTEDG	i2 pin					
	01 = OC1 mo	odule					
	00 = Timer1	module					
bit 4	EDG1POL: E	dge 1 Polarity S	Select bit				
	1 = Edge 1 is	programmed f	or a positive e	dge response			
		programmed f	or a negative (euge response			
					• •		

REGISTER 26-1: CTMUCON: CTMU CONTROL REGISTER

Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn/RPIn pin. See Section 10.4 "Peripheral Pin Select (PPS)" for more information.

REGISTER 27-1: CW1: FLASH CONFIGURATION WORD 1 (CONTINUED)

- bit 4 FWPSA: WDT Prescaler Ratio Select bit
 - 1 = Prescaler ratio of 1:128
 - 0 = Prescaler ratio of 1:32
- bit 3-0 WDTPS<3:0>: Watchdog Timer Postscaler Select bits
 - 1111 = 1:32,768 1110 = 1:16,384 1101 **= 1:8,192** 1100 = 1:4,096 1011 = 1:2,048 1010 = 1:1,024 1001 = 1:512 1000 = 1:256 0111 = 1:128 0110 = 1:64 0101 = 1:32 0100 = 1:16 0011 = 1:8 0010 = 1:4 0001 = 1:2 0000 = 1:1
- Note 1: Unimplemented in 64-pin devices, maintain at '1' (VREF+ on RB0 and VREF- on RB1).

NOTES: