

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	37
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p34l1cefay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.14.1	Input impedance and ADC accuracy69
		3.14.2	ADC conversion characteristics
	3.15	Flash r	nemory electrical characteristics
		3.15.1	Program/Erase characteristics
		3.15.2	Flash memory power supply DC characteristics
		3.15.3	Start-up/Switch-off timings76
	3.16	AC spe	cifications
		3.16.1	Pad AC specifications
	3.17	AC tim	ing characteristics
		3.17.1	RESET pin characteristics
		3.17.2	IEEE 1149.1 interface timing
		3.17.3	Nexus timing
		3.17.4	External interrupt timing (IRQ pin)84
		3.17.5	DSPI timing
4	Pack	age cha	aracteristics
	4.1		ACK®
	4.2		ge mechanical data
		4.2.1	LQFP100 mechanical outline drawing
		4.2.2	LQFP64 mechanical outline drawing
5	Orde	ring inf	ormation
Append	lix A A	bbrevia	ations
Revisio	n histo	r y	

The RC oscillator provides these features:

- Nominal frequency 16 MHz
- ±5% variation over voltage and temperature after process trim
- Clock output of the RC oscillator serves as system clock source in case loss of lock or loss of clock is detected by the PLL
- RC oscillator is used as the default system clock during startup

1.5.12 **Periodic interrupt timer (PIT)**

The PIT module implements these features:

- 4 general-purpose interrupt timers
- 32-bit counter resolution
- Clocked by system clock frequency
- Each channel usable as trigger for a DMA request

1.5.13 System timer module (STM)

The STM implements these features:

- One 32-bit up counter with 8-bit prescaler
- Four 32-bit compare channels
- Independent interrupt source for each channel
- Counter can be stopped in debug mode

1.5.14 Software watchdog timer (SWT)

The SWT has the following features:

- 32-bit time-out register to set the time-out period
- Programmable selection of window mode or regular servicing
- Programmable selection of reset or interrupt on an initial time-out
- Master access protection
- Hard and soft configuration lock bits
- Reset configuration inputs allow timer to be enabled out of reset

1.5.15 Fault collection unit (FCU)

The FCU provides an independent fault reporting mechanism even if the CPU is malfunctioning.

The FCU module has the following features:

- FCU status register reporting the device status
- Continuous monitoring of critical fault signals
- User selection of critical signals from different fault sources inside the device
- Critical fault events trigger 2 external pins (user selected signal protocol) that can be used externally to reset the device and/or other circuitry (for example, a safety relay)
- Faults are latched into a register

1.5.25 eTimer

The SPC560P34/SPC560P40 includes one eTimer module which provides six 16-bit general purpose up/down timer/counter units with the following features:

- Clock frequency same as that used for the e200z0h core
- Individual channel capability
 - Input capture trigger
 - Output compare
 - Double buffer (to capture rising edge and falling edge)
 - Separate prescaler for each counter
 - Selectable clock source
 - 0–100% pulse measurement
 - Rotation direction flag (quad decoder mode)
- Maximum count rate
 - External event counting: max. count rate = peripheral clock/2
 - Internal clock counting: max. count rate = peripheral clock
- Counters are:
 - Cascadable
 - Preloadable
- Programmable count modulo
- Quadrature decode capabilities
- Counters can share available input pins
- Count once or repeatedly
- Pins available as GPIO when timer functionality not in use

1.5.26 Analog-to-digital converter (ADC) module

The ADC module provides the following features:

Analog part:

- 1 on-chip analog-to-digital converter
 - 10-bit AD resolution
 - 1 sample and hold unit
 - Conversion time, including sampling time, less than 1 µs (at full precision)
 - Typical sampling time is 150 ns minimum (at full precision)
 - DNL/INL ±1 LSB
 - TUE < 1.5 LSB
 - Single-ended input signal up to 3.3 V/5.0 V
 - 3.3 V/5.0 V input reference voltage
 - ADC and its reference can be supplied with a voltage independent from V_{DDIO}
 - ADC supply can be equal or higher than V_{DDIO}
 - ADC supply and ADC reference are not independent from each other (both internally bonded to same pad)
 - Sample times of 2 (default), 8, 64 or 128 ADC clock cycles

Figure 4. 100-pin LQFP pinout – Full featured configuration (top view)

Figure 5. 100-pin LQFP pinout – Airbag configuration (top view)

Table 5.Supply pins (continued)

	Supply			
Symbol	Description	64-pin	100-pin	
V _{DD_LV_COR2}	1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected between these pins and the nearest $\rm V_{SS_LV_COR}$ pin.	58	92	
V _{SS_LV_COR2}	1.2 V supply pins for core logic and code Flash. Decoupling capacitor must be connected betwee.n these pins and the nearest $V_{\text{DD}_\text{LV}_\text{COR}}$ pin.	59	93	

 Analog supply/ground and high/low reference lines are internally physically separate, but are shorted via a double-bonding connection on V_{DD_HV_ADCx}/V_{SS_HV_ADCx} pins.

2.2.2 System pins

Table 6 and *Table 7* contain information on pin functions for the SPC560P34/SPC560P40 devices. The pins listed in *Table 6* are single-function pins. The pins shown in *Table 7* are multi-function pins, programmable via their respective pad configuration register (PCR) values.

Symbol	Description	Direction	Pad sp	peed ⁽¹⁾	Pin				
Symbol	Description	Direction	SRC = 0	SRC = 1	64-pin	100-pin			
	Dedicated pins								
NMI	Non-maskable Interrupt	Input only	Slow	—	1	1			
XTAL	Analog output of the oscillator amplifier circuit—needs to be grounded if oscillator is used in bypass mode	_	_	_	11	18			
EXTAL	Analog input of the oscillator amplifier circuit, when the oscillator is not in bypass mode Analog input for the clock generator when the oscillator is in bypass mode	_	_	_	12	19			
TDI	JTAG test data input	Input only	Slow	—	35	58			
TMS	JTAG state machine control	Input only	Slow	—	36	59			
TCK	JTAG clock	Input only	Slow	—	37	60			
TDO	JTAG test data output	Output only	Slow	Fast	38	61			
	Reset pir	1							
RESET	Bidirectional reset with Schmitt trigger characteristics and noise filter	Bidirectional	Medium	_	13	20			
	Test pin								
VPP_TEST	Pin for testing purpose only. To be tied to ground in normal operating mode.	_	_		47	74			

Table 6. System pins

1. SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.

2.2.3 Pin multiplexing

Table 7 defines the pin list and muxing for the SPC560P34/SPC560P40 devices.

Each row of *Table 7* shows all the possible ways of configuring each pin, via alternate functions. The default function assigned to each pin after reset is the ALTO function.

SPC560P34/SPC560P40 devices provide three main I/O pad types, depending on the associated functions:

- *Slow pads* are the most common, providing a compromise between transition time and low electromagnetic emission.
- *Medium pads* provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission.
- *Fast pads* provide maximum speed. They are used for improved NEXUS debugging capability.

Medium and Fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance. For more information, see "Pad AC Specifications" in the device datasheet.

Port	PCR	Alternate	Functions	Derinkerel ⁽³⁾	I/O	Pad sp	beed ⁽⁵⁾	F	Pin
pin	register	$\begin{array}{c c} \text{Alternate} \\ \text{function}^{(1),(2)} \end{array} \begin{array}{c} \text{Functions} & \text{Peripheral}^{(3)} \\ \text{tion}^{(4)} \end{array}$		SRC = 0	SRC = 1	64-pin	100-pin		
				Port A (16-bit)					
		ALT0	GPIO[0]	SIUL	I/O				
		ALT1	ETC[0]	eTimer_0	I/O				
A[0]	PCR[0]	ALT2	SCK	DSPI_2	I/O	Slow	Medium	—	51
		ALT3	F[0]	FCU_0	0				
		—	EIRQ[0]	SIUL	Ι				
		ALT0	GPIO[1]	SIUL	I/O				
		ALT1	ETC[1]	eTimer_0	I/O				
A[1]	PCR[1]	ALT2	SOUT	DSPI_2	0	Slow	Medium	—	52
		ALT3	F[1]	FCU_0	0				
		—	EIRQ[1]	SIUL	Ι				
		ALT0	GPIO[2]	SIUL	I/O				
		ALT1	ETC[2]	eTimer_0	I/O				
		ALT2	—	—	_				
A[2]	PCR[2]	ALT3	A[3]	FlexPWM_0	0	Slow	Medium	—	57
		—	SIN	DSPI_2	I				
		—	ABS[0]	MC_RGM	I				
		—	EIRQ[2]	SIUL	Ι				
		ALT0	GPIO[3]	SIUL	I/O				
		ALT1	ETC[3]	eTimer_0	I/O	Slow			
A[3]	PCR[3]	ALT2	CS0	DSPI_2	I/O		Medium	41	64
A[3]		ALT3	B[3]	FlexPWM_0	0		Medium	41	04
		—	ABS[1]	MC_RGM	Ι				
		—	EIRQ[3]	SIUL	Ι				

Table 7.	Pin muxing
	i ili ilianiig

Port	PCR	Alternate	Functions	unctions Peripheral ⁽³⁾	I/O diree	Pad sp	Pad speed ⁽⁵⁾		Pin	
pin	register	function ^{(1),(2)}	Functions	Peripheral	direc- tion ⁽⁴⁾	SRC = 0	SRC = 1	64-pin	100-pin	
		ALT0	GPIO[41]	SIUL	I/O					
C[9]	PCR[41]	ALT1	CS3	DSPI_2	0	Slow	Medium	_	84	
-[-]		ALT2	—		_					
		ALT3	X[3]	FlexPWM_0	0					
		ALT0	GPIO[42]	SIUL	I/O					
		ALT1	CS2	DSPI_2	0					
C[10]	PCR[42]	ALT2		_	_	Slow	Medium	—	78	
		ALT3	A[3]	FlexPWM_0	0					
		—	FAULT[1]	FlexPWM_0	Ι					
		ALT0	GPIO[43]	SIUL	I/O					
C[11]	PCR[43]	ALT1	ETC[4]	eTimer_0	I/O	Slow	Medium	33	55	
0[11]		ALT2	CS2	DSPI_2	0	Ciow	modium		55	
		ALT3	—	—	_					
		ALT0	GPIO[44]	SIUL	I/O					
C[12]	PCR[44]	ALT1	ETC[5]	eTimer_0	I/O	Slow	Medium	34	56	
0[12]	1 01([44]	ALT2	CS3	DSPI_2	0	CIOW	Medium	54	50	
		ALT3	—	—	—					
		ALT0	GPIO[45]	SIUL	I/O					
		ALT1	—	—	—					
C[13]	PCR[45]	ALT2	—	_	—	Slow	Medium		71	
0[10]		ALT3	—	—	—	01000	weaturn		<i>,</i> 1	
		—	EXT_IN	CTU_0	I					
		—	EXT_SYNC	FlexPWM_0	Ι					
		ALT0	GPIO[46]	SIUL	I/O					
C[14]	PCR[46]	ALT1	—	—	—	Slow	Medium	_	72	
•[· ·]		ALT2	EXT_TGR	CTU_0	0	0.011				
		ALT3	—	_						
		ALT0	GPIO[47]	SIUL	I/O					
		ALT1	—	_	—					
C[15]	PCR[47]	ALT2	—	_	—	Slow	Medium		85	
0[10]		ALT3	A[1]	FlexPWM_0	0	01000	weaturn		00	
		—	EXT_IN	CTU_0	I					
		—	EXT_SYNC	FlexPWM_0	Ι					
				Port D (16-bit)						
		ALT0	GPIO[48]	SIUL	I/O					
D[0]	PCR[48]	ALT1	_	—	—	Slow	Medium		86	
		ALT2	-	—	—	0.000	weaturn		00	
		ALT3	B[1]	FlexPWM_0	0					

Table 7.Pin muxing (continued)

3 Electrical characteristics

3.1 Introduction

This section contains device electrical characteristics as well as temperature and power considerations.

This microcontroller contains input protection against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (V_{DD} or V_{SS}). This can be done by the internal pull-up or pull-down resistors, which are provided by the device for most general purpose pins.

The following tables provide the device characteristics and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

Caution:

All of the following parameter values can vary depending on the application and must be confirmed during silicon characterization or silicon reliability trial.

3.2 Parameter classification

The electrical parameters are guaranteed by various methods. To give the customer a better understanding, the classifications listed in *Table 8* are used and the parameters are tagged accordingly in the tables where appropriate.

Classification tag	Tag description
Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

Table 8.Parameter classifications

Note: The classification is shown in the column labeled "C" in the parameter tables where appropriate.

Cumb al		Devenuetor	Conditions	Val	ue	11
Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit
		5.0 V ADC_0 supply and		4.5	5.5	
$V_{DD_HV_ADC0}$	SR	high reference voltage	Relative to V _{DD_HV_REG}	$V_{DD_{HV_{REG}}} - 0.1$		V
V _{SS_HV_ADC0}	SR	ADC_0 ground and low reference voltage	_	0	0	V
V _{DD_LV_REGCOR} ⁽³⁾	сс	Internal supply voltage	_	_	_	V
V _{SS_LV_REGCOR} ⁽³⁾	SR	Internal reference voltage	_	0	0	V
V _{DD_LV_CORx} (3),(4)	СС	Internal supply voltage	—	—	_	V
$V_{SS_LV_CORx}^{(3)}$	SR	Internal reference voltage	_	0	0	V
т.	SR	Ambient temperature	f _{CPU} = 60 MHz	-40	125	°C
T _A	SI.	under bias	f _{CPU} = 64 MHz	-40	105	°C

Table 10. Recommended operating conditions (5.0 V) (continued)

1. Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.

2. The difference between each couple of voltage supplies must be less than 100 mV, $|V_{DD_HV_IOy} - V_{DD_HV_IOx}| < 100$ mV.

 To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an onchip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.

Table 11. Recommended operating conditions (3.3 V)

Symbol		Parameter	Conditions	Va	Unit	
Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit
V _{SS}	SR	Device ground	—	0	0	V
V _{DD_HV_IOx} ⁽²⁾	SR	3.3 V input/output supply voltage	_	3.0	3.6	V
V _{SS_HV_IOx}	SR	Input/output ground voltage	_	0	0	V
		3.3 V crystal oscillator	—	3.0	3.6	
V _{DD_HV_OSC}	SR	amplifier supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	V _{DD_HV_IOx} + 0.1	V
V _{SS_HV_OSC}	SR	3.3 V crystal oscillator amplifier reference voltage	_	0	0	V

^{4.} The low voltage supplies (V_{DD_LV_xxx}) are not all independent. - V_{DD_LV_COR1} and V_{DD_LV_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted. - V_{DD_LV_REGCOR} and V_{DD_LV_RECORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.

Note: The voltage regulator output cannot be used to drive external circuits. Output pins are to be used only for decoupling capacitance.

 $V_{DD_LV_COR}$ must be generated using internal regulator and external NPN transistor. It is not possible to provide $V_{DD_LV_COR}$ through external regulator.

For the SPC560P34/SPC560P40 microcontroller, capacitor(s), with total values not below C_{DEC1} , should be placed between $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ close to external ballast transistor emitter. 4 capacitors, with total values not below C_{DEC2} , should be placed close to microcontroller pins between each $V_{DD_LV_CORx}/V_{SS_LV_CORx}$ supply pairs and the $V_{DD_LV_REGCOR}/V_{SS_LV_REGCOR}$ pair . Additionally, capacitor(s) with total values not below C_{DEC3} , should be placed between the $V_{DD_HV_REG}/V_{SS_HV_REG}$ pins close to ballast collector. Capacitors values have to take into account capacitor accuracy, aging and variation versus temperature.

All reported information are valid for voltage and temperature ranges described in recommended operating condition, *Table 10* and *Table 11*.

Table 15. Approved NPN ballast components

Part	Manufacturer	Approved derivatives ⁽¹⁾
	ON Semi	BCP68
BCP68	NXP	BCP68-25
	Infineon	BCP68-25
BCX68	Infineon	BCX68-10; BCX68-16; BCX-25
BC868	NXP	BC868

Part	Manufacturer	Approved derivatives ⁽¹⁾
BC817	Infineon	BC817-16; BC817-25; BC817SU
66017	NXP	BC817-16; BC817-25
	ST	BCP56-16
BCP56	Infineon	BCP56-10; BCP56-16
BCF 30	ON Semi	BCP56-10
	NXP	BCP56-10; BCP56-16

|--|

1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification

Table 16.	Voltage regulator electrical characteristics
-----------	--

Symbol		с	Parameter	Conditions	Value			Unit
		C	Falameter	Conditions	Min	Тур	Max	Unit
V _{DD_LV_REGCOR}	V _{DD_LV_REGCOR}		Output voltage under maximum load run supply current configuration	Post-trimming	1.15	_	1.32	V
C _{DEC1} S R			External decoupling/stability ceramic capacitor	BJT from <i>Table 15</i> . Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 µF	19.5	30	_	μF
				BJT BC817, one capacitance of 22 μF	14.3	22	_	μF
R _{REG}	S R	_	Resulting ESR of either one or all three C_{DEC1}	Absolute maximum value between 100 kHz and 10 MHz	_	_	45	mΩ
C _{DEC2}	S R	_	External decoupling/stability ceramic capacitor	Four capacitances (i.e. X7R or X8R capacitors) with nominal value of 440 nF	120 0	176 0	_	nF
C _{DEC3}	S R	_	External decoupling/stability ceramic capacitor on VDD_HV_REG	Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 μ F; C _{DEC3} has to be equal or greater than C _{DEC1}	19.5	30	_	μF
L _{Reg}	S R		Resulting ESL of V _{DD_HV_REG} ,				5	nH

3.8.2 Voltage monitor electrical characteristics

The device implements a power on reset module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the V_{DD} and the V_{DD_LV} voltage while device is supplied:

- POR monitors V_{DD} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD} to ensure device reset below minimum functional supply
- LVDHV5 monitors V_{DD} when application uses device in the 5.0 V ± 10% range
- LVDLVCOR monitors low voltage digital power domain

Symbol	с	Deremeter	Conditions ⁽¹⁾	Value		l lmit	
Symbol	C	Parameter	Conditions.	Min	Max	Unit	
V _{PORH}	Т	Power-on reset threshold	—	1.5	2.7	V	
V _{PORUP}	Ρ	Supply for functional POR module	T _A = 25 °C	1.0	—	V	
V _{REGLVDMOK_H}	Р	Regulator low voltage detector high threshold	—	_	2.95	V	
V _{REGLVDMOK_L}	Ρ	Regulator low voltage detector low threshold	—	2.6	—	V	
V _{FLLVDMOK_H}	Р	Flash low voltage detector high threshold	—	_	2.95	V	
V _{FLLVDMOK_L}	Р	Flash low voltage detector low threshold	—	2.6	—	V	
V _{IOLVDMOK_H}	Ρ	I/O low voltage detector high threshold	—	—	2.95	V	
V _{IOLVDMOK_L}	Р	I/O low voltage detector low threshold	—	2.6	—	V	
V _{IOLVDM5OK_H}	Р	I/O 5 V low voltage detector high threshold	—	_	4.4	V	
V _{IOLVDM5OK_L}	Ρ	I/O 5 V low voltage detector low threshold	—	3.8	—	V	
V _{MLVDDOK_H}	Р	Digital supply low voltage detector high	—		1.145	V	
V _{MLVDDOK_L}	Р	Digital supply low voltage detector low	_	1.08	—	V	

Table 17. Low voltage monitor electrical characteristics

1. $V_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40 \text{ °C}$ to $T_{A \text{ MAX}}$, unless otherwise specified

3.9 Power up/down sequencing

To prevent an overstress event or a malfunction within and outside the device, the SPC560P34/SPC560P40 implements the following sequence to ensure each module is started only when all conditions for switching it ON are available:

- A POWER_ON module working on voltage regulator supply controls the correct startup of the regulator. This is a key module ensuring safe configuration for all voltage regulator functionality when supply is below 1.5 V. Associated POWER_ON (or POR) signal is active low.
- Several low voltage detectors, working on voltage regulator supply monitor the voltage of the critical modules (voltage regulator, I/Os, flash memory and low voltage domain). LVDs are gated low when POWER_ON is active.
- A POWER_OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, flash

memory and 16 MHz RC oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated modules are set into a safe state.

Figure 11. Power-up typical sequence

Figure 12. Power-down typical sequence

Doc ID 16100 Rev 7

Figure 13. Brown-out typical sequence

3.10 DC electrical characteristics

3.10.1 NVUSRO register

Portions of the device configuration, such as high voltage supply and watchdog enable/disable after reset are controlled via bit values in the non-volatile user options (NVUSRO) register.

For a detailed description of the NVUSRO register, please refer to the device reference manual.

NVUSRO[PAD3V5V] field description

The DC electrical characteristics are dependent on the PAD3V5V bit value. *Table 18* shows how NVUSRO[PAD3V5V] controls the device configuration.

Table 18.	PAD3V5V field description	
-----------	---------------------------	--

Value ⁽¹⁾	Description
0	High voltage supply is 5.0 V
1	High voltage supply is 3.3 V

1. Default manufacturing value before flash initialization is '1' (3.3 V).

3.13 16 MHz RC oscillator electrical characteristics

Table 29.	16 MHz RC oscillator electrical characteristics

Symbol C		Parameter	Conditions		Unit		
			Conditions	Min	Тур	Max	Unit
f _{RC}	Ρ	RC oscillator frequency	T _A = 25 °C	—	16	—	MHz
$\Delta_{ m RCMVAR}$	Ρ	Fast internal RC oscillator variation over temperature and supply with respect to f_{RC} at $T_A = 25$ °C in high-frequency configuration	_	-5	_	5	%

3.14 Analog-to-digital converter (ADC) electrical characteristics

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 15. ADC characteristics and error definitions

Doc ID 16100 Rev 7

3.14.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a highimpedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the source impedance value of the transducer or circuit supplying the analog signal to be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S and C_{P2} being substantially two switched capacitances, with a frequency equal to the ADC conversion rate, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S+C_{P2} equal to 3 pF, a resistance of 330 k Ω is obtained ($R_{EQ} = 1 / (fc \times (C_S+C_{P2}))$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S+C_{P2}) and the sum of $R_S + R_F$, the external circuit must be designed to respect the *Equation 4*:

Equation 4

$$V_A \bullet \frac{R_S + R_F}{R_{EO}} < \frac{1}{2}LSB$$

Equation 4 generates a constraint for external network design, in particular on resistive path.

In particular two different transient periods can be distinguished:

• A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call $C_P = C_{P1} + C_{P2}$), the two capacitances C_P and C_S are in series, and the time constant is

Equation 5

$$\tau_1 = (R_{SW} + R_{AD}) \bullet \frac{C_P \bullet C_S}{C_P + C_S}$$

Equation 5 can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

Equation 6

$$t_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to *Equation 7*:

Equation 7

$$V_{A1} \bullet (C_{S} + C_{P1} + C_{P2}) = V_{A} \bullet (C_{P1} + C_{P2})$$

A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L: again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

Equation 8

$$\tau_2 < R_L \bullet (C_S + C_{P1} + C_{P2})$$

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

Equation 9

$$8.5 \bullet \tau_2 = 8.5 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S$$

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1}, C_{P2} and C_S, then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1}. *Equation 10* must be respected (charge balance assuming now C_S already charged at V_{A1}):

Equation 10

$$V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)$$

Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1

Figure 37. DSPI PCS Strobe (PCSS) timing

	1	
Date	Revision	Changes
23-Dec-2010	3 (continued)	Updated "Main oscillator electrical characteristics (5.0 V, NVUSRO[PAD3V5V] = 0)" table Updated "Main oscillator electrical characteristics (3.3 V, NVUSRO[PAD3V5V] = 1)" table "Input clock characteristics" table: updated f_{CLK} max value "PLLMRFM electrical specifications (V_{DDPLL} = 1.08 V to 1.32 V, V_{SS} = V_{SSPLL} = 0 V, $T_A = T_L$ to T_H)" table: - Updated supply voltage range for V_{DDPLL} in the table title - Updated f _{SCM} max value - Updated f _{MOD} max value - Updated f _{MOD} max value Updated "16 MHz RC oscillator electrical characteristics" table Updated "ADC conversion characteristics" table "Program and erase specifications" table: - $T_{wprogram}$: updated initial max and max values - T_{BKPRO} 64 KB: updated initial max and max values - added information about "erase time" for Data Flash "Flash module life" table: - P/E, 32 KB: added typ value Replaced "Pad AC specifications (5.0 V, NVUSRO[PAD3V5V] = 0)" and "Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)" tables with "Output pin transition times" table "JTAG pin AC electrical characteristics" table: - t_{TOOV} : updated min value and removed max value "Nexus debug port timing" table: removed the rows "t _{MCYC} ", "t _{MDOV} ", "t _{MSEOV} ", and "t _{EVTOV} " Updated "External interrupt timing (IRQ pin)" table Updated "DSPI timing" table Updated "DSPI timing" table

Table 45. Document revision history (continued)

