

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY8C20xx7/S
RAM Size	3K x 8
Interface	I²C, SPI
Number of I/O	28
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20467-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC[®] Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the "Logic Block Diagram" on page 2, consists of three main areas:

- The core
- CapSense analog system
- System resources

A common, versatile bus allows connection between I/O and the analog system.

Each CY8C20x37/47/67/S PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 34 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-million instructions per second (MIPS), 8-bit Harvard-architecture microprocessor.

CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1 V or 1.2 V analog reference, which together support capacitive sensing of up to 31 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins is completed quickly and easily across multiple ports.

SmartSense™ Auto-tuning

SmartSense auto-tuning is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy to use and provides robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all required tuning parameters of each sensor during run time. SmartSense auto-tuning allows engineers to go from prototyping to mass production without retuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Note

2. 34 GPIOs = 31 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.

Additional System Resources

System resources provide additional capability, such as configurable I^2C slave, SPI master/slave communication interface, three 16-bit programmable timers, various system resets supported by the M8C low voltage detection and power-on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/ 400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For more details, refer to the I2CSBUF User Module datasheet.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced poweron reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20x37/ 47/67/S PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

Application Notes/Design Guides

Application notes and design guides are an excellent introduction to the wide variety of possible PSoC designs. They are located at www.cypress.com/gocapsense. Select Application Notes under the Related Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. See "Development Kits" on page 31.

Training

Free PSoC and CapSense technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, create a technical support case or call technical support at 1-800-541-4736.

Designing with PSoC Designer

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate and Verify

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules". User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

24-pin QFN (16 Sensing Inputs)^[14]

Table 3. Pin Definitions – CY8C20337, CY8C20347/S ^[15]

Pin	Ту	ре	Namo	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	Ι	P2[3]	Crystal input (XIn)
3	I/O	Ι	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[16] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	V_{SS}	Ground connection ^[19]
10	IOHR	I	P1[0]	ISSP DATA ^[16] , I ² C SDA, SPI CLK ^[17]
11	IOHR	Ι	P1[2]	Driven Shield Output (optional)
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	Inj	out	XRES	Active high external reset with internal pull-down ^[18]
15	I/O	I	P2[2]	Driven Shield Output (optional)
16	I/O	I	P2[4]	Driven Shield Output (optional)
17	IOH	Ι	P0[0]	Driven Shield Output (optional)
18	IOH	Ι	P0[2]	Driven Shield Output (optional)
19	IOH	-	P0[4]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[3]	Integrating input
23	Po	wer	V_{SS}	Ground connection ^[19]
24	IOH	I	P0[1]	Integrating input
СР	Power		V_{SS}	Center pad must be connected to ground

Figure 4. CY8C20337, CY8C20347/S Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 14. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 15. 19 GPIOs = 16 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.
- 16. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

^{17.} Alternate SPI clock.

^{18.} The internal pull down is 5KOhm.

^{19.} All VSS pins should be brought out to one common GND plane.

Table 11. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.40	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.50	-	-	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 $\mu A,$ V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} = 1 mA, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	_	-	V
V _{OL}	Low output voltage	I_{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input low voltage	_	-	_	0.72	V
V _{IH}	Input high voltage	-	$V_{DD} \times 0.65$	1	V _{DD} + 0.7	V
V _H	Input hysteresis voltage	_	-	80		mV
IIL	Input leakage (absolute value)	_	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	_	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		_	V

|--|

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} = 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I_{OH} = 100 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	Ι	-	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V

Table 12. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.40	V
V _{IL}	Input low voltage	_	-	-	$0.30 \times V_{DD}$	V
V _{IH}	Input high voltage	-	$0.65 \times V_{DD}$	-	-	V
V _H	Input hysteresis voltage	-	-	80	-	mV
IIL	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

Table 13. GPIO Current Sink and Source Specifications

Supply Voltage	Mode	Port 0/1 per I/O (max)	Port 2/3/4 per I/O (max)	Total Current Even Pins (max)	Total Current Odd Pins (max)	Units
171 24	Sink	5	5	20	30	mA
1.71-2.4	Source	2	0.5	10 ^[45]		mA
2430	Sink	10	10	30	30	mA
2.4-3.0	Source	2	0.2	10 ^[45]		mA
30.50	Sink	25	25	60	60	mA
3.0-5.0	Source	5	1	20	[45]	mA

DC Analog Mux Bus Specifications

Table 14 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus	_	_	-	800	Ω
R _{GND}	Resistance of initialization switch to V_{SS}	_	_	-	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8 V

DC Low Power Comparator Specifications

Table 15 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V_{DD}	0.2	-	1.8	V
I _{LPC}	LPC supply current	_	-	10	80	μA
V _{OSLPC}	LPC voltage offset	_	-	2.5	30	mV

Comparator User Module Electrical Specifications

Table 16 lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 16. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset	_	Valid from 0.2 V to 1.5 V	-	2.5	30	mV
Current	-	Average DC current, 50 mV overdrive	_	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	-	dB
	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range	-	-	0.2		1.5	V

ADC Electrical Specifications

Table 17. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range	-	0	_	VREFADC	V
C _{IIN}	Input capacitance	-	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference	•					
V _{REFADC}	ADC reference voltage	-	1.14	-	1.26	V
Conversion Rate			•			
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 21 for accuracy	2.25	-	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	-	23.43	-	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock)	-	5.85	-	ksps
DC Accuracy						
RES	Resolution	Can be set to 8, 9, or 10 bit	8	_	10	bits
DNL	Differential nonlinearity	-	-1	-	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
С	Offeet error	8-bit resolution	0	3.20	19.20	LSB
-OFFSET	Oliset el loi	10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power	·					
I _{ADC}	Operating current	-	-	2.10	2.60	mA
DODD	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	_	dB
		PSRR (V _{DD} < 3.0 V)	_	30	_	dB

DC I²C Specifications

Table 20 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 20. DC I²C Specifications^[50]

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{ILI2C}	Input low level	$3.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-	-	$0.25 \times V_{DD}$	V
		$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
V _{IHI2C}	Input high level	1.71 V ≤ V _{DD} ≤ 5.5 V	$0.65 \times V_{DD}$	-	V _{DD} + 0.7 V ^[51]	V

Shield Driver DC Specifications

Table 21 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. Shield Driver DC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{Ref}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.942	-	1.106	V
V _{RefHi}	Reference buffer output	1.7 V ≤ V _{DD} ≤ 5.5 V	1.104	-	1.296	V

DC IDAC Specifications

Table 22 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. DC IDAC Specifications (8-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	–1	-	1	LSB	_
IDAC_DNL	Integral nonlinearity	-2	-	2	LSB	_
	Range = 4x	138	-	169	μA	DAC setting = 127 dec
IDAC_Current	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Table 23. DC IDAC Specifications (7-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	-1	-	1	LSB	_
IDAC_DNL	Integral nonlinearity	-2	-	2	LSB	-
	Range = 4x	137	-	168	μA	DAC setting = 127 dec
IDAC_Current	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Notes

51. Errata: For more information see item #6 in the "Errata" on page 37.

^{50.} Errata: Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C20xx7/S power supply. For more information see item #6 in the "Errata" on page 37.

AC Chip-Level Specifications

Table 24 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24 MHz Setting	-	22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12 MHz setting	-	11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6 MHz setting	-	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	-	0.75	-	25.20	MHz
F _{32K1}	ILO frequency	-	15	32	50	kHz
F _{32K_U}	ILO untrimmed frequency	-	-	32	-	kHz
DC _{IMO}	Duty cycle of IMO	-	40	50	60	%
DC _{ILO}	ILO duty cycle	-	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	_	-	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	-	-	ms
t _{XRST2}	External reset pulse width after power-up ^[52]	Applies after part has booted	10	-	-	μS
t _{XRST2}	6 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.7	6.7	ns
	6 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	_	_	4.3	29.3	ns
t _{XRST} t _{XRST2}	6 MHz IMO period jitter (RMS)	-	-	0.7	3.3	ns
	12 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.5	5.2	ns
t _{JIT_IMO} ^[53]	12 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-		2.3	5.6	ns
	12 MHz IMO period jitter (RMS)	-	-	0.4	2.6	ns
	24 MHz IMO cycle-to-cycle jitter (RMS)	-	-	1.0	8.7	ns
	24 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	_	_	1.4	6.0	ns
F _{32K1} F _{32K_U} DC _{IMO} DC _{ILO} SR _{POWER_UP} t _{XRST} t _{XRST2} t _{JIT_IMO} ^[53]	24 MHz IMO period jitter (RMS)	-	_	0.6	4.0	ns

Note 52. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23). 53. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

AC General Purpose I/O Specifications

Table 25 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Мах	Units
F		Normal strong mode Port 0, 1	0	-	6 MHz for 1.71 V <v<sub>DD < 2.40 V</v<sub>	MHz
' GPIO			0	-	12 MHz for 2.40 V < V _{DD} < 5.50 V	MHz
t _{RISE23}	Rise time, strong mode, Cload = 50 pF Ports 2 or 3	V _{DD} = 3.0 to 3.6 V, 10% to 90%	15	-	80	ns
t _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 2 or 3	V _{DD} = 1.71 to 3.0 V, 10% to 90%	15	-	80	ns
t _{RISE01}	Rise time, strong mode, Cload = 50 pF Ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% to 90% LDO enabled or disabled	10	-	50	ns
t _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% to 90% LDO enabled or disabled	10	-	80	ns
t _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% to 90%	10	-	50	ns
t _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% to 90%	10	-	70	ns

Figure 9. GPIO Timing Diagram

AC Comparator Specifications

Table 26 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 26. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	Ι	100	ns

AC External Clock Specifications

Table 27 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 27. AC External	Clock S	pecifications
-----------------------	---------	---------------

Symbol	Description	Conditions	Min	Тур	Max	Units
	Frequency (external oscillator frequency)	_	0.75	-	25.20	MHz
F _{OSCEXT}	High period	_	20.60	-	5300	ns
	Low period	_	20.60	-	-	ns
	Power-up IMO to switch	_	150	-	-	μS

AC Programming Specifications

Table 28 lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 28. AC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{RSCLK}	Rise time of SCLK	-	1	-	20	ns
t _{FSCLK}	Fall time of SCLK	-	1	-	20	ns
t _{SSCLK}	Data setup time to falling edge of SCLK	-	40	-	-	ns
t _{HSCLK}	Data hold time from falling edge of SCLK	-	40	-	-	ns
F _{SCLK}	Frequency of SCLK	-	0	-	8	MHz
t _{ERASEB}	Flash erase time (block)	-	-	-	18	ms
t _{WRITE}	Flash block write time	-	-	-	25	ms
t _{DSCLK}	Data out delay from falling edge of SCLK	3.6 < V _{DD}	-	-	60	ns
t _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
t _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	-	130	ns
t _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μs
t _{XRES}	XRES pulse length	-	300	-	-	μS
t _{VDDWAIT} ^[54]	V _{DD} stable to wait-and-poll hold off	-	0.1	-	1	ms
t _{VDDXRES} ^[54]	V _{DD} stable to XRES assertion delay	-	14.27	-	-	ms
t _{POLL}	SDAT high pulse time	-	0.01	-	200	ms
t _{ACQ} ^[54]	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.	_	3.20	-	19.60	ms
t _{XRESINI} ^[54]	"Key window" time after an XRES event, based on 8 ILO clocks	_	98	-	615	μs

Note 54. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67, CY8C20X47, CY8C20X37, Programming Spec for more details.

AC I²C Specifications

Table 29 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 29. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description	Star Mo	ndard ode	Fast Mode		Units
-		Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	-	0.6	-	μs
t _{LOW}	LOW period of the SCL clock	4.7	-	1.3	-	μs
t _{HIGH}	HIGH Period of the SCL clock	4.0	-	0.6	-	μs
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	-	μs
t _{HD;DAT} ^[55]	Data hold time	20	3.45	20	0.90	μs
t _{SU;DAT}	Data setup time	250	-	100 ^[56]	-	ns
t _{SU;STO}	Setup time for STOP condition	4.0	-	0.6	-	μs
t _{BUF}	Bus free time between a STOP and START condition	4.7	-	1.3	_	μs
t _{SP}	Pulse width of spikes are suppressed by the input filter	-	-	0	50	ns

Notes

55. Errata: To wake up from sleep using I2C hardware address match event, I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL. For more information see item #5 in the "Errata" on page 37.
 56. A Fast-Mode I²C-bus device can be used in a standard mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU;DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 30. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{l} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$		-	6 3	MHz MHz
DC	SCLK duty cycle	-	_	50	_	%
t _{SETUP}	MISO to SCLK setup time	V _{DD} ≥ 2.4 V V _{DD} < 2.4 V	60 100	-		ns ns
t _{HOLD}	SCLK to MISO hold time	-	40	_	_	ns
t _{OUT_VAL}	SCLK to MOSI valid time	-	-	_	40	ns
t _{оит_н}	MOSI high time	_	40	_	_	ns

Figure 12. SPI Master Mode 0 and 2

Figure 13. SPI Master Mode 1 and 3

Table 31. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
t _{LOW}	SCLK low time	-	42	-	-	ns
t _{HIGH}	SCLK high time	-	42	-	-	ns
t _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
t _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
t _{SS_MISO}	SS high to MISO valid	-	-	-	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
t _{SS_HIGH}	SS high time	-	50	-	-	ns
t _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	-	-	ns
t _{CLK_SS}	Time from last SCLK to SS high	-	2/SCLK	-	-	ns

Figure 15. SPI Slave Mode 1 and 3

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, in-system programming support, and built-in support for thirdparty assemblers and C compilers. PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Designer Software Subsystems

You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time. Code Generation Tools PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube in-circuit Emulator and PSoC MiniProg. PSoC programmer is available free of cost at

http://www.cypress.com/psocprogrammer.

Development Kits

All development kits are sold at the Cypress Online Store.

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Acronyms

The following table lists the acronyms that are used in this document. $% \left({{\left[{{{\rm{c}}} \right]}_{{\rm{c}}}}_{{\rm{c}}}} \right)$

Table 36. Acronyms Used in this Document

Acronym	Description				
AC	alternating current				
ADC	analog-to-digital converter				
API	application programming interface				
CMOS	complementary metal oxide semiconductor				
CPU	central processing unit				
DAC	digital-to-analog converter				
DC	direct current				
ESD	electrostatic discharge				
FSR	full scale range				
GPIO	general purpose input/output				
I ² C	inter-integrated circuit				
ICE	in-circuit emulator				
ILO	internal low speed oscillator				
IMO	internal main oscillator				
I/O	input/output				
ISSP	in-system serial programming				
LCD	liquid crystal display				
LDO	low dropout (regulator)				
LED	light-emitting diode				
LPC	low power comparator				
LSB	least-significant bit				
LVD	low voltage detect				
MCU	micro-controller unit				
MIPS	million instructions per second				
MISO	master in slave out				
MOSI	master out slave in				
MSB	most-significant bit				
OCD	on-chip debug				
PCB	printed circuit board				
POR	power on reset				
PSRR	power supply rejection ratio				
PWRSYS	power system				
PSoC	programmable system-on-chip				
QFN	quad flat no-lead				
SCLK	serial I ² C clock				
SDA	serial I ² C data				
SDATA	serial ISSP data				
SOIC	small outline integrated circuit				
SPI	serial peripheral interface				
SRAM	static random access memory				
SS	slave select				
USB	universal serial bus				
WLCSP	wafer level chip scale package				

Reference Documents

- Technical reference manual for CY20xx7 devices
- In-system Serial Programming (ISSP) protocol for 20xx7
- Host Sourced Serial Programming for 20xx7 devices

Document Conventions

Units of Measure

Table 37 lists all the abbreviations used to measure the PSoC devices.

Table 37. Units of Measure

Symbol	Unit of Measure				
°C	degree Celsius				
dB	decibel				
kHz	kilohertz				
ksps	kilo samples per second				
kΩ	kilohm				
MHz	megahertz				
μΑ	microampere				
μS	microsecond				
mA	milliampere				
mm	millimeter				
ms	millisecond				
mV	millivolt				
nA	nanoampere				
ns	nanosecond				
Ω	ohm				
%	percent				
pF	picofarad				
V	volt				
W	watt				

3. Missed Interrupt During Transition to Sleep

■Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

■Parameters Affected

No datasheet parameters are affected.

Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

■Scope of Impact

The relevant interrupt service routine will not be run.

■Workaround

None.

■Fix Status

Will not be fixed

■Changes

None

4. Wakeup from sleep with analog interrupt

Problem Definition

Device wakes up from sleep when an analog interrupt is trigger

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above

■Scope of Impact

Device unexpectedly wakes up from sleep

■Workaround

Disable the analog interrupt before entering sleep and turn it back on upon wake-up.

■Fix Status

Will not be fixed

■Changes

None

5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]

■Problem Definition

I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware address match event.

■Parameters Affected

t_{HD:DAT} increased to 20 ns from 0 ns

■Trigger Condition(S)

This is an issue only when all these three conditions are met:

- 1) P1.0 and P1.1 are used as I2C pins,
- 2) Wakeup from sleep with hardware address match feature is enabled, and
- 3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.

■Scope of Impact

These trigger conditions cause the device to never wake-up from sleep based on I2C address match event.

■Workaround

For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around. The R and C values proposed are 100 ohm and 200 pF respectively.

■Fix Status

Will not be fixed

■Changes

None

Document History Page (continued)

Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors Document Number: 001-69257							
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
*К	4248645	DST	01/16/2014	Updated Pinouts: Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Figure 6. Updated Packaging Information: spec 001-09116 – Changed revision from *H to *I			
*L	4404150	SLAN	06/10/2014	Updated Pinouts: Updated 16-pin SOIC (10 Sensing Inputs): Updated Table 1: Added Note 6 and referred the same note in description of XRES pin. Updated 16-pin QFN (10 Sensing Inputs)[8]: Updated Table 2: Added Note 12 and referred the same note in description of XRES pin. Updated 24-pin QFN (16 Sensing Inputs)[14]: Updated Table 3: Added Note 18 and referred the same note in description of XRES pin. Updated 30-ball WLCSP (24 Sensing Inputs): Updated 30-ball WLCSP (24 Sensing Inputs): Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Table 4: Added Note 21 and referred the same note in description of XRES pin. Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Table 5: Added Note 29 and referred the same note in description of XRES pin. Updated Table 5: Added Note 35 and referred the same note in description of XRES pin. Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 10: Updated Table 10: Updated Table 10: Updated Table 10: Updated Table 10: Updated Table 11: Updated AC Chip-Level Specifications: Updated AC Chip-Level Specifications: Updated Table 24: Removed minimum and maximum values of "ILO untrimmed frequency". Updated Packaging Information: spec 001-09116 – Changed revision from *I to *J. Completing Sunset Review			
*M	4825924	SLAN	07/07/2015	Added the footnote "All VSS pins should be brought out to one common GND plane" in pinout tables (Table 1 through Table 6). Updated Packaging Information: spec 001-13937 – Changed revision from *E to *F. Updated to new template.			
*N	5068999	ARVI	12/31/2015	Updated hyperlink of "Technical Reference Manual" in all instances across the document. Updated PSoC [®] Functional Overview: Updated Additional System Resources: Updated description. Updated Development Tool Selection: Removed "Accessories (Emulation and Programming)". Removed "Build a PSoC Emulator into Your Board".			

Document History Page (continued)

Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors Document Number: 001-69257								
Revision	ECN	Orig. of Change	Submission Date	Description of Change				
*0	5122184	JFMD	02/02/2016	Updated Features: Removed Note "Please contact your nearest sales office for additional details." and its reference. Updated Ordering Information: Updated Table 35: Updated part numbers.				