

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	e200z0h
Core Size	32-Bit Single-Core
Speed	64MHz
Connectivity	CANbus, LINbus, SPI, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	64
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc560p40l3cefby

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

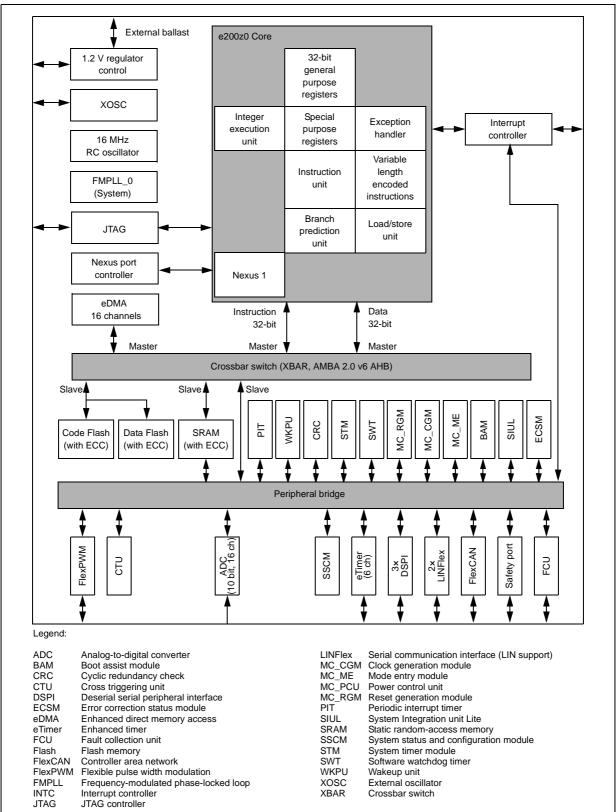


Figure 1. Block diagram (SPC560P40 full-featured configuration)

1.5 Feature details

1.5.1 High performance e200z0 core processor

The e200z0 Power Architecture core provides the following features:

- High performance e200z0 core processor for managing peripherals and interrupts
- Single issue 4-stage pipeline in-order execution 32-bit Power Architecture CPU
- Harvard architecture
 - Variable length encoding (VLE), allowing mixed 16- and 32-bit instructions
 - Results in smaller code size footprint
 - Minimizes impact on performance
- Branch processing acceleration using lookahead instruction buffer
- Load/store unit
 - 1-cycle load latency
 - Misaligned access support
 - No load-to-use pipeline bubbles
- Thirty-two 32-bit general purpose registers (GPRs)
- Separate instruction bus and load/store bus Harvard architecture
- Hardware vectored interrupt support
- Reservation instructions for implementing read-modify-write constructs
- Long cycle time instructions, except for guarded loads, do not increase interrupt latency
- Extensive system development support through Nexus debug port
- Non-maskable interrupt support

1.5.2 Crossbar switch (XBAR)

The XBAR multi-port crossbar switch supports simultaneous connections between three master ports and three slave ports. The crossbar supports a 32-bit address bus width and a 32-bit data bus width.

The crossbar allows for two concurrent transactions to occur from any master port to any slave port; but one of those transfers must be an instruction fetch from internal flash memory. If a slave port is simultaneously requested by more than one master port, arbitration logic will select the higher priority master and grant it ownership of the slave port. All other masters requesting that slave port will be stalled until the higher priority master completes its transactions. Requesting masters will be treated with equal priority and will be granted access a slave port in round-robin fashion, based upon the ID of the last master to be granted access.

1.5.6 Interrupt controller (INTC)

The interrupt controller (INTC) provides priority-based preemptive scheduling of interrupt requests, suitable for statically scheduled hard real-time systems. The INTC handles 128 selectable-priority interrupt sources.

For high-priority interrupt requests, the time from the assertion of the interrupt request by the peripheral to the execution of the interrupt service routine (ISR) by the processor has been minimized. The INTC provides a unique vector for each interrupt request source for quick determination of which ISR has to be executed. It also provides a wide number of priorities so that lower priority ISRs do not delay the execution of higher priority ISRs. To allow the appropriate priorities for each source of interrupt request, the priority of each interrupt request is software configurable.

When multiple tasks share a resource, coherent accesses to that resource need to be supported. The INTC supports the priority ceiling protocol (PCP) for coherent accesses. By providing a modifiable priority mask, the priority can be raised temporarily so that all tasks which share the same resource can not preempt each other.

The INTC provides the following features:

- Unique 9-bit vector for each separate interrupt source
- 8 software triggerable interrupt sources
- 16 priority levels with fixed hardware arbitration within priority levels for each interrupt source
- Ability to modify the ISR or task priority: modifying the priority can be used to implement the priority ceiling protocol for accessing shared resources.
- 1 external high priority interrupt (NMI) directly accessing the main core and I/O processor (IOP) critical interrupt mechanism

1.5.7 System status and configuration module (SSCM)

The system status and configuration module (SSCM) provides central device functionality.

The SSCM includes these features:

- System configuration and status
 - Memory sizes/status
 - Device mode and security status
 - Determine boot vector
 - Search code flash for bootable sector
 - DMA status
- Debug status port enable and selection
- Bus and peripheral abort enable/disable

platform memory errors reported by error-correcting codes and/or generic access error information for certain processor cores.

The Error Correction Status Module supports a number of miscellaneous control functions for the platform. The ECSM includes these features:

- Registers for capturing information on platform memory errors if error-correcting codes (ECC) are implemented
- For test purposes, optional registers to specify the generation of double-bit memory errors are enabled on the SPC560P34/SPC560P40.

The sources of the ECC errors are:

- Flash memory
- SRAM

1.5.19 Peripheral bridge (PBRIDGE)

The PBRIDGE implements the following features:

- Duplicated periphery
- Master access privilege level per peripheral (per master: read access enable; write access enable)
- Write buffering for peripherals
- Checker applied on PBRIDGE output toward periphery
- Byte endianess swap capability

1.5.20 Controller area network (FlexCAN)

The SPC560P34/SPC560P40 MCU contains one controller area network (FlexCAN) module. This module is a communication controller implementing the CAN protocol according to Bosch Specification version 2.0B. The CAN protocol was designed to be used primarily as a vehicle serial data bus, meeting the specific requirements of this field: real-time processing, reliable operation in the EMI environment of a vehicle, cost-effectiveness and required bandwidth. The FlexCAN module contains 32 message buffers.

The FlexCAN module provides the following features:

- Full implementation of the CAN protocol specification, version 2.0B
 - Standard data and remote frames
 - Extended data and remote frames
 - Up to 8-bytes data length
 - Programmable bit rate up to 1 Mbit/s
- 32 message buffers of up to 8-bytes data length
- Each message buffer configurable as Rx or Tx, all supporting standard and extended messages
- Programmable loop-back mode supporting self-test operation
- 3 programmable mask registers
- Programmable transmit-first scheme: lowest ID or lowest buffer number
- Time stamp based on 16-bit free-running timer
- Global network time, synchronized by a specific message
- Maskable interrupts
- Independent of the transmission medium (an external transceiver is assumed)
- High immunity to EMI
- Short latency time due to an arbitration scheme for high-priority messages
- Transmit features
 - Supports configuration of multiple mailboxes to form message queues of scalable depth
 - Arbitration scheme according to message ID or message buffer number
 - Internal arbitration to guarantee no inner or outer priority inversion
 - Transmit abort procedure and notification
- Receive features
 - Individual programmable filters for each mailbox
 - 8 mailboxes configurable as a 6-entry receive FIFO
 - 8 programmable acceptance filters for receive FIFO
- Programmable clock source
 - System clock
 - Direct oscillator clock to avoid PLL jitter

1.5.21 Safety port (FlexCAN)

The SPC560P34/SPC560P40 MCU has a second CAN controller synthesized to run at high bit rates to be used as a safety port. The CAN module of the safety port provides the following features:

- Identical to the FlexCAN module
- Bit rate up to 8 Mbit/s at 64 MHz CPU clock using direct connection between CAN modules (no physical transceiver required)
- 32 message buffers of up to 8-bytes data length
- Can be used as a second independent CAN module

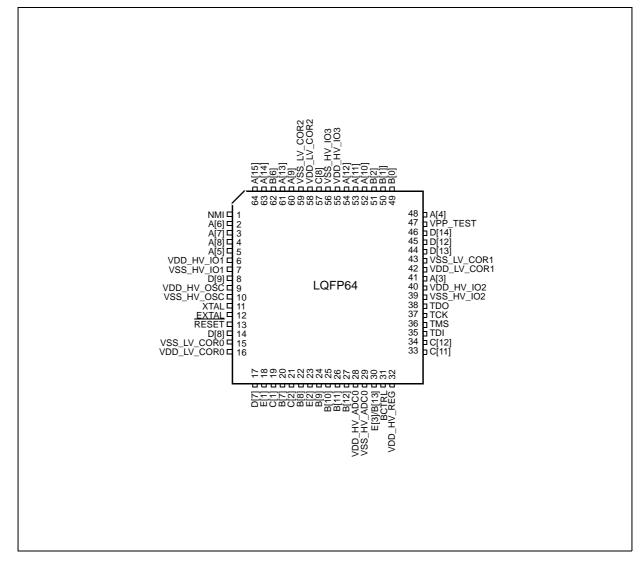


Figure 3. 64-pin LQFP pinout – Airbag configuration (top view)

57

Port	PCR	Alternate	Functions	Desire has a l ⁽³⁾	I/O	Pad sp	beed ⁽⁵⁾	F	Pin
pin	register	function ^{(1),(2)}	Functions	Peripheral ⁽³⁾	direc- tion ⁽⁴⁾	SRC = 0	SRC = 1	64-pin 48 5 2 3 4 60 52	100-pin
		ALT0	GPIO[4]	SIUL	I/O				
		ALT1 ALT2	CS1	DSPI_2	0				
A[4]	PCR[4]	ALT2 ALT3	ETC[4]	eTimer_0	1/O	Slow	Medium	48	75
		ALI 3	FAB	MC_RGM	1/O				
			EIRQ[4]	SIUL	I I				
		ALT0		SIUL	I/O				
		ALT0 ALT1	GPIO[5] CS0	DSPI_1	1/O 1/O				
A[5]	PCR[5]	ALT1 ALT2	030	DSFI_1	1/0	Slow	Medium	Б	8
A[5]	FUR[5]	ALT2 ALT3	CS7	DSPI_0	0	31000	Medium	5	0
		ALI3	EIRQ[5]	SIUL	I				
		AL 70							
		ALT0	GPIO[6]	SIUL	I/O				
A [C]		ALT1	SCK	DSPI_1	I/O	Class	Madium	2	2
A[6]	PCR[6]	ALT2		_	_	Slow	Medium	2	2
		ALT3	EIRQ[6]						
		—							
		ALT0	GPIO[7]	SIUL	I/O				
		ALT1	SOUT						
A[7]	PCR[7]	ALT2	—	—	—	Slow	Medium	3	4
		ALT3		—					
		_	EIRQ[7]	SIUL	Ι				
		ALT0	GPIO[8]	SIUL	I/O				
		ALT1	—	—	—				
A[8]	PCR[8]	ALT2	_	—		Slow	Medium	4	6
		ALT3	_	_					
		—	SIN	DSPI_1	I				
			EIRQ[8]	SIUL	I				
		ALT0	GPIO[9]	SIUL	I/O				
		ALT1	CS1	DSPI_2	0				
A[9]	PCR[9]	ALT2	_	—	—	Slow	Medium	60	94
		ALT3	B[3]	FlexPWM_0	0				
		—	FAULT[0]	FlexPWM_0	Ι				
		ALT0	GPIO[10]	SIUL	I/O				
		ALT1	CS0	DSPI_2	I/O				
A[10]	PCR[10]	ALT2	B[0]	FlexPWM_0	0	Slow	Medium	52	81
		ALT3	X[2]	FlexPWM_0	0				
		—	EIRQ[9]	SIUL	I				

 Table 7.
 Pin muxing (continued)

Port	PCR	Alternate	Functions	Peripheral ⁽³⁾	I/O direc-	Pad s	beed ⁽⁵⁾	F	Pin
pin	register	function ^{(1),(2)}	Functions	Peripheral	tion ⁽⁴⁾	SRC = 0	SRC = 1		100-pin
		ALT0	GPIO[27]	SIUL					
		ALT1	—	—					
B[11]	PCR[27]	ALT2	—	—	Input only	—	—	26	37
		ALT3	—	—					
		—	AN[13]	ADC_0					
		ALT0	GPIO[28]	SIUL					
		ALT1	—	—					38
B[12]	PCR[28]	ALT2		—	Input only	—	—	27	38
		ALT3	—	_					
		—	AN[14]	ADC_0				64-pin 26 27	
		ALT0	GPIO[29]	SIUL					
		ALT1	—	—					
		ALT2	—	—					
B[13]	PCR[29]	ALT3	—	_	Input only	—	—	30	42
		—	AN[6]	ADC_0					
		—	emu. AN[0]	emu. ADC_1 ⁽⁶⁾					42
		—	RXD	LIN_1					
		ALT0	GPIO[30]	SIUL					
		ALT1	—	—					
		ALT2	—	—					44
B[14]	PCR[30]	ALT3		—	Input only	_	_		
		—	AN[7]	ADC_0					
		_	emu. AN[1]	emu. ADC_1 ⁽⁶⁾					44
			ETC[4] EIRQ[19]	eTimer_0 SIUL					
		ALT0	GPIO[31]	SIUL					
		ALT1	_	_					
D[15]	PCR[31]	ALT2 ALT3	_		Input only				43
B[15]	FCR[31]	ALIS	 AN[8]	ADC_0	Input only	_	_		43
			emu. AN[2]	emu. ADC_1 ⁽⁶⁾					
			EIRQ[20]	SIUL					
			LING[20]	Port C (16-bit)					
					[
		ALT0	GPIO[32]	SIUL					
		ALT1		—					
C[0]	PCR[32]	ALT2		—	Input only	_	—	—	45
		ALT3		ADC_0					
		_	AN[9]	emu. ADC_0					
			emu. AN[3]	eniu. ADC_1					

Table 7.Pin muxing (continued)

3.3 Absolute maximum ratings

Symbol		Devementer	Conditions	Value			
Symbol		Parameter	Conditions	Min	Value $Max^{(2)}$ 0 6.0 0.1	Unit	
V _{SS}	S R	Device ground	—	0	0	V	
V _{DD_HV_IOx} ⁽³⁾	S R	3.3 V/5.0 V input/output supply voltage (supply). Code flash memory supply with $V_{DD_HV_HO3}$ and data flash memory with $V_{DD_HV_HO2}$	_	-0.3	6.0	V	
V _{SS_HV_IOx}	S R	$\begin{array}{l} 3.3 \ \text{V}/5.0 \ \text{V} \ \text{input/output supply} \\ \text{voltage (ground).} \\ \text{Code flash memory ground with} \\ \text{V}_{\text{SS}_{\text{HV}} \text{O3}} \ \text{and data flash memory} \\ \text{with} \ \text{V}_{\text{SS}_{\text{HV}} \text{O2}} \end{array}$	_	-0.1	0.1	V	
	S 33 V/5 0 V crystal oscillator amplifie		—	-0.3	6.0		
V _{DD_HV_OSC}			Relative to V _{DD_HV_IOx}	-0.3	$V_{DD_HV_IOx} + 0.3$	V	
V _{SS_HV_OSC}	S R	3.3 V/5.0 V crystal oscillator amplifier supply voltage (ground)	—	-0.1	0.1	V	
	s	3.3 V/5.0 V ADC_0 supply and high-	V _{DD_HV_REG} < 2.7 V	-0.3	V _{DD_HV_REG} + 0.3	V	
V _{DD_HV_ADC0}	R	reference voltage	V _{DD_HV_REG} > 2.7 V	-0.3	6.0	- V	
V _{SS_HV_ADC0}	S R	3.3 V/5.0 V ADC_0 ground and low- reference voltage	_	-0.1	0.1	V	
	IV_ADC0 R reference voltage		—	-0.3	6.0		
$V_{DD_HV_REG}$	R	voltage	Relative to V _{DD_HV_IOx}	-0.3	$Max^{(2)}$ $Max^$	V	
TV _{DD}	S R	Slope characteristics on all V_{DD} during power up ⁽⁴⁾ with respect to ground (V_{SS})	V_DD_HV_IOx		V/s		
V _{DD_LV_CORx}	C C	1.2 V supply pins for core logic (supply)	_	-0.1	1.5	V	
V _{SS_LV_CORx}	S R	supply)		0.1	V		
	s	Voltage on any pin with respect to	_	-0.3	6.0		
V _{IN}	R	ground (V _{SS_HV_IOx})	Relative to V _{DD_HV_IOx}	Min Max ⁽²⁾ 0 0 -0.3 6.0 -0.1 0.1 -0.3 6.0 -0.1 0.1 -0.3 6.0 -0.1 0.1 -0.3 6.0 -0.1 0.1 -0.3 6.0 -0.3 0.1 -0.1 0.1 EG -0.3 VDD_HV_IOX + 0.3 EG -0.3 6.0 -0.1 0.1 0.1 EG -0.3 6.0 Dox -0.3 6.0 Dox -0.1 0.1 -0.3 6.0 0.1 Dox -0.3 0.1 Dox -0.3 0.1 Dox -0.3 0.1 Dox -0.1 1.5 Dox -0.1 0.1 Dox -0.3 0.0 Dox -0.3 0.0	V		
I _{INJPAD}	S R	Input current on any pin during overload condition	_	-10	10	mA	

Table 9. Absolute maximum ratings⁽¹⁾

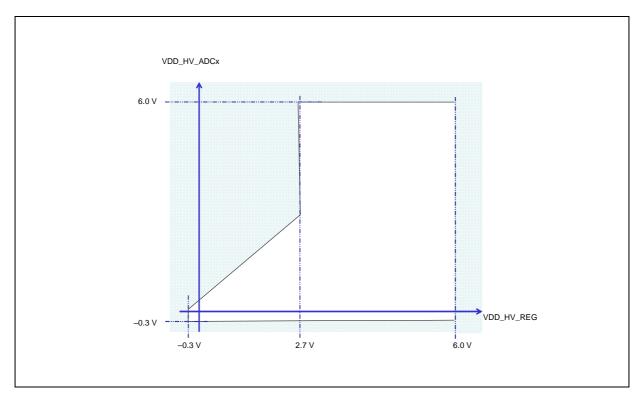


Figure 7. Independent ADC supply (–0.3 V \leq V_{DD_HV_REG} \leq 6.0 V)

3.4 Recommended operating conditions

Table 10.	Recommended operating conditions (5.0 V)
-----------	--

Symptoc		Deveneter	Conditions	Val	11						
Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit					
V _{SS}	SR	Device ground	—	0	0	V					
V _{DD_HV_IOx} ⁽²⁾	SR	5.0 V input/output supply voltage	_	4.5	5.5	V					
V _{SS_HV_IOx}	SR	Input/output ground voltage	_	0	0	V					
							50V crystal oscillator	—	4.5	5.5	
V _{DD_HV_OSC}	SR	5.0 V crystal oscillator amplifier supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	$V_{DD_HV_IOx} + 0.1$	V					
V _{SS_HV_OSC}	SR	5.0 V crystal oscillator amplifier reference voltage	_	0	0	V					
				4.5	5.5						
V _{DD_HV_REG}	SR	5.0 V voltage regulator supply voltage	Relative to V _{DD_HV_IOx}	$V_{DD_HV_IOx} - 0.1$	$V_{DD_HV_IOx} + 0.1$	V					

Cumb al		Devenuetor	Conditions	Val	ue	11
Symbol		Parameter	Conditions	Min	Max ⁽¹⁾	Unit
		5.0 V ADC_0 supply and		4.5	5.5	
$V_{DD_HV_ADC0}$	SR	high reference voltage	Relative to V _{DD_HV_REG}	$V_{DD_{HV_{REG}}} - 0.1$		V
V _{SS_HV_ADC0}	SR	ADC_0 ground and low reference voltage	_	0	0	V
V _{DD_LV_REGCOR} ⁽³⁾	сс	Internal supply voltage	_	_	_	V
V _{SS_LV_REGCOR} ⁽³⁾	SR	Internal reference voltage	_	0	0	V
V _{DD_LV_CORx} (3),(4)	СС	Internal supply voltage	—	—	_	V
$V_{SS_LV_CORx}^{(3)}$	SR	Internal reference voltage	_	0	0	V
т.	SR	Ambient temperature	f _{CPU} = 60 MHz	-40	125	°C
Τ _Α	SR	under bias	f _{CPU} = 64 MHz	-40	105	°C

Table 10. Recommended operating conditions (5.0 V) (continued)

1. Full functionality cannot be guaranteed when voltage drops below 4.5 V. In particular, ADC electrical characteristics and I/Os DC electrical specification may not be guaranteed.

2. The difference between each couple of voltage supplies must be less than 100 mV, $|V_{DD_HV_IOy} - V_{DD_HV_IOx}| < 100$ mV.

 To be connected to emitter of external NPN. Low voltage supplies are not under user control—they are produced by an onchip voltage regulator—but for the device to function properly the low voltage grounds (V_{SS_LV_xxx}) must be shorted to high voltage grounds (V_{SS_HV_xxx}) and the low voltage supply pins (V_{DD_LV_xxx}) must be connected to the external ballast emitter.

Table 11. Recommended operating conditions (3.3 V)

Symbol		Parameter	Conditions	Va	l lm it		
Symbol		Parameter	Conditions	Min Max ⁽¹⁾		Unit	
V _{SS}	SR	Device ground	—	0	0	V	
V _{DD_HV_IOx} ⁽²⁾	SR	3.3 V input/output supply voltage	_	3.0	3.6	V	
V _{SS_HV_IOx}	SR	Input/output ground voltage	_	0	0	V	
		2.2.V crystal oscillator	—	3.0	3.6		
V _{DD_HV_OSC}	SR	3.3 V crystal oscillator amplifier supply voltage	Relative to V _{DD_HV_IOx}	V _{DD_HV_IOx} -0.1	V _{DD_HV_IOx} + 0.1	V	
V _{SS_HV_OSC}	SR	3.3 V crystal oscillator amplifier reference voltage	_	0	0	V	

^{4.} The low voltage supplies (V_{DD_LV_xxx}) are not all independent. - V_{DD_LV_COR1} and V_{DD_LV_COR2} are shorted internally via double bonding connections with lines that provide the low voltage supply to the data flash memory module. Similarly, V_{SS_LV_COR1} and V_{SS_LV_COR2} are internally shorted. - V_{DD_LV_REGCOR} and V_{DD_LV_RECORx} are physically shorted internally, as are V_{SS_LV_REGCOR} and V_{SS_LV_CORx}.

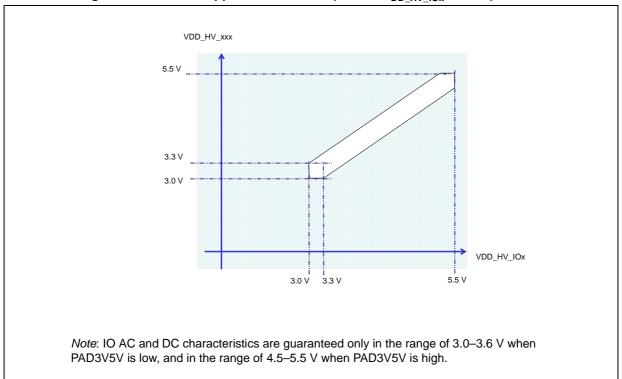


Figure 8. Power supplies constraints (3.0 V \leq V_{DD_HV_IOx} \leq 5.5 V)

The SPC560P34/SPC560P40 supply architecture allows the ADC supply to be managed independently from the standard V_{DD_HV} supply. *Figure 9* shows the constraints of the ADC power supply.

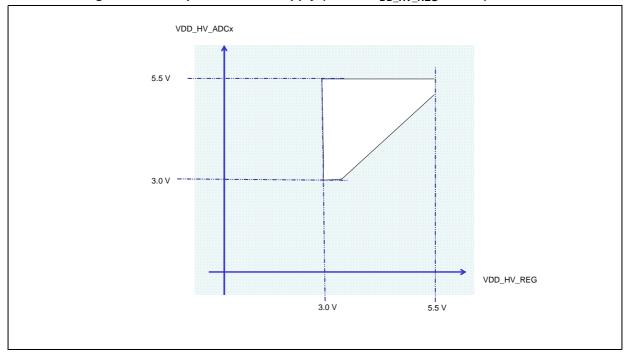


Figure 9. Independent ADC supply (3.0 V \leq V_{DD HV REG} \leq 5.5 V)

Part	Manufacturer	Approved derivatives ⁽¹⁾
BC817	Infineon	BC817-16; BC817-25; BC817SU
66017	NXP	BC817-16; BC817-25
	ST	BCP56-16
BCP56	Infineon	BCP56-10; BCP56-16
BCF 30	ON Semi	BCP56-10
	NXP	BCP56-10; BCP56-16

|--|

1. For automotive applications please check with the appropriate transistor vendor for automotive grade certification

Table 16.	Voltage regulator electrical characteristics
-----------	--

Symbol		с	Parameter	Conditions	Value			Unit
Symbol		C	Falameter			Max		
V _{DD_LV_REGCOR}	C C	Ρ	Output voltage under maximum load run supply current configuration	Post-trimming	1.15	_	1.32	V
C _{DEC1}	S External decoupling/stability C		BJT from <i>Table 15</i> . Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 µF	19.5	30	_	μF	
				BJT BC817, one capacitance of 22 μF	14.3	22	_	μF
R _{REG}	S R	_	Resulting ESR of either one or all three C_{DEC1}	Absolute maximum value between 100 kHz and 10 MHz	_	_	45	mΩ
C _{DEC2}	S R	_	External decoupling/stability ceramic capacitor	Four capacitances (i.e. X7R or X8R capacitors) with nominal value of 440 nF	120 0	176 0	_	nF
C _{DEC3}	S R	_	External decoupling/stability ceramic capacitor on VDD_HV_REG	Three capacitors (i.e. X7R or X8R capacitors) with nominal value of 10 μ F; C _{DEC3} has to be equal or greater than C _{DEC1}	19.5	30	_	μF
L _{Reg}	S R		Resulting ESL of $V_{DD_HV_REG}$ BCTRL and $V_{DD_LV_CORx}$ pins	_			5	nH

Symbol	с		Parameter	Conditions	Value ⁽¹⁾		Unit		
Symbol	C		Parameter	Conditions		Тур	Max	Unit	
	Т		RUN—Maximum mode ⁽²⁾		40 MHz	44	55		
	Ρ				64 MHz	52	65		
	т		RUN—Typical mode ⁽³⁾	V _{DD_LV_CORx} externally	40 MHz	38	46		
I _{DD_LV_CORx}	1			forced at 1.3 V	64 MHz	45	54		
	Р		HALT mode ⁽⁴⁾		—	1.5	10		
	Г	rren	STOP mode ⁽⁵⁾		_	1	10		
			upply current	Flash during read	V _{DD_HV_FL} at 5.0 V	—	8	10	mA
I _{DD_FLASH}	Т	Supp	Flash during erase operation on 1 flash module	V _{DD_HV_FL} at 5.0 V	_	15	19		
I _{DD_ADC}	т		ADC	V _{DD_HV_ADC0} at 5.0 V f _{ADC} = 16 MHz	ADC_0	3	4		
I _{DD_OSC}	Т		Oscillator	V _{DD_HV_OSC} at 5.0 V	8 MHz	2.6	3.2		
I _{DD_HV_REG}	D		Internal regulator module current consumption	V _{DD_HV_REG} at 5.5 V		_	10		

Table 20. Supply current (5.0 V, NVUSRO[PAD3V5V] = 0)

1. All values to be confirmed after characterization/data collection.

2. Maximum mode: FlexPWM, ADC, CTU, DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0 enabled, 125 °C ambient. I/O supply current excluded.

3. Typical mode configurations: DSPI, LINFlex, FlexCAN, 15 output pins, PLL_0, 105 °C ambient. I/O supply current excluded.

4. Halt mode configurations: Code fetched from SRAM, code flash memory and data flash memory in low power mode, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.

5. STOP "P" mode Device Under Test (DUT) configuration: Code fetched from SRAM, code flash memory and data flash memory off, OSC/PLL_0 are OFF, core clock frozen, all peripherals disabled.

3.13 16 MHz RC oscillator electrical characteristics

Table 29.	16 MHz RC oscillator electrical characteristics

Symbol		Parameter	Conditions		Unit		
Symbol		raiameter	Conditions	Min	Тур	Max	Unit
f _{RC}	Ρ	RC oscillator frequency	T _A = 25 °C	—	16	_	MHz
$\Delta_{ m RCMVAR}$	Ρ	Fast internal RC oscillator variation over temperature and supply with respect to f_{RC} at $T_A = 25$ °C in high-frequency configuration	_	-5	_	5	%

3.14 Analog-to-digital converter (ADC) electrical characteristics

The device provides a 10-bit Successive Approximation Register (SAR) analog-to-digital converter.

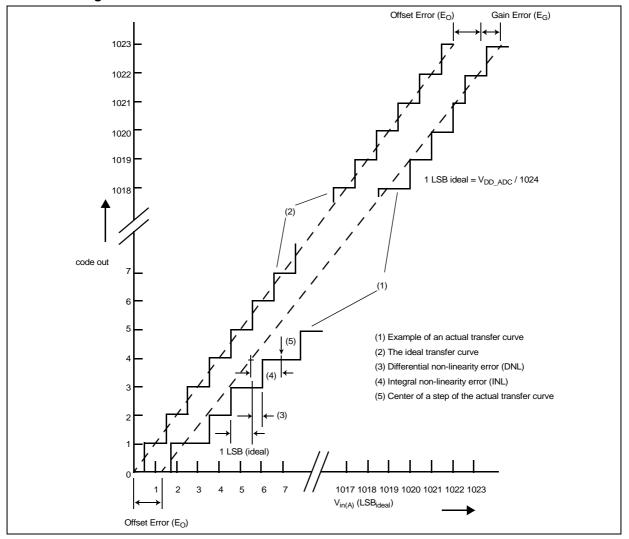


Figure 15. ADC characteristics and error definitions

Doc ID 16100 Rev 7

3.15.3 Start-up/Switch-off timings

Symbol	Symbol C		Parameter	Conditions ⁽¹⁾		Value		Unit
Symbol			Falameter	Conditions	Min	Тур	Max	
C T _{FLARSTEXIT}		Т	Delay for Flash module to exit reset mode	Code flash memory	_	_	125	
	Т		Data flash memory			125		
T _{FLALPEXIT}	C C	D	Delay for Flash module to exit low-power mode	Code flash memory	_		0.5	
T _{FLAPDEXIT}	с с	Т	Delay for Flash module to exit power-down mode	Code flash memory	_		30	μs
	C	Т	noue	Data flash memory			30	
T _{FLALPENTRY}	C C	D	Delay for Flash module to enter low-power mode	Code flash memory		_	0.5	

Table 35. Start-up time/Switch-off time

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = –40 to 125 °C, unless otherwise specified.

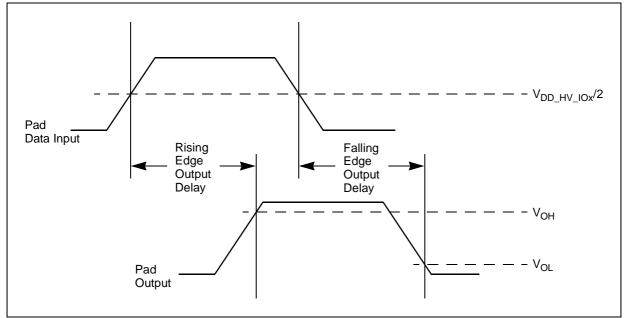
3.16 AC specifications

3.16.1 Pad AC specifications

Table 36. Output pin transition times

Symbol		с	Parameter	Co	nditions ⁽¹⁾	Value			Unit
Synn	Symbol		Falameter		Conditions'			Max	
		D		C _L = 25 pF		—	—	50	
		Т	Output transition time output pin ⁽²⁾ SLOW configuration	C _L = 50 pF	$V_{DD} = 5.0 V \pm 10\%,$ PAD3V5V = 0	_	_	100	
+	сс	D		C _L = 100 pF		_	_	125	ns
t _{tr}		D		C _L = 25 pF	V _{DD} = 3.3 V ± 10%, PAD3V5V = 1	_	_	40	
		Т		C _L = 50 pF				50	
		D		C _L = 100 pF		_	_	75	
		D		C _L = 25 pF	V _{DD} = 5.0 V ± 10%,	_	_	10	
		Т		C _L = 50 pF	PAD3V5V = 0			20	
+	сс	D	Output transition time output pin ⁽²⁾	C _L = 100 pF	SIUL.PCRx.SRC = 1	_	_	40	
t _{tr}		D	MEDIUM configuration	C _L = 25 pF	V _{DD} = 3.3 V ± 10%,	_	_	12	ns
		Т		C _L = 50 pF	PAD3V5V = 1	_	—	25	-
		D		C _L = 100 pF	SIUL.PCRx.SRC = 1			40	

Symbol		с	Parameter	Conditions ⁽¹⁾			Value					
		C	Falameter				Тур	Max	Unit			
			C _L = 25 pF	V _{DD} = 5.0 V ± 10%,	—	—	4					
	t _{tr} CC D					C _L = 50 pF	PAD3V5V = 0	—	—	6		
+			Output transition time output pin ⁽²⁾ FAST configuration	C _L = 100 pF	SIUL.PCRx.SRC = 1	—		12	ns			
чtr				C _L = 25 pF	V _{DD} = 3.3 V ± 10%,	-		4	115			
							C _L = 50 pF	PAD3V5V = 1	—		7	
				C _L = 100 pF	SIUL.PCRx.SRC = 1	_	—	12	1			
t _{SYM}	^t sym (3) ^M CC т	т	- Symmetric transition time, same drive	$V_{DD} = 5.0 \text{ V} \pm$	10%, PAD3V5V = 0	—	—	4	ns			
(3)		1	strength between N and P transistor	$V_{DD} = 3.3 V \pm$	10%, PAD3V5V = 1	_		5	115			

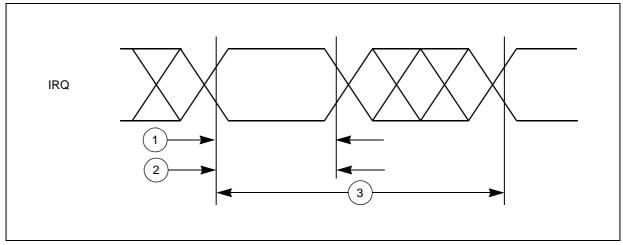

 Table 36.
 Output pin transition times (continued)

1. V_{DD} = 3.3 V \pm 10% / 5.0 V \pm 10%, T_A = -40 °C to T_A $_{MAX}$, unless otherwise specified.

2. CL includes device and package capacitances (CPKG < 5 pF).

3. Transition timing of both positive and negative slopes will differ maximum 50%.

3.17 AC timing characteristics


3.17.1 **RESET** pin characteristics

The SPC560P34/SPC560P40 implements a dedicated bidirectional RESET pin.

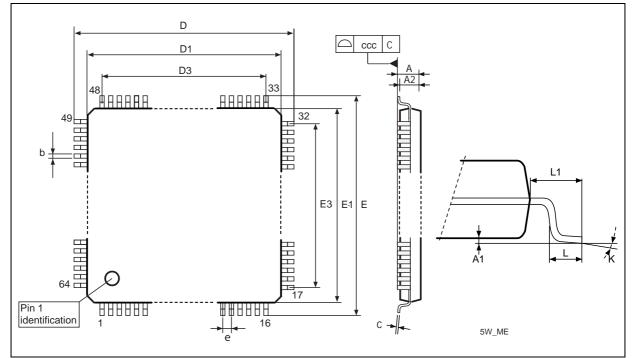
Doc ID 16100 Rev 7

Figure 28. External interrupt timing

3.17.5 DSPI timing

Table 41. DSPI timing⁽¹⁾

No. Symbo		Symbol		Parameter	Conditions	Val	ue	Unit	
NO.	Synn	ymbol C Parameter Conditions		Min	Max	Unit			
1	4	сс	D		Master (MTFE = 0)	60	—		
	t _{SCK}	CC	D	DSPI cycle time	Slave (MTFE = 0)	60	—	ns	
2	t _{CSC}	CC	D	CS to SCK delay	—	16	—	ns	
3	t _{ASC}	CC	D	After SCK delay	—	26	—	ns	
4	t _{SDC}	CC	D	SCK duty cycle	—	0.4 * t _{SCK}	0.6 * t _{SCK}	ns	
5	t _A	CC	D	Slave access time	SS active to SOUT valid	—	30	ns	
6	t _{DIS}	сс	D	Slave SOUT disable time	SS inactive to SOUT high impedance or invalid	_	16	ns	
7	t _{PCSC}	CC	D	PCSx to PCSS time	_	13	—	ns	
8	t _{PASC}	CC	D	PCSS to PCSx time	_	13	—	ns	
					Master (MTFE = 0)	35	—		
9	+	сс	D	Data satup timo for inputs	Slave	4	—	ns	
9	t _{SUI}	00		Data setup time for inputs	Master (MTFE = 1, CPHA = 0)	35	—		
					Master (MTFE = 1, CPHA = 1)	35	—		
			CC D Dat		Master (MTFE = 0)	-5	—		
10	10 t _{HI}	00		Data hold time for inpute	Slave	4		n 0	
10		CC	U	Data hold time for inputs	Master (MTFE = 1, CPHA = 0)	11	—	ns	
					Master (MTFE = 1, CPHA = 1)	-5 —			


4 Package characteristics

4.1 ECOPACK[®]

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

4.2.2 LQFP64 mechanical outline drawing

Figure 39. LQFP64 package mechanical drawing

Table 43.	LQFP64 package mechanical data
-----------	--------------------------------

	Dimensions									
Symbol		mm		inches ⁽¹⁾						
	Min	Тур	Max	Min	Тур	Мах				
А	—	—	1.6	—	—	0.063				
A1	0.05	—	0.15	0.002	—	0.0059				
A2	1.35	1.4	1.45	0.0531	0.0551	0.0571				
b	0.17	0.22	0.27	0.0067	0.0087	0.0106				
С	0.09	_	0.2	0.0035	_	0.0079				
D	11.8	12	12.2	0.4646	0.4724	0.4803				
D1	9.8	10	10.2	0.3858	0.3937	0.4016				
D3	—	7.5	—	—	0.2953	—				
E	11.8	12	12.2	0.4646	0.4724	0.4803				
E1	9.8	10	10.2	0.3858	0.3937	0.4016				
E3	—	7.5	—	—	0.2953	—				
е	—	0.5	—	—	0.0197	—				
L	0.45	0.6	0.75	0.0177	0.0236	0.0295				
L1	_	1	_	_	0.0394	—				

