

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	37
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p34l1cefar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		1.5.29	Cyclic redundancy check (CRC)27
		1.5.30	IEEE 1149.1 JTAG controller
		1.5.31	On-chip voltage regulator (VREG)
2	Packa	age pine	outs and signal descriptions
	2.1	Packag	e pinouts
	2.2	Pin des	cription
		2.2.1	Power supply and reference voltage pins
		2.2.2	System pins
		2.2.3	Pin multiplexing
3	Elect	rical cha	aracteristics
	3.1	Introduc	ction
	3.2	Parame	eter classification
	3.3	Absolut	e maximum ratings 46
	3.4	Recom	mended operating conditions
	3.5	Therma	Il characteristics
		3.5.1	Package thermal characteristics
		3.5.2	General notes for specifications at maximum junction temperature 52
	3.6	Electror	magnetic interference (EMI) characteristics
	3.7	Electros	static discharge (ESD) characteristics
	3.8	Power r	management electrical characteristics
		3.8.1	Voltage regulator electrical characteristics
		3.8.2	Voltage monitor electrical characteristics
	3.9	Power u	up/down sequencing
	3.10	DC elec	ctrical characteristics
		3.10.1	NVUSRO register
		3.10.2	DC electrical characteristics (5 V)60
		3.10.3	DC electrical characteristics (3.3 V)
		3.10.4	Input DC electrical characteristics definition
		3.10.5	I/O pad current specification64
	3.11	Main os	scillator electrical characteristics 65
	3.12	FMPLL	electrical characteristics
	3.13	16 MHz	RC oscillator electrical characteristics
	3.14	Analog-	to-digital converter (ADC) electrical characteristics

Eastura	Configuration				
reature	Airbag	Full-featured			
SRAM (with ECC)	16 KB	20 KB			
FlexCAN (controller area network)	1	2			
Safety port	No	Yes (via second FlexCAN module)			
FlexPWM (pulse-width modulation) channels	No	8 (capture capability not supported)			
CTU (cross triggering unit)	No	Yes			

Table 3. SPC560P40 device configuration differences

1.4 Block diagram

Figure 1 shows a top-level block diagram of the SPC560P34/SPC560P40 MCU. *Table 2* summarizes the functions of the blocks.

Block	Function
Analog-to-digital converter (ADC)	Multi-channel, 10-bit analog-to-digital converter
Boot assist module (BAM)	Block of read-only memory containing VLE code which is executed according to the boot mode of the device
Clock generation module (MC_CGM)	Provides logic and control required for the generation of system and peripheral clocks
Controller area network (FlexCAN)	Supports the standard CAN communications protocol
Cross triggering unit (CTU)	Enables synchronization of ADC conversions with a timer event from the eMIOS or from the PIT
Crossbar switch (XBAR)	Supports simultaneous connections between two master ports and three slave ports; supports a 32-bit address bus width and a 32-bit data bus width
Cyclic redundancy check (CRC)	CRC checksum generator
Deserial serial peripheral interface (DSPI)	Provides a synchronous serial interface for communication with external devices
Enhanced direct memory access (eDMA)	Performs complex data transfers with minimal intervention from a host processor via "n" programmable channels
Enhanced timer (eTimer)	Provides enhanced programmable up/down modulo counting
Error correction status module (ECSM)	Provides a myriad of miscellaneous control functions for the device including program-visible information about configuration and revision levels, a reset status register, wakeup control for exiting sleep modes, and optional features such as information on memory errors reported by error-correcting codes
External oscillator (XOSC)	Provides an output clock used as input reference for FMPLL_0 or as reference clock for specific modules depending on system needs
Fault collection unit (FCU)	Provides functional safety to the device
Flash memory	Provides non-volatile storage for program code, constants and variables
Frequency-modulated phase- locked loop (FMPLL)	Generates high-speed system clocks and supports programmable frequency modulation
Interrupt controller (INTC)	Provides priority-based preemptive scheduling of interrupt requests
JTAG controller	Provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode
LINFlex controller	Manages a high number of LIN (Local Interconnect Network protocol) messages efficiently with a minimum of CPU load
Mode entry module (MC_ME)	Provides a mechanism for controlling the device operational mode and mode transition sequences in all functional states; also manages the power control unit, reset generation module and clock generation module, and holds the configuration, control and status registers accessible for applications
Periodic interrupt timer (PIT)	Produces periodic interrupts and triggers
Peripheral bridge (PBRIDGE)	Is the interface between the system bus and on-chip peripherals
Power control unit (MC_PCU)	Reduces the overall power consumption by disconnecting parts of the device from the power supply via a power switching device; device components are grouped into sections called "power domains" which are controlled by the PCU

 Table 4.
 SPC560P34/SPC560P40 series block summary

The flash memory module provides the following features:

- As much as 320 KB flash memory
 - 6 blocks (32 KB + 2×16 KB + 32 KB + 32 KB + 128 KB) code flash memory
 - 4 blocks (16 KB + 16 KB + 16 KB + 16 KB) data flash memory
 - Full Read-While-Write (RWW) capability between code flash memory and data flash memory
- Four 128-bit wide prefetch buffers to provide single cycle in-line accesses (prefetch buffers can be configured to prefetch code or data or both)
- Typical flash memory access time: no wait-state for buffer hits, 2 wait-states for page buffer miss at 64 MHz
- Hardware managed flash memory writes handled by 32-bit RISC Krypton engine
- Hardware and software configurable read and write access protections on a per-master basis
- Configurable access timing allowing use in a wide range of system frequencies
- Multiple-mapping support and mapping-based block access timing (up to 31 additional cycles) allowing use for emulation of other memory types
- Software programmable block program/erase restriction control
- Erase of selected block(s)
- Read page sizes
 - Code flash memory: 128 bits (4 words)
 - Data flash memory: 32 bits (1 word)
- ECC with single-bit correction, double-bit detection for data integrity
 - Code flash memory: 64-bit ECC
 - Data flash memory: 32-bit ECC
- Embedded hardware program and erase algorithm
- Erase suspend and program abort
- Censorship protection scheme to prevent flash memory content visibility
- Hardware support for EEPROM emulation

1.5.5 Static random access memory (SRAM)

The SPC560P34/SPC560P40 SRAM module provides up to 20 KB of general-purpose memory.

The SRAM module provides the following features:

- Supports read/write accesses mapped to the SRAM from any master
- Up to 20 KB general purpose SRAM
- Supports byte (8-bit), half word (16-bit), and word (32-bit) writes for optimal use of memory
- Typical SRAM access time: no wait-state for reads and 32-bit writes; 1 wait-state for 8and 16-bit writes if back-to-back with a read to same memory block

The RC oscillator provides these features:

- Nominal frequency 16 MHz
- ±5% variation over voltage and temperature after process trim
- Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL
- RC oscillator is used as the default system clock during startup

1.5.12 **Periodic interrupt timer (PIT)**

The PIT module implements these features:

- 4 general-purpose interrupt timers
- 32-bit counter resolution
- Clocked by system clock frequency
- Each channel usable as trigger for a DMA request

1.5.13 System timer module (STM)

The STM implements these features:

- One 32-bit up counter with 8-bit prescaler
- Four 32-bit compare channels
- Independent interrupt source for each channel
- Counter can be stopped in debug mode

1.5.14 Software watchdog timer (SWT)

The SWT has the following features:

- 32-bit time-out register to set the time-out period
- Programmable selection of window mode or regular servicing
- Programmable selection of reset or interrupt on an initial time-out
- Master access protection
- Hard and soft configuration lock bits
- Reset configuration inputs allow timer to be enabled out of reset

1.5.15 Fault collection unit (FCU)

The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning.

The FCU module has the following features:

- FCU status register reporting the device status
- Continuous monitoring of critical fault signals
- User selection of critical signals from different fault sources inside the device
- Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device and/or other circuitry (for example, a safety relay)
- Faults are latched into a register

1.5.25 eTimer

The SPC560P34/SPC560P40 includes one eTimer module which provides six 16-bit general purpose up/down timer/counter units with the following features:

- Clock frequency same as that used for the e200z0h core
- Individual channel capability
 - Input capture trigger
 - Output compare
 - Double buffer (to capture rising edge and falling edge)
 - Separate prescaler for each counter
 - Selectable clock source
 - 0–100% pulse measurement
 - Rotation direction flag (quad decoder mode)
- Maximum count rate
 - External event counting: max. count rate = peripheral clock/2
 - Internal clock counting: max. count rate = peripheral clock
- Counters are:
 - Cascadable
 - Preloadable
- Programmable count modulo
- Quadrature decode capabilities
- Counters can share available input pins
- Count once or repeatedly
- Pins available as GPIO when timer functionality not in use

1.5.26 Analog-to-digital converter (ADC) module

The ADC module provides the following features:

Analog part:

- 1 on-chip analog-to-digital converter
 - 10-bit AD resolution
 - 1 sample and hold unit
 - Conversion time, including sampling time, less than 1 µs (at full precision)
 - Typical sampling time is 150 ns minimum (at full precision)
 - DNL/INL ±1 LSB
 - TUE < 1.5 LSB
 - Single-ended input signal up to 3.3 V/5.0 V
 - 3.3 V/5.0 V input reference voltage
 - ADC and its reference can be supplied with a voltage independent from V_{DDIO}
 - ADC supply can be equal or higher than V_{DDIO}
 - ADC supply and ADC reference are not independent from each other (both internally bonded to same pad)
 - Sample times of 2 (default), 8, 64 or 128 ADC clock cycles

Figure 5. 100-pin LQFP pinout – Airbag configuration (top view)

Port	PCR	Alternate	Functions	Deripheral ⁽³⁾	I/O diree	Pad speed ⁽⁵⁾		F	Pin	
pin	register	function ^{(1),(2)}	Functions Peripheral		tion ⁽⁴⁾	SRC = 0	SRC = 1	64-pin	100-pin	
		ALT0	GPIO[68]	SIUL						
		ALT1	—	—						
E[4]	PCR[68]	ALT2	—	—	Input only	—	—	—	44	
		ALT3	—	—						
		—	AN[7]	ADC_0						
		ALT0	GPIO[69]	SIUL	Input only					
	PCR[69]	ALT1	—	—						
E[5]		ALT2	—	—		—	—	—	43	
		ALT3	—	—						
		—	AN[8]	ADC_0						
		ALT0	GPIO[70]	SIUL						
		ALT1	—	—						
E[6]	PCR[70]	ALT2	—	—	Input only	—	—	—	45	
		ALT3	—	—						
		—	AN[9]	ADC_0						
		ALT0	GPIO[71]	SIUL						
		ALT1	—	—						
E[7]	PCR[71]	ALT2	—	—	Input only	—	—	—	41	
		ALT3	—	—						
		—	AN[10]	ADC_0						

Table 7. Pin muxing (continued)

1. ALT0 is the primary (default) function for each port after reset.

2. Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 → ALT0; PCR.PA = 01 → ALT1; PCR.PA = 10 → ALT2; PCR.PA = 11 → ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "—".

3. Module included on the MCU.

4. Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.

5. Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.

6. ADC0.AN emulates ADC1.AN. This feature is used to provide software compatibility between SPC560P34/SPC560P40 and SPC560P50. Refer to ADC chapter of reference manual for more details.

3.6 Electromagnetic interference (EMI) characteristics

Symbol	Parameter	Conditions	Clocks	Frequency	Level (Typ)	Unit
			f _{OSC} = 8 MHz	150 kHz–150 MHz	11	dBµ
		V _{DD} = 5.0 V; T _A = 25 °C	$f_{CPU} = 64 \text{ MHz}$	150–1000 MHz	13	V
			modulation	IEC level	М	—
		Other device configuration, test conditions and EM testing per standard IEC61967-2	f _{OSC} = 8 MHz	150 kHz–150 MHz	8	dBµ
			$f_{CPU} = 64 \text{ MHz}$	150–1000 MHz	12	V
	Radiated		modulation	IEC level	N	—
YEME	emissions	emissions $V_{DD} = 3.3 \text{ V}; T_A = 25 \text{ °C}$ Other device configuration, test conditions and EM testing $f_{OSC} = 8 \text{ MHz}$ No PLL frequence modulation $f_{OSC} = 8 \text{ MHz}$	f _{OSC} = 8 MHz	150 kHz–150 MHz	9	dBµ
			f _{CPU} = 64 MHz	150–1000 MHz	12	V
			modulation	IEC level	М	_
			Other device configuration, test conditions and EM testing for a MHz	f _{OSC} = 8 MHz	150 kHz–150 MHz	7
	per standard IEC61967-2		150–1000 MHz	12	V	
		E r		IEC level	N	_

Table 13. EMI testing specifications

3.7 Electrostatic discharge (ESD) characteristics

Table 14.ESD ratings(1),(2)

Symbol		Parameter	Conditions	Value	Unit
V _{ESD(HBM)}	S R	Electrostatic discharge (Human Body Model)	—	2000	V
	S Electrostatic discharge (Charged Device Model)			750 (corners)	V
V _{ESD} (CDM)	R	Electrostatic discharge (Charged Device Model)	_	500 (other)	v

1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

2. A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

3.8 **Power management electrical characteristics**

3.8.1 Voltage regulator electrical characteristics

The internal voltage regulator requires an external NPN ballast, approved ballast list availbale in *Table 15*, to be connected as shown in *Figure 10*. Capacitances should be placed on the board as near as possible to the associated pins. Care should also be taken to limit the serial inductance of the $V_{DD_HV_REG}$, BCTRL and $V_{DD_LV_CORx}$ pins to less than L_{Reg} . (refer to *Table 16*).

Note: The voltage regulator output cannot be used to drive external circuits. Output pins are to be used only for decoupling capacitance.

 $V_{DD_LV_COR}$ must be generated using internal regulator and external NPN transistor. It is not possible to provide $V_{DD_LV_COR}$ through external regulator.

For the SPC560P34/SPC560P40 microcontroller, capacitor(s), with total values not below C_{DEC1} , should be placed between $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ close to external ballast transistor emitter. 4 capacitors, with total values not below C_{DEC2} , should be placed close to microcontroller pins between each $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ supply pairs and the $V_{DD_LV_REGCOR}/V_{SS_LV_REGCOR}$ pair . Additionally, capacitor(s) with total values not below C_{DEC3} , should be placed between the $V_{DD_HV_REG}/V_{SS_HV_REG}$ pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature.

All reported information are valid for voltage and temperature ranges described in recommended operating condition, *Table 10* and *Table 11*.

Table 15. Approved NPN ballast components

Part	Manufacturer	Approved derivatives ⁽¹⁾
	ON Semi	BCP68
BCP68	NXP	BCP68-25
	Infineon	BCP68-25
BCX68	Infineon	BCX68-10; BCX68-16; BCX-25
BC868	NXP	BC868

3.10.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 23*.

Table 23.I/O supply segment

Package	Supply segment								
rackaye	1	2	3	4	5				
LQFP100	pin15–pin26	pin27–pin46	pin51–pin61	pin64–pin86	pin89–pin10				
LQFP64	pin8–pin17	pin18–pin30	pin33–pin38	pin41–pin54	pin57–pin5				

Table 24.I/O consumption

Symbol		~	Parameter	Condi	Conditions ⁽¹⁾		Value)	Unit		
Symbol		C	Parameter	Condi	Conditions		Тур	Мах	Unit		
. (2)	с		Dynamic I/O current	C = 25 pE	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	20	m۸		
'SWTSLW` '	С		configuration	ο[= 25 pr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	16	mA		
. (2)	с		Dynamic I/O current for MEDIUM configuration	C = 25 pE	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	29	m ^		
'SWTMED` '	С			ο _L = 25 pr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	17	mA		
. (2)	с	_	Dynamic I/O current		$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	110	m 4		
'SWTFST` '	С				configuration	Ο _L = 25 pr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	50	mA
					C _L = 25 pF, 2 MHz		—	_	2.3		
					C _L = 25 pF, 4 MHz	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	_	3.2		
	С	Б	Root medium square	C _L = 100 pF, 2 MHz		—	_	6.6	m۸		
'RMSSLW	С		configuration	C _L = 25 pF, 2 MHz		—		1.6	IIIA		
				C _L = 25 pF, 4 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	_	2.3			
				C _L = 100 pF, 2 MHz		—	—	4.7			
				C _L = 25 pF, 13 MHz		—	—	6.6			
			Doot modium oquoro	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0	—	_	13.4	mA		
	С	Б	I/O current for	C _L = 100 pF, 13 MHz		—	—	18.3			
IRMSMED	С	; D	D MEDIUM configuration	C _L = 25 pF, 13 MHz		—		5			
				C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$, PAD3V5V = 1	—		8.5			
				C _L = 100 pF, 13 MHz		—		11			

Figure 16. Input equivalent circuit

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in *Figure 16*): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch closed).

The two transients above are not influenced by the voltage source that, due to the presence of the R_FC_F filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant R_FC_F of the filter is very high with respect to the sampling time (T_S). The filter is typically designed to act as anti-aliasing.

Figure 18. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S , which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter R_FC_F is definitively much higher than the sampling time T_S , so the charge level on C_S cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive *Equation 11* between the ideal and real sampled voltage on C_S :

Equation 11

$$\frac{V_A}{V_{A2}} = \frac{C_{P1} + C_{P2} + C_F}{C_{P1} + C_{P2} + C_F + C_S}$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

Equation 12

$$C_F > 2048 \bullet C_S$$

3.15.3 Start-up/Switch-off timings

Symbol			<u>ر</u>	Parameter	Conditions ⁽¹⁾		Value		Unit
	Symbol		د	Farameter	Conditions.	Min	Тур	Max	Unit
T _{FLARSTEXIT}	СС	Т	Delay for Flash module to exit reset mode	Code flash memory	_	_	125		
		0	Т		Data flash memory	_		125	
	T _{FLALPEXIT}	СС	D	Delay for Flash module to exit low-power mode	Code flash memory	_		0.5	
	T _{FLAPDEXIT}	С	Т	Delay for Flash module to exit power-down	Code flash memory	_		30	μο
		0	Т	Though	Data flash memory	_		30	
	T _{FLALPENTRY}	C C	D	Delay for Flash module to enter low-power mode	Code flash memory	_	—	0.5	

Table 35. Start-up time/Switch-off time

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

3.16 AC specifications

3.16.1 Pad AC specifications

Table 36. Output pin transition times

Symbol		~	Parameter	6.	nditiona(1)	Value			Unit					
		C	Parameter		nations	Min	Тур	Max	Unit					
		D		C _L = 25 pF		—	—	50						
		Т		C _L = 50 pF	V _{DD} = 5.0 V ± 10%, PAD3V5V = 0	—	—	100						
	<u> </u>	D	Output transition time output pin ⁽²⁾	C _L = 100 pF		—	—	125						
		D	SLOW configuration	C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—	—	40	115					
		Т		C _L = 50 pF		_	—	50						
		D		C _L = 100 pF		_	—	75						
		D	$\frac{C_{L} = 25 \text{ pF}}{C_{L} = 50 \text{ pF}} V_{DD} = 5.0 \text{ V} \pm 10\%,$ $PAD3V5V = 0$	—	—	10								
		T D		C _L = 50 pF	PAD3V5V = 0	_	—	20	1					
	<u> </u>		Output transition time output pin ⁽²⁾	C _L = 100 pF	SIUL.PCRx.SRC = 1	_	—	40						
^L tr			Ď	MEDIUM configuration	C _L = 25 pF	$V_{DD} = 3.3 V + 10\%$	—	—	12	ns				
									Т		C _L = 50 pF	PAD3V5V = 1	—	—
		D		C _L = 100 pF	SIUL.PCRx.SRC = 1	—	—	40						

- 4. CL includes device and package capacitance (CPKG < 5 pF).
- The configuration PAD3V5 = 1 when V_{DD} = 5 V is only transient configuration during power-up. All pads but RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.

3.17.2 IEEE 1149.1 interface timing

 Table 38.
 JTAG pin AC electrical characteristics

No	Symbol		с	Parameter	Conditions	Value		Unit
•						Min	Max	
1	t _{JCYC}	CC	D	TCK cycle time	_	100	_	ns
2	t _{JDC}	СС	D	TCK clock pulse width (measured at $V_{DD_HV_IOX}/2$)	_	40	60	ns
3	t _{TCKRISE}	СС	D	TCK rise and fall times (40%–70%)		—	3	ns
4	t _{TMSS} , t _{TDIS}	СС	D	TMS, TDI data setup time		5		ns
5	t _{TMSH,} t _{TDIH}	СС	D	TMS, TDI data hold time		25		ns
6	t _{TDOV}	СС	D	TCK low to TDO data valid	_	—	40	ns
7	t _{TDOI}	СС	D	TCK low to TDO data invalid		0		ns
8	t _{TDOHZ}	СС	D	TCK low to TDO high impedance		40		ns
9	t _{BSDV}	СС	D	TCK falling edge to output valid		_	50	ns
10	t _{BSDVZ}	СС	D	TCK falling edge to output valid out of high impedance	-	_	50	ns
11	t _{BSDHZ}	СС	D	TCK falling edge to output high impedance	_	—	50	ns
12	t _{BSDST}	CC	D	Boundary scan input valid to TCK rising edge		50	_	ns
13	t _{BSDHT}	CC	D	TCK rising edge to boundary scan input invalid	_	50	—	ns

Figure 22. JTAG test clock input timing

Doc ID 16100 Rev 7

Figure 30. DSPI classic SPI timing – Master, CPHA = 1

Figure 31. DSPI classic SPI timing – Slave, CPHA = 0

57

Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1

Figure 37. DSPI PCS Strobe (PCSS) timing

4.2 Package mechanical data

4.2.1 LQFP100 mechanical outline drawing

Figure 38. LQFP100 package mechanical drawing

57

5 Ordering information

Figure 40. Commercial product code structure

