

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

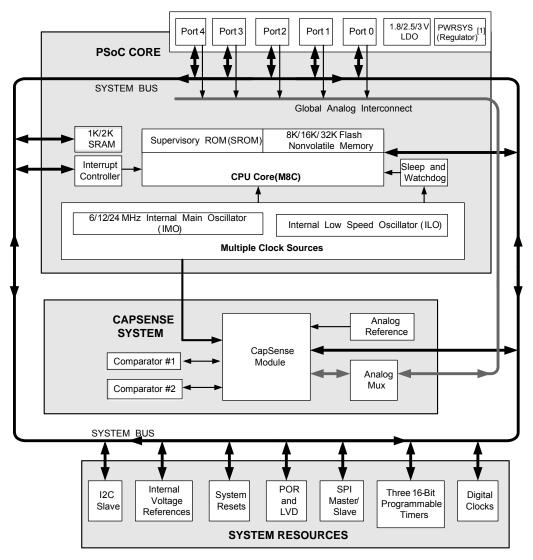
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx7/S
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	20
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	24-UFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20347-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

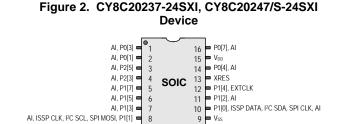
Logic Block Diagram

CY8C20xx7/S

Contents

0	
PSoC [®] Functional Overview	
PSoC Core	
CapSense System	
Additional System Resources	5
Getting Started	
Application Notes/Design Guides	
Development Kits	
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Designing with PSoC Designer	6
Select Components	6
Configure Components	6
Organize and Connect	6
Generate, Verify, and Debug	6
Pinouts	
16-pin SOIC (10 Sensing Inputs)	7
16-pin QFN (10 Sensing Inputs)[9]	8
24-pin QFN (16 Sensing Inputs)[15]	9
30-ball WLCSP (24 Sensing Inputs)	
32-pin QFN (25 Sensing Inputs)[26]	.11
48-pin QFN (31 Sensing Inputs)[32]	.12
Electrical Specifications	.13
Absolute Maximum Ratings	. 13
Operating Temperature	.13
DC Chip-Level Specifications	. 14
DC GPIO Specifications	. 15
DC Analog Mux Bus Specifications	. 17
DC Low Power Comparator Specifications	. 17
Comparator User Module Electrical Specifications	.18
ADC Electrical Specifications	
DC POR and LVD Specifications	
DC Programming Specifications	
DC I2C Specifications	
Shield Driver DC Specifications	
I	

DC IDAC Specifications	
AC Chip-Level Specifications	
AC General Purpose I/O Specifications	
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	
AC I2C Specifications	
Packaging Information	27
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	31
Development Kits	
Evaluation Tools	31
Device Programmers	
Third Party Tools	
Ordering Information	
Ordering Code Definitions	
Acronyms	
Reference Documents	
Document Conventions	35
Units of Measure	35
Numeric Naming	
Glossary	
Errata	
CY8C20xx7/S Qualification Status	
CY8C20xx7/S Errata Summary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	45


Pinouts

The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

16-pin SOIC (10 Sensing Inputs)

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[3]	Integrating Input
2	I/O	I	P0[1]	Integrating Input
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P1[7]	I2C SCL, SPI SS
6	I/O	I	P1[5]	I2C SDA, SPI MISO
7	I/O	I	P1[3]	
8	I/O	I	P1[1]	ISSP CLK ^[4] , I ² C SCL, SPI MOSI
9	Po	wer	V _{SS}	Ground connection ^[7]
10	I/O	I	P1[0]	ISSP DATA ^[4] , I ² C SDA, SPI CLK ^[5]
11	I/O	I	P1[2]	Driven Shield Output (optional)
12	I/O	I	P1[4]	Optional external clock (EXTCLK)
13	INPUT		XRES	Active high external reset with internal pull-down ^[6]
14	I/O	I	P0[4]	
15	Po	wer	V _{DD}	Supply voltage
16	I/O	I	P0[7]	

Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI ^[3]

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

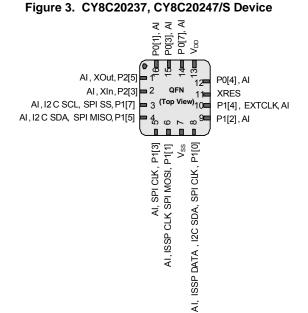
Notes

 Notes
 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use character area in the provide and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.

5. Alternate SPI clock.

The internal pull down is 5KOhm. 6.

^{7.} All VSS pins should be brought out to one common GND plane.



CY8C20xx7/S

16-pin QFN (10 Sensing Inputs)^[8]

Table 2. Pin Definitions – CY8C20237, CY8C20247/S^[9]

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[10] , I ² C SCL, SPI MOSI
7	Po	wer	V_{SS}	Ground connection ^[13]
8	IOHR	I	P1[0]	ISSP DATA ^[10] , I ² C SDA, SPI CLK ^[11]
9	IOHR	I	P1[2]	Driven Shield Output (optional)
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	Inj	put	XRES	Active high external reset with internal pull-down ^[12]
12	IOH	I	P0[4]	
13	Po	wer	V _{DD}	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	Ι	P0[1]	Integrating input

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- No center pad.
 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 10. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use cloced prior to be added t alternate pins if you encounter issues. 11. Alternate SPI clock.

^{12.} The internal pull down is 5KOhm.

^{13.} All VSS pins should be brought out to one common GND plane.

30-ball WLCSP (24 Sensing Inputs)

Table 4. Pin Definitions – CY8C20767, CY8C20747 30-ball Part Pinout (WLCSP) ^[20]

	Тур	е		
Pin No.	Digital	Analog	Name	Description
A1	IOH	I	P0[2]	Driven Shield Output (optional)
A2	IOH	I	P0[6]	
A3	Pow	er	V _{DD}	Supply voltage
A4	IOH	I	P0[1]	Integrating Input
A5	I/O	I	P2[7]	
B1	I/O	I	P4[2]	
B2	IOH	I	P0[0]	Driven Shield Output (optional)
B3	IOH	I	P0[4]	
B4	IOH	I	P0[3]	Integrating Input
B5	I/O	I	P2[5]	Crystal Output (Xout)
C1	I/O	I	P2[2]	Driven Shield Output (optional)
C2	I/O	I	P2[4]	Driven Shield Output (optional)
C3	I/O	I	P0[7]	
C4	IOH	I	P3[2]	
C5	I/O	I	P2[3]	Crystal Input (Xin)
D1	I/O	I	P2[0]	
D2	I/O	I	P3[0]	
D3	I/O	I	P3[1]	
D4	I/O	I	P3[3]	
D5	I/O	I	P2[1]	
E1	Inpu	ut	XRES	Active high external reset with internal pull-down ^[21]
E2	IOHR	I	P1[6]	
E3	IOHR	I	P1[4]	Optional external clock input (EXT CLK)
E4	IOHR	I	P1[7]	I ² C SCL, SPI SS
E5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
F1	IOHR		P1[2]	Driven Shield Output (optional)
F2	IOHR	I	P1[0]	ISSP DATA ^[22] , I ² C SDA, SPI CLK ^[23]
F3	Pow	er	V _{SS}	Supply ground ^[24]
F4	IOHR	I	P1[1]	ISSP CLK ^[22] , I ² C SCL, SPI MOSI
F5	IOHR	I	P1[3]	SPI CLK

LEGEND: A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Notes

20. 27 GPIOs = 24 pins for capacitive sensing+2 pins for $l^2C + 1$ pin for modulator capacitor.

21. The internal pull down is 5KOhm.

On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

23. Alternate SPI clock.

24. All VSS pins should be brought out to one common GND plane.

48-pin QFN (31 Sensing Inputs)^[31] Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S [32]

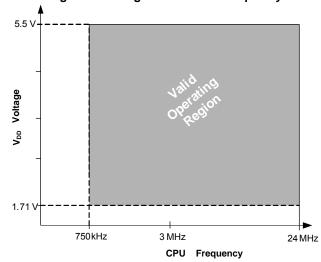
Pin No.	Digital	Analog	Name	Description	Figure 7. CY8C20637, CY8C20647/S, CY8C20667/S Devic Provident and the second se				
					-				
1	1/0		NC	No connection				NC	
2	I/O	1	P2[7]					AI ,P2[7	
3	I/O	-	P2[5]	Crystal output (XOut)			Δ١	, XOut,P2[5]	
4	I/O	1	P2[3]	Crystal input (XIn)				, XUut, P2[3] J , XIn , P2[3]	
5	I/O	1	P2[1]				~	AI ,P2[1]	
6	I/O	1	P4[3]					AI ,P4[3]	
7	I/O	1	P4[1]					AI ,P4[1]	
8	I/O	1	P3[7]					AI ,P3[7	
9	I/O	1	P3[5]					AI ,P3[5	
10	I/O	1	P3[3]					AI ,P3[3	
11	I/O	1	P3[1]					AI P3[1]	1 1 26 XRES
12	IOHR	1	P1[7]	I ² C SCL, SPI SS		AI ,12 C	SCL,	SPI SS, P1[7]	■ 12 ²² 7 12 12 12 12 12 12 12 12 12 12 12 12 12
13	IOHR	Ι	P1[5]	I ² C SDA, SPI MISO					
14			NC	No connection					MSO, AI, PT[5] NCCLK, AI, PT[5] NCCLK, AI, PT[3] NCC NCC AI, PT[2] AI, PT[2] AI, PT[2]
15			NC	No connection					AL H K, P K, F
16	IOHR		P1[3]	SPI CLK					TCL A MO
17	IOHR		P1[1]	ISSP CLK ^[33] , I ² C SCL, SPI MOSI					I2C SDA, SPI MISO, AI, P1[5] NC NC NC SPI CLK, AI, P1[3] LK, I2C SCL, SPI MOSI, P1[1] VS NC NC NC ATAI, I2C SDA, SPI CLK, P1[2] AI, EXTCLK, P1[4]
18	Pow	er	V _{SS}	Ground connection ^[36]					SPI N SPI N A, A
19			NC	No connection					DA, 12C C Si
20			NC	No connection					A, 12 C SI
21	Pow	er	V _{DD}	Supply voltage					I2C SDA, SPI MSO, AI, P1[5] NC SPI CLK, AI, P1[3] AI, ISSP CLK, I2C SCL, SPI MOSI, P1[1] VSS NC NC AI, ISSP DATA', I2C SDA, SPI CLK, P1[4] AI, ISSP DATA', I2C SDA, SPI CLK, P1[4]
22	IOHR	Ι	P1[0]	ISSP DATA ^[33] , I ² C SDA, SPI CLK ^[34]					SS SS
23	IOHR	Ι	P1[2]	Driven Shield Output (optional)					AI, IS AI, IS
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)					4 4
25	IOHR	Ι	P1[6]						
26	Inpu	ut	XRES	Active high external reset with internal pull-down ^[35]					
27	I/O	1	P3[0]						
28	I/O	Ι	P3[2]						
29	I/O	Ι	P3[4]		Pin No.	Digital	Analog	Name	Description
30	I/O		P3[6]		40	IOH	I	P0[6]	
31	I/O	-	P4[0]		41	Pov	wer	V _{DD}	Supply voltage
32	I/O	_	P4[2]		42			NC	No connection
33	I/O		P2[0]		43			NC	No connection
34	I/O	Ι	P2[2]	Driven Shield Output (optional)	44	IOH	I	P0[7]	
35	I/O	-	P2[4]	Driven Shield Output (optional)	45			NC	No connection
36			NC	No connection	46	IOH	I	P0[3]	Integrating input
37	IOH	I	P0[0]	Driven Shield Output (optional)	47	Pov	ver	V _{SS}	Ground connection ^{[36}
38	IOH	Ι	P0[2]	Driven Shield Output (optional)	48	IOH	I	P0[1]	Integrating input
39	IOH	Ι	P0[4]		CP	Pov	ver	V _{SS}	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

Notes
31. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
32. 34 GPIOs = 31 pins for capacitive sensing+2 pins for 1²C + 1 pin for modulator capacitor.
33. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the 1²C bus. Use alternate pins if you encounter issues.
34. Alternate SPI clock

34. Alternate SPI clock.


35. The internal pull down is 5KOhm.

36. All VSS pins should be brought out to one common GND plane.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 8. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}	-	-0.5	-	+6.0	V
V _{IO}	DC input voltage	-	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate	-	$V_{\rm SS}-0.5$	-	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	-	-25	-	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	_		200	mA

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	-	+85	°C
T _C	Commercial temperature range	-	0		70	°C
ТJ	Operational die temperature	The temperature rise from ambient to junction is package specific. See the Thermal Imped- ances on page 30. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

DC Chip-Level Specifications

Table 9 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 9. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD} ^[37, 38, 39]	Supply voltage	See Table 14 on page 17.	1.71	-	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are V _{DD} \leq 3.0 V, T _A = 25 °C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	1.71	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.80	mA
I _{SB0} ^[40, 41, 42, 43]	Deep sleep current	$V_{DD} \leq 3.0$ V, T_A = 25 °C, I/O regulator turned off	-	0.10	1.1	μA
I _{SB1} ^[40, 41, 42, 43]		$V_{DD}{\leq}3.0$ V, T_{A} = 25 °C, I/O regulator turned off	_	1.07	1.50	μA
I _{SBI2C} ^[40, 41, 42, 43]	Standby current with I ² C enabled	Conditions are V_{DD} = 3.3 V, T_A = 25 °C and CPU = 24 MHz	-	1.64	_	μA

Notes

Notes
37. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.
38. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

a. Bring the device out of sleep before powering down.
b. Assure that V_{DD} falls below 100 mV before powering back up.
c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
d. Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected and resets the device when V_{DD} goes lower than 1.1 V at edge rates slower than 1 V/ms.
39. For proper CapSense block functionality, if the drop in V_{DD} exceeds 5% of the base V_{DD}, the rate at which V_{DD} drops should not exceed 200 mV/s. Base V_{DD} can

39. For proper CapSense block functionality, if the drop in VDp exceeds 5% of the base VDp, the rate at which VDp drops should not exceed 200 mV/s. Base VDp can be between 1.8 V and 5.5 V.

40. Errata: When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice. For more information, see the "Errata" on page 37.
41. Errata: When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run. For more information, see the "Errata" on page 37.

42. Errata: If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed. For more information, see the "Errata" on page 37.

43. Errata: Device wakes up from sleep when an analog interrupt is trigger. For more information, see the "Errata" on page 37.

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 10. 3.0 V to 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	_	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	-	V _{DD} × 0.65	-	V _{DD} + 0.7	V
V _H	Input hysteresis voltage	_	_	80	_	mV
I _{IL}	Input leakage (Absolute Value)	_	_	0.001	1	μA
	Pin capacitance	Package and pin dependent Temp = 25 $^{\circ}$ C	0.50	1.70	7	pF
V	Input Low Voltage with low threshold enable set, Enable for Port1 ^[44]	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	threshold voltage of Port1 input	1.4	_	_	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	_	_	V

Note

^{44.} Errata: Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S VDD. For more information see item #7 in "Errata" on page 37.

Table 12. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.40	V
V _{IL}	Input low voltage	-	-	-	$0.30 \times V_{DD}$	V
V _{IH}	Input high voltage	-	0.65 × V _{DD}	-	-	V
V _H	Input hysteresis voltage	-	-	80	-	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

Table 13. GPIO Current Sink and Source Specifications

Supply Voltage	Mode	Port 0/1 per I/O (max)	Port 2/3/4 per I/O (max)	Total Current Even Pins (max)	Total Current Odd Pins (max)	Units
1.71–2.4	Sink	5	5	20	30	mA
1.71-2.4	Source	2	0.5	10 ^[45]		mA
2.4–3.0	Sink	10	10	30	30	mA
2.4-3.0	Source	2	0.2	10 ^[45]		mA
3.0-5.0	Sink	25	25	60	60	mA
3.0-5.0	Source	5	1	20 ^[45]		mA

DC Analog Mux Bus Specifications

Table 14 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
ROW	Switch resistance to common analog bus	_	_	-	800	Ω
	Resistance of initialization switch to V_{SS}	_	_	-	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8 V

DC Low Power Comparator Specifications

Table 15 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V_{DD}	0.2	-	1.8	V
I _{LPC}	LPC supply current	-	-	10	80	μA
V _{OSLPC}	LPC voltage offset	_	_	2.5	30	mV

Comparator User Module Electrical Specifications

Table 16 lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 16. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset	_	Valid from 0.2 V to 1.5 V	-	2.5	30	mV
Current	-	Average DC current, 50 mV overdrive	-	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
FORN	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range	-	-	0.2		1.5	V

ADC Electrical Specifications

Table 17. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range	_	0	_	VREFADC	V
C _{IIN}	Input capacitance	-	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference	•	•				
V _{REFADC}	ADC reference voltage	_	1.14	_	1.26	V
Conversion Rate	; 				1	1
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 21 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock)	_	5.85	_	ksps
DC Accuracy					•	
RES	Resolution	Can be set to 8, 9, or 10 bit	8	-	10	bits
DNL	Differential nonlinearity	-	-1	-	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
L L	Offset error	8-bit resolution	0	3.20	19.20	LSB
E _{OFFSET}	Oliset en ol	10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power		•	•	•		•
I _{ADC}	Operating current	-	-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	-	30	-	dB

DC POR and LVD Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	V _{DD} must be greater than or equal to 1.71 V during startup, reset from the XRES pin, or	-	2.36	2.41	V
V _{POR2}	2.60 V selected in PSoC Designer	reset from watchdog.	-	2.60	2.66	V
V _{POR3}	2.82 V selected in PSoC Designer	C C	-	2.82	2.95	V
V _{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[46]	2.71	2.78	V
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[47]	2.92	2.99	V
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[48]	3.02	3.09	V
V _{LVD4}	3.13 V selected in PSoC Designer	-	3.06	3.13	3.20	V
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	V
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[49]	1.80	1.84	V
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	V

DC Programming Specifications

Table 19 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations	-	1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify	-	_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15	_	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15	V _{IH}	-	-	V
I _{ILP}	Input current when Applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	_	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify	-	_	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15. For V_{DD} > 3V use V_{OH4} in Table 10 on page 15.	V _{OH}	-	V _{DD}	v
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum Flash write cycles; ambient temperature of 55 °C	20	-	-	Years

Notes

- 46. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 47. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 48. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 49. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

Table 24 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24 MHz Setting	-	22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12 MHz setting	-	11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6 MHz setting	-	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	-	0.75	_	25.20	MHz
F _{32K1}	ILO frequency	-	15	32	50	kHz
F _{32K_U}	ILO untrimmed frequency	-	-	32	-	kHz
DC _{IMO}	Duty cycle of IMO	-	40	50	60	%
DC _{ILO}	ILO duty cycle	-	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	_	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	-	ms
t _{XRST2}	External reset pulse width after power-up ^[52]	Applies after part has booted	10	_	-	μS
	6 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.7	6.7	ns
	6 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	_	4.3	29.3	ns
	6 MHz IMO period jitter (RMS)	-	-	0.7	3.3	ns
	12 MHz IMO cycle-to-cycle jitter (RMS)	-	_	0.5	5.2	ns
t _{JIT_IMO} ^[53]	12 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-		2.3	5.6	ns
	12 MHz IMO period jitter (RMS)	-	_	0.4	2.6	ns
	24 MHz IMO cycle-to-cycle jitter (RMS)	-	_	1.0	8.7	ns
	24 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	_	1.4	6.0	ns
	24 MHz IMO period jitter (RMS)	-	-	0.6	4.0	ns

Note 52. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23). 53. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC Programming Specifications

Figure 10. AC Waveform

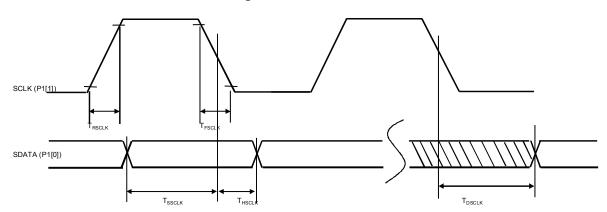


Table 28 lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 28.	AC Programming Specifications
-----------	-------------------------------

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{RSCLK}	Rise time of SCLK	_	1	_	20	ns
t _{FSCLK}	Fall time of SCLK	_	1	—	20	ns
t _{SSCLK}	Data setup time to falling edge of SCLK	_	40	—	-	ns
t _{HSCLK}	Data hold time from falling edge of SCLK	_	40	—	-	ns
F _{SCLK}	Frequency of SCLK	-	0	-	8	MHz
t _{ERASEB}	Flash erase time (block)	-	-	-	18	ms
t _{WRITE}	Flash block write time	_	-	—	25	ms
t _{DSCLK}	Data out delay from falling edge of SCLK	3.6 < V _{DD}	-	-	60	ns
t _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
t _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	—	130	ns
t _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μs
t _{XRES}	XRES pulse length	_	300	-	-	μS
t _{VDDWAIT} ^[54]	V _{DD} stable to wait-and-poll hold off	_	0.1	—	1	ms
t _{VDDXRES} ^[54]	V _{DD} stable to XRES assertion delay	_	14.27	—	-	ms
t _{POLL}	SDAT high pulse time	_	0.01	—	200	ms
t _{ACQ} ^[54]	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.	_	3.20	-	19.60	ms
t _{XRESINI} ^[54]	"Key window" time after an XRES event, based on 8 ILO clocks	-	98	-	615	μS

Note 54. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67, CY8C20X47, CY8C20X37, Programming Spec for more details.

Thermal Impedances

Table 32. Thermal Impedances per Package

Package	Τypical θ _{JA} ^[57]
16-pin SOIC	95 °C/W
16-pin QFN	33 °C/W
24-pin QFN ^[58]	21 °C/W
32-pin QFN ^[58]	20 °C/W
48-pin QFN ^[58]	18 °C/W
30-ball WLCSP	54 °C/W

Capacitance on Crystal Pins

Table 33. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32-Pin QFN	3.2 pF
48-Pin QFN	3.3 pF

Solder Reflow Peak Temperature

Table 34 shows the solder reflow temperature limits that must not be exceeded.

Table 34. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
16-pin SOIC	260 °C	30 seconds
16-pin QFN	260 °C	30 seconds
24-pin QFN	260 °C	30 seconds
32-pin QFN	260 °C	30 seconds
48-pin QFN	260 °C	30 seconds
30-ball WLCSP	260 °C	30 seconds

57. $T_J = T_A + Power \times \theta_{JA}$. 58. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, in-system programming support, and built-in support for thirdparty assemblers and C compilers. PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Designer Software Subsystems

You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time. Code Generation Tools PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube in-circuit Emulator and PSoC MiniProg. PSoC programmer is available free of cost at

http://www.cypress.com/psocprogrammer.

Development Kits

All development kits are sold at the Cypress Online Store.

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Ordering Information

Table 35 lists the CY8C20x37/47/67/S PSoC devices' key package features and ordering codes.

Table 35. PSoC Device Key Features and Ordering Information

Ordering Code	Package	Flash (Bytes)	SRAM (Bytes)	CapSense Sensors	Digital I/O Pins	Analog Inputs ^[59]	XRES Pin	ADC
CY8C20237-24SXI	16-pin SOIC	8 K	1 K	10	13	13	Yes	Yes
CY8C20247S-24SXI	16-pin SOIC	16 K	2 K	10	13	13	Yes	Yes
CY8C20237-24LKXI	16-pin QFN	8 K	1 K	10	13	13	Yes	Yes
CY8C20237-24LKXIT	16-pin QFN (Tape and Reel)	8 K	1 K	10	13	13	Yes	Yes
CY8C20247S-24LKXI	16-pin QFN	16 K	2 K	10	13	13	Yes	Yes
CY8C20247S-24LKXIT	16-pin QFN (Tape and Reel)	16 K	2 K	10	13	13	Yes	Yes
CY8C20337-24LQXI	24-pin QFN	8 K	1 K	16	19	19	Yes	Yes
CY8C20337-24LQXIT	24-pin QFN (Tape and Reel)	8 K	1 K	16	19	19	Yes	Yes
CY8C20347-24LQXI	24-pin QFN	16 K	2 K	16	19	19	Yes	Yes
CY8C20347-24LQXIT	24-pin QFN (Tape and Reel)	16 K	2 K	16	19	19	Yes	Yes
CY8C20347S-24LQXI	24-pin QFN	16 K	2 K	16	19	19	Yes	Yes
CY8C20347S-24LQXIT	24-pin QFN (Tape and Reel)	16 K	2 K	16	19	19	Yes	Yes
CY8C20437-24LQXI	32-pin QFN	8 K	1 K	25	28	28	Yes	Yes
CY8C20437-24LQXIT	32-pin QFN (Tape and Reel)	8 K	1 K	25	28	28	Yes	Yes
CY8C20447-24LQXI	32-pin QFN	16 K	2 K	25	28	28	Yes	Yes
CY8C20447-24LQXIT	32-pin QFN (Tape and Reel)	16 K	2 K	25	28	28	Yes	Yes
CY8C20447S-24LQXI	32-pin QFN	16 K	2 K	25	28	28	Yes	Yes
CY8C20447S-24LQXIT	32-pin QFN (Tape and Reel)	16 K	2 K	25	28	28	Yes	Yes
CY8C20467-24LQXI	32-pin QFN	32 K	2 K	25	28	28	Yes	Yes
CY8C20467-24LQXIT	32-pin QFN (Tape and Reel)	32 K	2 K	25	28	28	Yes	Yes
CY8C20467S-24LQXI	32-pin QFN	32 K	2 K	25	28	28	Yes	Yes
CY8C20467S-24LQXIT	32-pin QFN (Tape and Reel)	32 K	2 K	25	28	28	Yes	Yes
CY8C20637-24LQXI	48-pin QFN	8 K	1 K	31	34	34	Yes	Yes
CY8C20637-24LQXIT	48-pin QFN (Tape and Reel)	8 K	1 K	31	34	34	Yes	Yes
CY8C20647-24LQXI	48-pin QFN	16 K	2 K	31	34	34	Yes	Yes
CY8C20647-24LQXIT	48-pin QFN (Tape and Reel)	16 K	2 K	31	34	34	Yes	Yes
CY8C20647S-24LQXI	48-pin QFN	16 K	2 K	31	34	34	Yes	Yes
CY8C20647S-24LQXIT	48-pin QFN (Tape and Reel)	16 K	2 K	31	34	34	Yes	Yes
CY8C20667-24LQXI	48-pin QFN	32 K	2 K	31	34	34	Yes	Yes
CY8C20667-24LQXIT	48-pin QFN (Tape and Reel)	32 K	2 K	31	34	34	Yes	Yes
CY8C20667S-24LQXI	48-pin QFN	32 K	2 K	31	34	34	Yes	Yes
CY8C20667S-24LQXIT	48-pin QFN (Tape and Reel)	32 K	2 K	31	34	34	Yes	Yes

Note 59. Dual-function Digital I/O Pins also connect to the common analog mux.

Errata

This section describes the errata for the CY8C20xx7/S family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY8C20xx7/S Qualification Status

Product Status: Production released.

CY8C20xx7/S Errata Summary

The following Errata items apply to the CY8C20xx7/S datasheet 001-69257.

1. DoubleTimer0 ISR

■Problem Definition

When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.

■Scope of Impact

The ISR may be executed twice.

Workaround

In the ISR, firmware should clear the one-shot bit with a statement such as "and reg[B0h], FDh"

■Fix Status

Will not be fixed

■Changes

None

2. Missed GPIO Interrupt

Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

■Scope of Impact

The GPIO interrupt service routine will not be run.

■Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt. Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0. Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

Fix Status

Will not be fixed

■Changes

None

Document History Page (continued)

Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors Document Number: 001-69257				
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*F	3645807	DST/BVI	07/03/2012	 Updated F_{SCLK} parameter in the Table 31, "SPI Slave AC Specifications," on page 26 Changed t_{OUT_HIGH} to t_{OUT_H} in Table 30, "SPI Master AC Specifications," on page 25 Updated Features section, "Programmable pin configurations" bullet: Included the following sub-bullet point - 5 mA source current on port 0 and 1 and 1 mA on port 2,3 and 4 Changed the bullet point "High sink current of 25 mA for each GPIO" to "High sink current of 25 mA for each GPIO. Total 120 mA maximum sink current per chip" Added "QuietZone™ Controller" bullet and updated "Low power CapSense[®] block with SmartSense™ auto-tuning" bullet. Updated package diagrams 001-13937 to *D and 001-57280 to *C revisions.
*G	3800055	DST	11/23/2012	Changed document title. Part named changed from CY8C20xx7 to CY8C20xx7/S Table 20: Update to VIHI2C to match Item #6 in K2 Si Errata document (001- 75370) Updated package diagrams: 51-85068 to *E 001-09116 to *G 001-13937 to *E 001-42168 to *E 001-57280 to *E
*H	3881332	SRLI	02/04/2013	Updated Features: Added Note "Please contact your nearest sales office for additional details." and referred the same note in "24 Sensing Inputs – 30-pin WLCSP".
*	3993458	DST	05/07/2013	Updated Electrical Specifications (Updated DC GPIO Specifications (Updated heading of third column as "Port 0/1 per I/O (max)" for Table 13)). Updated Packaging Information: spec 001-09116 – Changed revision from *G to *H (Figure 17). Added Errata.
*ل	4081796	DST	07/31/2013	Added Errata footnotes (Note 40, 41, 42, 43, 44). Updated already existing footnotes (Note 50, 51, 55) as Errata footnotes. Updated Electrical Specifications: Updated DC Chip-Level Specifications: Added Note 40, 41, 42, 43 and referred the same notes in I _{SB0} , I _{SB1} , I _{SB12C} parameters. Updated DC GPIO Specifications: Added Note 44 and referred the same note in description of V _{ILLVT3.3} parameter in Table 10. Updated DC I2C Specifications: Updated Note 50, 51 referred in Table 20. Updated AC I2C Specifications: Updated Note 55 referred in Table 29. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-69257 Rev. *O

Revised February 2, 2016

All products and company names mentioned in this document may be the trademarks of their respective holders.