

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	37
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p34l1cefbr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.14.1	Input impedance and ADC accuracy69
		3.14.2	ADC conversion characteristics
	3.15	Flash r	nemory electrical characteristics
		3.15.1	Program/Erase characteristics74
		3.15.2	Flash memory power supply DC characteristics
		3.15.3	Start-up/Switch-off timings76
	3.16	AC spe	cifications
		3.16.1	Pad AC specifications
	3.17	AC tim	ing characteristics
		3.17.1	RESET pin characteristics
		3.17.2	IEEE 1149.1 interface timing80
		3.17.3	Nexus timing
		3.17.4	External interrupt timing (IRQ pin)84
		3.17.5	DSPI timing
4	Pack	age cha	aracteristics
	4.1	ECOP/	ACK®
	4.2	Packag	ge mechanical data
		4.2.1	LQFP100 mechanical outline drawing
		4.2.2	LQFP64 mechanical outline drawing94
5	Orde	ering inf	ormation
Appen	dix A 🛛 A	bbrevia	ations
Revisio	on histo	ry	

List of figures

Figure 1.	Block diagram (SPC560P40 full-featured configuration)	10
Figure 2.	64-pin LQFP pinout – Full featured configuration (top view)	29
Figure 3.	64-pin LQFP pinout – Airbag configuration (top view)	30
Figure 4.	100-pin LQFP pinout – Full featured configuration (top view)	31
Figure 5.	100-pin LQFP pinout – Airbag configuration (top view)	32
Figure 6.	Power supplies constraints ($-0.3 \text{ V} \le \text{V}_{\text{DD} HV}$ $_{\text{IOx}} \le 6.0 \text{ V}$)	47
Figure 7.	Independent ADC supply (-0.3 V \leq V _{DD HV REG} \leq 6.0 V)	48
Figure 8.	Power supplies constraints $(3.0 \text{ V} \le \text{V}_{\text{DD} \text{ HV IOx}} \le 5.5 \text{ V})$	51
Figure 9.	Independent ADC supply (3.0 V \leq V _{DD} HV REG \leq 5.5 V)	51
Figure 10.	Voltage regulator configuration	55
Figure 11.	Power-up typical sequence.	58
Figure 12.	Power-down typical sequence	58
Figure 13.	Brown-out typical sequence	59
Figure 14.	Input DC electrical characteristics definition	63
Figure 15.	ADC characteristics and error definitions	68
Figure 16.	Input equivalent circuit	70
Figure 17.	Transient behavior during sampling phase	70
Figure 18.	Spectral representation of input signal	72
Figure 19.	Pad output delay	77
Figure 20.	Start-up reset requirements	78
Figure 21.	Noise filtering on reset signal	78
Figure 22.	JTAG test clock input timing	80
Figure 23.	JTAG test access port timing	81
Figure 24.	JTAG boundary scan timing	82
Figure 25.	Nexus output timing	83
Figure 26.	Nexus event trigger and test clock timing	83
Figure 27.	Nexus TDI, TMS, TDO timing	84
Figure 28.	External interrupt timing	85
Figure 29.	DSPI classic SPI timing – Master, CPHA = 0	86
Figure 30.	DSPI classic SPI timing – Master, CPHA = 1	87
Figure 31.	DSPI classic SPI timing – Slave, CPHA = 0	87
Figure 32.	DSPI classic SPI timing – Slave, CPHA = 1	88
Figure 33.	DSPI modified transfer format timing – Master, CPHA = 0	88
Figure 34.	DSPI modified transfer format timing – Master, CPHA = 1	89
Figure 35.	DSPI modified transfer format timing – Slave, CPHA = 0	89
Figure 36.	DSPI modified transfer format timing – Slave, CPHA = 1	90
Figure 37.	DSPI PCS Strobe (PCSS) timing	90
Figure 38.	LQFP100 package mechanical drawing	92
Figure 39.	LQFP64 package mechanical drawing	94
Figure 40.	Commercial product code structure	96

1 Introduction

1.1 Document overview

This document provides electrical specifications, pin assignments, and package diagrams for the SPC560P34/40 series of microcontroller units (MCUs). It also describes the device features and highlights important electrical and physical characteristics. For functional characteristics, refer to the device reference manual.

1.2 Description

This 32-bit system-on-chip (SoC) automotive microcontroller family is the latest achievement in integrated automotive application controllers. It belongs to an expanding range of automotive-focused products designed to address chassis applications— specifically, electrical hydraulic power steering (EHPS) and electric power steering (EPS)— as well as airbag applications.

This family is one of a series of next-generation integrated automotive microcontrollers based on the Power Architecture technology.

The advanced and cost-efficient host processor core of this automotive controller family complies with the Power Architecture embedded category. It operates at speeds of up to 64 MHz and offers high performance processing optimized for low power consumption. It capitalizes on the available development infrastructure of current Power Architecture devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.

1.3 Device comparison

Table 2 provides a summary of different members of the SPC560P34/SPC560P40 family and their features—relative to full-featured version—to enable a comparison among the family members and an understanding of the range of functionality offered within this family.

Table 2. SPC560P34/SPC560P40 device comparison

Feature	SPC560P34 Full-featured	SPC560P40 Full-featured			
Code flash memory (with ECC)	192 KB	256 KB			
Data flash memory / EE option (with ECC)	64	KB			
SRAM (with ECC)	12 KB	20 KB			
Processor core	32-bit e200z0h				
Instruction set	VLE (variable length encoding)				
CPU performance	0–64	MHz			
FMPLL (frequency-modulated phase-locked loop) module	1				
INTC (interrupt controller) channels 120					
PIT (periodic interrupt timer)	1 (with four 3	32-bit timers)			

1.5.23 Deserial serial peripheral interface (DSPI)

The deserial serial peripheral interface (DSPI) module provides a synchronous serial interface for communication between the SPC560P34/SPC560P40 MCU and external devices.

The DSPI modules provide these features:

- Full duplex, synchronous transfers
- Master or slave operation
- Programmable master bit rates
- Programmable clock polarity and phase
- End-of-transmission interrupt flag
- Programmable transfer baud rate
- Programmable data frames from 4 to 16 bits
- Up to 8 chip select lines available:
 - 8 on DSPI_0
 - 4 each on DSPI_1 and DSPI_2
- 8 clock and transfer attributes registers
- Chip select strobe available as alternate function on one of the chip select pins for deglitching
- FIFOs for buffering up to 4 transfers on the transmit and receive side
- Queueing operation possible through use of the I/O processor or eDMA
- General purpose I/O functionality on pins when not used for SPI

1.5.24 Pulse width modulator (FlexPWM)

The pulse width modulator module (PWM) contains four PWM submodules each of which is set up to control a single half-bridge power stage. There are also three fault channels.

This PWM is capable of controlling most motor types: AC induction motors (ACIM), permanent magnet AC motors (PMAC), both brushless (BLDC) and brush DC motors (BDC), switched (SRM) and variable reluctance motors (VRM), and stepper motors.

The FlexPWM block implements the following features:

- 16-bit resolution for center, edge-aligned, and asymmetrical PWMs
- Clock frequency same as that used for e200z0h core
- PWM outputs can operate as complementary pairs or independent channels
- Can accept signed numbers for PWM generation
- Independent control of both edges of each PWM output
- Synchronization to external hardware or other PWM supported
- Double buffered PWM registers
 - Integral reload rates from 1 to 16
 - Half cycle reload capability
- Multiple ADC trigger events can be generated per PWM cycle via hardware
- Write protection for critical registers
- Fault inputs can be assigned to control multiple PWM outputs
- Programmable filters for fault inputs
- Independently programmable PWM output polarity
- Independent top and bottom deadtime insertion
- Each complementary pair can operate with its own PWM frequency and deadtime values
- Individual software-control for each PWM output
- All outputs can be programmed to change simultaneously via a "Force Out" event
- PWMX pin can optionally output a third PWM signal from each submodule
- Channels not used for PWM generation can be used for buffered output compare functions
- Channels not used for PWM generation can be used for input capture functions
- Enhanced dual-edge capture functionality
- eDMA support with automatic reload
- 2 fault inputs
- Capture capability for PWMA, PWMB, and PWMX channels not supported

The development support provided includes access to the MCU's internal memory map and access to the processor's internal registers.

The NDI provides the following features:

- Configured via the IEEE 1149.1
- All Nexus port pins operate at V_{DDIO} (no dedicated power supply)
- Nexus Class 1 supports Static debug

1.5.29 Cyclic redundancy check (CRC)

The CRC computing unit is dedicated to the computation of CRC off-loading the CPU. The CRC module features:

- Support for CRC-16-CCITT (*x*25 protocol):
 - $x^{16} + x^{12} + x^5 + 1$
- Support for CRC-32 (Ethernet protocol): - $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- Zero wait states for each write/read operations to the CRC_CFG and CRC_INP registers at the maximum frequency

1.5.30 IEEE 1149.1 JTAG controller

The JTAG controller (JTAGC) block provides the means to test chip functionality and connectivity while remaining transparent to system logic when not in test mode. All data input to and output from the JTAGC block is communicated in serial format. The JTAGC block is compliant with the IEEE standard.

The JTAG controller provides the following features:

- IEEE test access port (TAP) interface 4 pins (TDI, TMS, TCK, TDO)
- Selectable modes of operation include JTAGC/debug or normal system operation.
- 5-bit instruction register that supports the following IEEE 1149.1-2001 defined instructions:
 - BYPASS
 - IDCODE
 - EXTEST
 - SAMPLE
 - SAMPLE/PRELOAD
- 5-bit instruction register that supports the additional following public instructions:
 - ACCESS_AUX_TAP_NPC
 - ACCESS_AUX_TAP_ONCE
- 3 test data registers:
 - Bypass register
 - Boundary scan register (size parameterized to support a variety of boundary scan chain lengths)
 - Device identification register
- TAP controller state machine that controls the operation of the data registers, instruction register and associated circuitry

Figure 4. 100-pin LQFP pinout – Full featured configuration (top view)

2.2 Pin description

The following sections provide signal descriptions and related information about the functionality and configuration of the SPC560P34/SPC560P40 devices.

2.2.1 Power supply and reference voltage pins

Table 5 lists the power supply and reference voltage for the SPC560P34/SPC560P40 devices.

Table 5. Supply pins

	Pin			
Symbol	Symbol Description			
VREG	control and power supply pins. Pins available on 64-pin and 100-pin packa	ages		
BCTRL	Voltage regulator external NPN ballast base control pin	31	47	
V _{DD_HV_REG} (3.3 V or 5.0 V)	V _{DD_HV_REG} (3.3 V or 5.0 V) Voltage regulator supply voltage			
ADC_0	reference and supply voltage. Pins available on 64-pin and 100-pin packa	ages		
V _{DD_HV_ADC0} ⁽¹⁾	ADC_0 supply and high reference voltage	28	39	
V _{SS_HV_ADC0}	ADC_0 ground and low reference voltage	29	40	
Powe	r supply pins (3.3 V or 5.0 V). Pins available on 64-pin and 100-pin package $(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2$	ges		
V _{DD_HV_IO1}	Input/output supply voltage	6	13	
V _{SS_HV_IO1}	Input/output ground	7	14	
V _{DD_HV_IO2}	Input/output supply voltage and data Flash memory supply voltage	40	63	
V _{SS_HV_IO2}	Input/output ground and Flash memory HV ground	39	62	
V _{DD_HV_IO3}	Input/output supply voltage and code Flash memory supply voltage	55	87	
V _{SS_HV_IO3}	Input/output ground and code Flash memory HV ground	56	88	
V _{DD_HV_OSC}	Crystal oscillator amplifier supply voltage	9	16	
V _{SS_HV_OSC}	Crystal oscillator amplifier ground	10	17	
P	ower supply pins (1.2 V). Pins available on 64-pin and 100-pin packages			
V _{DD_LV_COR0}	1.2 V supply pins for core logic and PLL. Decoupling capacitor must be connected between these pins and the nearest V _{SS_LV_COR} pin.	16	25	
V _{SS_LV_COR0}	1.2 V supply pins for core logic and PLL. Decoupling capacitor must be connected between these pins and the nearest $V_{DD_LV_COR}$ pin.	15	24	
V _{DD_LV_COR1}	1.2 V supply pins for core logic and data Flash. Decoupling capacitor must be connected between these pins and the nearest $V_{SS_LV_COR}$ pin.	42	65	
V _{SS_LV_COR1}	1.2 V supply pins for core logic and data Flash. Decoupling capacitor must be connected between these pins and the nearest $V_{DD_LV_COR}$ pin.	43	66	

Port	PCR	Alternate	-	D	1/0	Pad speed ⁽⁵⁾		Pin		
pin	register	function ^{(1),(2)}	Functions	Peripheral	tion ⁽⁴⁾	SRC = 0	SRC = 1	64-pin	100-pin	
		ALT0	GPIO[33]	SIUL						
		ALT1	—	—						
C[1]	PCR[33]	ALT2	_	—	Input only		—	19	28	
		ALT3	—	—						
		—	AN[2]	ADC_0						
		ALT0	GPIO[34]	SIUL						
		ALT1	_	—						
C[2]	PCR[34]	ALT2	—	—	Input only	—	—	21	30	
		ALT3	_	—						
		—	AN[3]	ADC_0						
		ALT0	GPIO[35]	SIUL	I/O					
		ALT1	CS1	DSPI_0	0					
C[3]	PCR[35]	ALT2	—	—	—	Slow	Medium	_	10	
		ALT3	TXD	LIN_1	0	l				
		—	EIRQ[21]	SIUL	I					
		ALT0	GPIO[36]	SIUL	I/O					
		ALT1	CS0	DSPI_0	I/O					
C[4]	PCR[36]	ALT2	X[1]	FlexPWM_0	0	Slow	Medium	_	5	
		ALT3	DEBUG[4]	SSCM	—					
		—	EIRQ[22]	SIUL	I					
		ALT0	GPIO[37]	SIUL	I/O					
		ALT1	SCK	DSPI_0	I/O					
C[5]	PCR[37]	ALT2	—	—	—	Slow Mediu	Slow	Medium	—	7
		ALT3	DEBUG[5]	SSCM	—				I	
		—	EIRQ[23]	SIUL	I					
		ALT0	GPIO[38]	SIUL	I/O					
		ALT1	SOUT	DSPI_0	0					
C[6]	PCR[38]	ALT2	B[1]	FlexPWM_0	0	Slow	/ Medium	—	98	
		ALT3	DEBUG[6]	SSCM						
		—	EIRQ[24]	SIUL	I					
		ALT0	GPIO[39]	SIUL	I/O					
		ALT1	—	—	—					
C[7]	7] PCR[39]	ALT2	A[1]	FlexPWM_0	0	Slow	Medium	—	9	
		ALT3	DEBUG[7]	SSCM	—					
		—	SIN	DSPI_0	I					
		ALT0	GPIO[40]	SIUL	I/O					
CIBI	PCP[40]	ALT1	CS1	DSPI_1	0	Slow	Madium	57	01	
		ALT2	—	—	—	SiOw	MEdium	57	31	
	ALT3	CS6	DSPI_0	0						

Table 7.	Pin	muxina	(continued)
		muning	(continucu)

Symbol		Deservation	O a malifica ma	Value		
		Parameter	Conditions	Min	Max ⁽¹⁾	Unit
		2.2.V.voltago rogulator	—	3.0	3.6	
V _{DD_HV_REG}	SR	supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	$V_{DD_HV_IOx} + 0.1$	V
			—	3.0	5.5	
V _{DD_HV_ADC0} S		high reference voltage	Relative to V _{DD_HV_REG}	V _{DD_HV_REG} - 0.1	5.5	V
V _{SS_HV_ADC0}	SR	ADC_0 ground and low reference voltage	_	0	0	V
V _{DD_LV_REGCOR} ⁽³⁾ ,(4)	сс	Internal supply voltage	_	_	_	V
V _{SS_LV_REGCOR} ⁽³⁾	SR	Internal reference voltage	_	0	0	V
V _{DD_LV_CORx} ^{(3),(4)}	СС	Internal supply voltage	—	_	_	V
V _{SS_LV_CORx} ⁽³⁾	SR	Internal reference voltage	_	0	0	V
Т.	SP	Ambient temperature	f _{CPU} = 60 MHz	-40	125	°C
I A	SR	under bias	f _{CPU} = 64 MHz	-40	105	°C

Table 11. Recommended operating conditions (3.3 V) (continued)

Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics and 1. I/Os DC electrical specification may not be guaranteed.

2. The difference between each couple of voltage supplies must be less than 100 mV, $|V_{DD_{HV_{IOY}}} V_{DD_HV_IOx} | < 100 \text{ mV}.$

3. To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an on-chip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.

4. The low voltage supplies (V_{DD_LV_xxx}) are not all independent. – V_{DD_LV_COR1} and V_{DD_LY_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted. – V_{DD_LV_REGCOR} and V_{DD_LV_RECORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.

Figure 8 shows the constraints of the different power supplies.

3.10.5 I/O pad current specification

The I/O pads are distributed across the I/O supply segment. Each I/O supply segment is associated to a V_{DD}/V_{SS} supply pair as described in *Table 23*.

Table 23.I/O supply segment

Packago	Supply segment							
rackaye	1	2	3	4	5			
LQFP100	pin15–pin26	pin27–pin46	pin51–pin61	pin64–pin86	pin89–pin10			
LQFP64	pin8–pin17	pin18–pin30	pin33–pin38	pin41–pin54	pin57–pin5			

Table 24.I/O consumption

Symbol C		~	Parameter	Conditions ⁽¹⁾			Value											
		C	Parameter				Тур	Мах	Unit									
. (2)	с		Dynamic I/O current	C = 25 pE	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	20	m۸									
'SWTSLW` '	С		configuration	ο _L = 25 pr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	16	mA									
. (2)	с		Dynamic I/O current	C = 25 pE	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	29	m ^									
'SWTMED` '	С		D	D	D	tor MEDIUM configuration	ο _L = 25 pr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	17	mA						
(2)	с	C D	Dynamic I/O current		$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	110	m 4									
'SWTFST` '	С												configuration	0L - 20 pr	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	50
		; _						C _L = 25 pF, 2 MHz		—	_	2.3						
							_	_	_	D			C _L = 25 pF, 4 MHz	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	—	_	3.2	
	С												Root medium square	C _L = 100 pF, 2 MHz		—	_	6.6
'RMSSLW	С		configuration	C _L = 25 pF, 2 MHz	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	—		1.6										
				C _L = 25 pF, 4 MHz		—	_	2.3										
				C _L = 100 pF, 2 MHz		—	—	4.7										
				C _L = 25 pF, 13 MHz		—	—	6.6										
			Doot modium oquara	C _L = 25 pF, 40 MHz	$V_{DD} = 5.0 V \pm 10\%$, PAD3V5V = 0	—	_	13.4										
, c	Б	I/O current for	C _L = 100 pF, 13 MHz		—	—	18.3	m۸										
IRMSMED	С		MEDIUM	C _L = 25 pF, 13 MHz		—		5	IIIA									
			comguration	C _L = 25 pF, 40 MHz	$V_{DD} = 3.3 V \pm 10\%$, PAD3V5V = 1	—		8.5										
				C _L = 100 pF, 13 MHz		—		11										

Gumbal	Sumbol C		Desemator		Value			
Зутрог	C	Parameter		Conditions	Min	Max	Onit	
f _{FREE}	Ρ	Free-running frequ	uency	Measured using clock division—typically /16	20	150	MHz	
t _{CYC}	D	System clock peri	od	_	_	1 / f _{SYS}	ns	
f _{LORL}	D	Loss of reference	fraguanay window ⁽³⁾	Lower limit	1.6	3.7		
f _{LORH}	D	LOSS OF TETETETICE		Upper limit	24	56		
f _{SCM}	D	Self-clocked mode	e frequency ^{(4),(5)}	—	20	150	MHz	
			Short-term jitter ⁽¹⁰⁾	f _{SYS} maximum	-4	4	% f _{CLKOUT}	
C _{JITTER}	т	CLKOUT period jitter ^{(6),(7),(8),(9)}	Long-term jitter (average over 2 ms interval)	f _{PLLIN} = 16 MHz (resonator), f _{PLLCLK} at 64 MHz, 4000 cycles	_	10	ns	
t _{lpll}	D	PLL lock time ^{(11),}	(12)	—	—	200	μs	
t _{dc}	D	Duty cycle of refer	rence	—	40	60	%	
f _{LCK}	D	Frequency LOCK	range	—	-6	6	% f _{SYS}	
f _{UL}	D	Frequency un-LOCK range		—	-18	18	% f _{SYS}	
fcs	D	Modulation depth		Center spread	±0.25	±4.0 (13)	% f _{SYS}	
f _{DS}	D			Down spread	-0.5	-8.0		
f _{MOD}	D	Modulation freque	ency ⁽¹⁴⁾	—	_	70	kHz	

Table 28. FMPLL electrical characteristics (continued)

1. $V_{DD_LV_CORx}$ = 1.2 V ±10%; V_{SS} = 0 V; T_A = -40 to 125 °C, unless otherwise specified

2. Considering operation with PLL not bypassed.

3. "Loss of Reference Frequency" window is the reference frequency range outside of which the PLL is in self clocked mode.

Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f_{LOR} window.

 f_{VCO} self clock range is 20–150 MHz. f_{SCM} represents f_{SYS} after PLL output divider (ERFD) of 2 through 16 in enhanced mode.

6. This value is determined by the crystal manufacturer and board design.

7. Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{SYS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DD_LV_COR0} and V_{SS_LV_COR0} and variation in crystal oscillator frequency increase the C_{JITTER} percentage for a given interval.

8. Proper PC board layout procedures must be followed to achieve specifications.

 Values are obtained with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{JITTER} and either f_{CS} or f_{DS} (depending on whether center spread or down spread modulation is enabled).

10. Short term jitter is measured on the clock rising edge at cycle n and cycle n+4.

11. This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits.

12. This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).

13. This value is true when operating at frequencies above 60 MHz, otherwise f_{CS} is 2% (above 64 MHz).

14. Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.

3.13 16 MHz RC oscillator electrical characteristics

Table 29.	16 MHz RC oscillator electrical characteristics

Symbol	с	Parameter	Conditions		Unit		
		raiameter	Conditions	Min	Тур	Мах	Onin
f _{RC}	Ρ	RC oscillator frequency	T _A = 25 °C	—	16		MHz
$\Delta_{ m RCMVAR}$	Р	Fast internal RC oscillator variation over temperature and supply with respect to f_{RC} at $T_A = 25$ °C in high-frequency configuration	_	-5	_	5	%

3.14 Analog-to-digital converter (ADC) electrical characteristics

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

Figure 15. ADC characteristics and error definitions

Doc ID 16100 Rev 7

Figure 16. Input equivalent circuit

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in *Figure 16*): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch closed).

Na	No. Symbol C		^	Deremeter	Conditions	Val	l lmit		
NO.			C	Parameter	Conditions	Min	Max	Unit	
			D	D Data valid (after SCK edge)	Master (MTFE = 0)	—	12	ns	
					Slave		36		
11	t _{SUO}	сс			Master (MTFE = 1, CPHA = 0)	_	12		
					Master (MTFE = 1, CPHA = 1)	_	12		
					Master (MTFE = 0)	-2	—		
12 t _i	tur	CC			Slave	6	—		
	чно	00				Master (MTFE = 1, CPHA = 0)	6	—	115
					Master (MTFE = 1, CPHA = 1)	-2	—		

 Table 41.
 DSPI timing⁽¹⁾ (continued)

1. All timing are provided with 50 pF capacitance on output, 1 ns transition time on input signal

Figure 29. DSPI classic SPI timing – Master, CPHA = 0

Figure 30. DSPI classic SPI timing – Master, CPHA = 1

Figure 31. DSPI classic SPI timing – Slave, CPHA = 0

57

Figure 36. DSPI modified transfer format timing – Slave, CPHA = 1

Figure 37. DSPI PCS Strobe (PCSS) timing

	Dimensions						
Symbol		mm		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
А	—	—	1.600	—	—	0.0630	
A1	0.050	—	0.150	0.0020	—	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	—	0.200	0.0035	—	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	—	12.000	—	—	0.4724	—	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	_	12.000	—	—	0.4724	—	
е	—	0.500	—	—	0.0197	—	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	—	1.000	—	—	0.0394	—	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
ccc ⁽²⁾		0.08		0.0031			

Table 42.	LQFP100	package	mechanical	data

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

	Dimensions						
Symbol		mm			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max	
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°	
ccc ⁽²⁾	0.08			0.0031			

Table 43. LQFP64 package mechanical data (continued)

1. Values in inches are converted from millimeters (mm) and rounded to four decimal digits.

2. Tolerance

Date	Revision	Changes
13-May-2011	4 (continued)	Commercial product code structure: Replaced "Conditioning" with "Packing" <i>Table 44</i> : added "DUT", "NPN", and "RISC"
22-Dec-2011	5	Updated Table 1: Device summary Updated Section 1.5.28: Nexus Development Interface (NDI) Section Table 2.: SPC560P34/SPC560P40 device comparison: changed Nexus L1+ with Nexus Class 1 Table 7: Pin muxing: removed E[0] row Table 9: Absolute maximum ratings: updated minumum and maximum values for TV _{DD} parameter Section 3.10: DC electrical characteristics: Removed oscillator margin. Removed Section NVUSRO[OSCILLATOR_MARGIN] field description and Table NVUSRO[OSCILLATOR_MARGIN] field description Updated Section 3.8.1: Voltage regulator electrical characteristics Updated Section Figure 10.: Voltage regulator configuration Table 16: Voltage regulator electrical characteristics: added L _{Reg} row, updated condition for C _{DEC1} , C _{DEC2} and C _{DEC3} Removed "Order codes" tables
20-Dec-2012	6	Table 9 (Absolute maximum ratings): updated TV _{DD} parameter, the minimum value to3.0 V/s, added note on minimum value, and the maximum value to 0.5 V/µsTable 20 (Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)): added I _{DD_HV_REG} rowTable 22 (Supply current (3.3 V, NVUSRO[PAD3V5V] = 1)): added I _{DD_HV_REG} rowUpdated Section 3.14.1, Input impedance and ADC accuracyTable 30 (ADC conversion characteristics): renamed "R _{SW1} " in "R _{SW} "Table 31 (Program and erase specifications): added t _{ESRT} row
18-Sep-2013	7	Updated Disclaimer.

Table 45. Document revision history (continued)

