

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

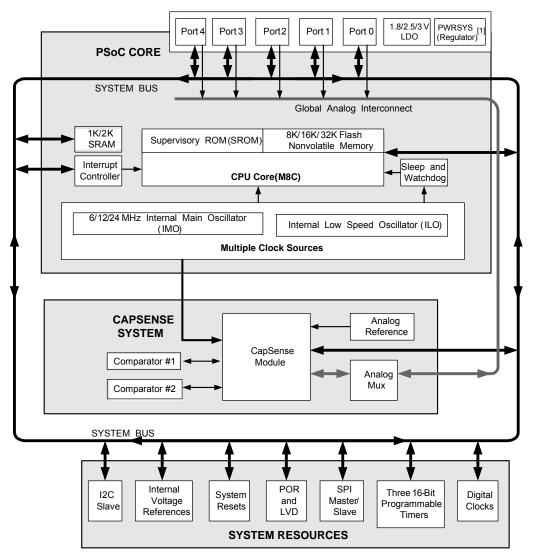
represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application charific microcontrollars are analyzared to

Details

XFI


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY8C20xx7/S
RAM Size	3K x 8
Interface	I ² C, SPI
Number of I/O	28
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20467-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

Additional System Resources

System resources provide additional capability, such as configurable I^2C slave, SPI master/slave communication interface, three 16-bit programmable timers, various system resets supported by the M8C low voltage detection and power-on reset. The merits of each system resource are listed here:

- The I²C slave/SPI master-slave module provides 50/100/ 400 kHz communication over two wires. SPI communication over three or four wires runs at speeds of 46.9 kHz to 3 MHz (lower for a slower system clock).
- The I²C hardware address recognition feature reduces the already low power consumption by eliminating the need for CPU intervention until a packet addressed to the target device is received.
- The I²C enhanced slave interface appears as a 32-byte RAM buffer to the external I²C master. Using a simple predefined protocol, the master controls the read and write pointers into the RAM. When this method is enabled, the slave does not stall the bus when receiving data bytes in active mode. For more details, refer to the I2CSBUF User Module datasheet.
- Low-voltage detection (LVD) interrupts can signal the application of falling voltage levels, while the advanced poweron reset (POR) circuit eliminates the need for a system supervisor.
- An internal reference provides an absolute reference for capacitive sensing.
- A register-controlled bypass mode allows the user to disable the LDO regulator.

Getting Started

The quickest way to understand PSoC silicon is to read this datasheet and then use the PSoC Designer Integrated Development Environment (IDE). This datasheet is an overview of the PSoC integrated circuit and presents specific pin, register, and electrical specifications.

For in depth information, along with detailed programming details, see the Technical Reference Manual for the CY8C20x37/ 47/67/S PSoC devices.

For up-to-date ordering, packaging, and electrical specification information, see the latest PSoC device datasheets on the web at www.cypress.com/psoc.

Application Notes/Design Guides

Application notes and design guides are an excellent introduction to the wide variety of possible PSoC designs. They are located at www.cypress.com/gocapsense. Select Application Notes under the Related Documentation tab.

Development Kits

PSoC Development Kits are available online from Cypress at www.cypress.com/shop and through a growing number of regional and global distributors, which include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and Newark. See "Development Kits" on page 31.

Training

Free PSoC and CapSense technical training (on demand, webinars, and workshops) is available online at www.cypress.com/training. The training covers a wide variety of topics and skill levels to assist you in your designs.

CYPros Consultants

Certified PSoC Consultants offer everything from technical assistance to completed PSoC designs. To contact or become a PSoC Consultant go to www.cypress.com/cypros.

Solutions Library

Visit our growing library of solution focused designs at www.cypress.com/solutions. Here you can find various application designs that include firmware and hardware design files that enable you to complete your designs quickly.

Technical Support

For assistance with technical issues, search KnowledgeBase articles and forums at www.cypress.com/support. If you cannot find an answer to your question, create a technical support case or call technical support at 1-800-541-4736.

Designing with PSoC Designer

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate and Verify

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules". User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

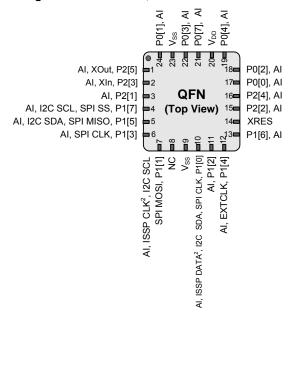
Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.



24-pin QFN (16 Sensing Inputs)^[14]

Table 3. Pin Definitions – CY8C20337, CY8C20347/S ^[15]

Pin	Ту	ре	Nama	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[16] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	V _{SS}	Ground connection ^[19]
10	IOHR	I	P1[0]	ISSP DATA ^[16] , I ² C SDA, SPI CLK ^[17]
11	IOHR	I	P1[2]	Driven Shield Output (optional)
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	Inj	put	XRES	Active high external reset with internal pull-down ^[18]
15	I/O	I	P2[2]	Driven Shield Output (optional)
16	I/O	I	P2[4]	Driven Shield Output (optional)
17	IOH	I	P0[0]	Driven Shield Output (optional)
18	IOH	I	P0[2]	Driven Shield Output (optional)
19	IOH	I	P0[4]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[3]	Integrating input
23	Po	wer	V_{SS}	Ground connection ^[19]
24	IOH	I	P0[1]	Integrating input
СР	Po	wer	V_{SS}	Center pad must be connected to ground

Figure 4. CY8C20337, CY8C20347/S Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

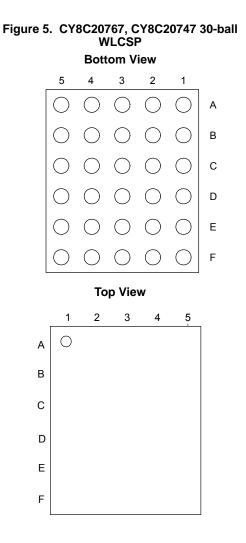
Notes

- 14. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 15. 19 GPIOs = 16 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.
- 16. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

^{17.} Alternate SPI clock.

^{18.} The internal pull down is 5KOhm.

^{19.} All VSS pins should be brought out to one common GND plane.



30-ball WLCSP (24 Sensing Inputs)

Table 4. Pin Definitions – CY8C20767, CY8C20747 30-ball Part Pinout (WLCSP) ^[20]

	Тур	е		
Pin No.	Digital	Analog	Name	Description
A1	IOH	I	P0[2]	Driven Shield Output (optional)
A2	IOH	I	P0[6]	
A3	Pow	er	V _{DD}	Supply voltage
A4	IOH	I	P0[1]	Integrating Input
A5	I/O	I	P2[7]	
B1	I/O	I	P4[2]	
B2	IOH	I	P0[0]	Driven Shield Output (optional)
B3	IOH	I	P0[4]	
B4	IOH	I	P0[3]	Integrating Input
B5	I/O	I	P2[5]	Crystal Output (Xout)
C1	I/O	I	P2[2]	Driven Shield Output (optional)
C2	I/O	I	P2[4]	Driven Shield Output (optional)
C3	I/O	I	P0[7]	
C4	IOH	I	P3[2]	
C5	I/O	I	P2[3]	Crystal Input (Xin)
D1	I/O	I	P2[0]	
D2	I/O	I	P3[0]	
D3	I/O	I	P3[1]	
D4	I/O	I	P3[3]	
D5	I/O	I	P2[1]	
E1	Inpu	ut	XRES	Active high external reset with internal pull-down ^[21]
E2	IOHR	I	P1[6]	
E3	IOHR	I	P1[4]	Optional external clock input (EXT CLK)
E4	IOHR	I	P1[7]	I ² C SCL, SPI SS
E5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
F1	IOHR		P1[2]	Driven Shield Output (optional)
F2	IOHR	I	P1[0]	ISSP DATA ^[22] , I ² C SDA, SPI CLK ^[23]
F3	Pow	er	V _{SS}	Supply ground ^[24]
F4	IOHR	I	P1[1]	ISSP CLK ^[22] , I ² C SCL, SPI MOSI
F5	IOHR	I	P1[3]	SPI CLK

LEGEND: A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output

Notes

20. 27 GPIOs = 24 pins for capacitive sensing+2 pins for $l^2C + 1$ pin for modulator capacitor.

21. The internal pull down is 5KOhm.

On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

23. Alternate SPI clock.

24. All VSS pins should be brought out to one common GND plane.

48-pin QFN (31 Sensing Inputs)^[31] Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S [32]

Pin No.	Digital	Analog	Name	Description		Fig	jure 7	. CY8C2	0637, CY8C20647/S, CY8C20667/S Device NC SSA NC SSA NC SC SSA NC S
					-				
1	1/0		NC	No connection				NC	
2	I/O	1	P2[7]					AI ,P2[7	
3	I/O	-	P2[5]	Crystal output (XOut)			Δ١	, XOut,P2[5]	
4	I/O	1	P2[3]	Crystal input (XIn)				, XUut, P2[3] J , XIn , P2[3]	
5	I/O	1	P2[1]				~	AI ,P2[1]	
6	I/O	1	P4[3]					AI ,P4[3]	
7	I/O	1	P4[1]					AI ,P4[1]	
8	I/O	1	P3[7]					AI ,P3[7	
9	I/O	1	P3[5]					AI ,P3[5	
10	I/O	1	P3[3]					AI ,P3[3	
11	I/O	1	P3[1]					AI P3[1]	1 1 26 XRES
12	IOHR	1	P1[7]	I ² C SCL, SPI SS		AI ,12 C	SCL,	SPI SS, P1[7]	■ 12 ²² 7 12 12 12 12 12 12 12 12 12 12 12 12 12
13	IOHR	Ι	P1[5]	I ² C SDA, SPI MISO					
14			NC	No connection					MSO, AI, PT[5] NCCLK, AI, PT[5] NCCLK, AI, PT[3] NCC NCC AI, PT[2] AI, PT[2] AI, PT[2]
15			NC	No connection					AL H K, P K, F
16	IOHR		P1[3]	SPI CLK					TCL A MO
17	IOHR		P1[1]	ISSP CLK ^[33] , I ² C SCL, SPI MOSI					I2C SDA, SPI MISO, AI, P1[5] NC NC NC SPI CLK, AI, P1[3] LK, I2C SCL, SPI MOSI, P1[1] VS NC NC NC ATAI, I2C SDA, SPI CLK, P1[2] AI, EXTCLK, P1[4]
18	Pow	er	V _{SS}	Ground connection ^[36]					SPI N SPI N A, A
19			NC	No connection					DA, 12C C Si
20			NC	No connection					A, 12 C SI
21	Pow	er	V _{DD}	Supply voltage					I2C SDA, SPI MSO, AI, P1[5] NC SPI CLK, AI, P1[3] AI, ISSP CLK, I2C SCL, SPI MOSI, P1[1] VSS NC NC AI, ISSP DATA', I2C SDA, SPI CLK, P1[4] AI, ISSP DATA', I2C SDA, SPI CLK, P1[4]
22	IOHR	Ι	P1[0]	ISSP DATA ^[33] , I ² C SDA, SPI CLK ^[34]					SS SS
23	IOHR	Ι	P1[2]	Driven Shield Output (optional)					AI, IS AI, IS
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)					4 4
25	IOHR	Ι	P1[6]						
26	Inpu	ut	XRES	Active high external reset with internal pull-down ^[35]					
27	I/O	I	P3[0]						
28	I/O	Ι	P3[2]						
29	I/O	Ι	P3[4]		Pin No.	Digital	Analog	Name	Description
30	I/O		P3[6]		40	IOH	I	P0[6]	
31	I/O	-	P4[0]		41	Pov	wer	V _{DD}	Supply voltage
32	I/O	_	P4[2]		42			NC	No connection
33	I/O		P2[0]		43			NC	No connection
34	I/O	Ι	P2[2]	Driven Shield Output (optional)	44	IOH	I	P0[7]	
35	I/O	-	P2[4]	Driven Shield Output (optional)	45			NC	No connection
36			NC	No connection	46	IOH	I	P0[3]	Integrating input
37	IOH	I	P0[0]	Driven Shield Output (optional)	47	Pov	ver	V _{SS}	Ground connection ^{[36}
38	IOH	Ι	P0[2]	Driven Shield Output (optional)	48	IOH	I	P0[1]	Integrating input
39	IOH	Ι	P0[4]		CP	Pov	ver	V _{SS}	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

Notes
31. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
32. 34 GPIOs = 31 pins for capacitive sensing+2 pins for 1²C + 1 pin for modulator capacitor.
33. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the 1²C bus. Use alternate pins if you encounter issues.
34. Alternate SPI clock

34. Alternate SPI clock.

35. The internal pull down is 5KOhm.

36. All VSS pins should be brought out to one common GND plane.

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 10. 3.0 V to 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	_	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	_	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	-	V _{DD} × 0.65	-	V _{DD} + 0.7	V
V _H	Input hysteresis voltage	_	_	80	_	mV
I _{IL}	Input leakage (Absolute Value)	_	_	0.001	1	μA
	Pin capacitance	Package and pin dependent Temp = 25 $^{\circ}$ C	0.50	1.70	7	pF
V	Input Low Voltage with low threshold enable set, Enable for Port1 ^[44]	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	threshold voltage of Port1 input	1.4	_	_	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	_	_	V

Note

^{44.} Errata: Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S VDD. For more information see item #7 in "Errata" on page 37.

Table 11. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.40	_	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.50	_	_	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	-	-	V
V _{OL}	Low output voltage	I_{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	_	0.75	V
V _{IL}	Input low voltage	-	-	-	0.72	V
V _{IH}	Input high voltage	-	V _{DD} × 0.65	_	V _{DD} + 0.7	V
V _H	Input hysteresis voltage	-	-	80	-	mV
I _{IL}	Input leakage (absolute value)		_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	_	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		_	V

Symbol	Description	Conditions	Min	Тур	Мах	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I _{OH} = 10 μA, maximum of 10 mA source current in all I/Os			_	V
V _{OH2}	High output voltage Port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I_{OH} = 100 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	_	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	_	_	V

Comparator User Module Electrical Specifications

Table 16 lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire device voltage and temperature operating range: –40 °C \leq TA \leq 85 °C, 1.71 V \leq V_{DD} \leq 5.5 V.

Table 16. Comparator User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{COMP}	Comparator response time	50 mV overdrive	-	70	100	ns
Offset	_	Valid from 0.2 V to 1.5 V	-	2.5	30	mV
Current	-	Average DC current, 50 mV overdrive	-	20	80	μA
PSRR	Supply voltage > 2 V	Power supply rejection ratio	-	80	100 30	dB
FORN	Supply voltage < 2 V	Power supply rejection ratio	-	40	-	dB
Input range	-	-	0.2		1.5	V

ADC Electrical Specifications

Table 17. ADC User Module Electrical Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Input						
V _{IN}	Input voltage range	_	0	_	VREFADC	V
C _{IIN}	Input capacitance	-	-	-	5	pF
R _{IN}	Input resistance	Equivalent switched cap input resistance for 8-, 9-, or 10-bit resolution	1/(500fF × data clock)	1/(400fF × data clock)	1/(300fF × data clock)	Ω
Reference	•	•				
V _{REFADC}	ADC reference voltage	_	1.14	_	1.26	V
Conversion Rate	; 				1	1
F _{CLK}	Data clock	Source is chip's internal main oscillator. See AC Chip-Level Specifications on page 21 for accuracy	2.25	_	6	MHz
S8	8-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^Resolution/Data Clock)	_	23.43	_	ksps
S10	10-bit sample rate	Data clock set to 6 MHz. sample rate = 0.001/ (2^resolution/data clock)	_	5.85	_	ksps
DC Accuracy					•	
RES	Resolution	Can be set to 8, 9, or 10 bit	8	-	10	bits
DNL	Differential nonlinearity	-	-1	-	+2	LSB
INL	Integral nonlinearity	-	-2	-	+2	LSB
L L	Offset error	8-bit resolution	0	3.20	19.20	LSB
E _{OFFSET}	Oliset en ol	10-bit resolution	0	12.80	76.80	LSB
E _{GAIN}	Gain error	For any resolution	-5	-	+5	%FSR
Power		•	•	•		•
I _{ADC}	Operating current	-	-	2.10	2.60	mA
PSRR	Power supply rejection ratio	PSRR (V _{DD} > 3.0 V)	-	24	-	dB
		PSRR (V _{DD} < 3.0 V)	-	30	-	dB

DC I²C Specifications

Table 20 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 20. DC I²C Specifications^[50]

Symbol	Description	Conditions	Min	Тур	Max	Units
		$3.1 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	-	-	$0.25 \times V_{DD}$	V
V _{ILI2C}	Input low level	$2.5 \text{ V} \le \text{V}_{\text{DD}} \le 3.0 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
		$1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.4 \text{ V}$	-	-	$0.3 \times V_{DD}$	V
V _{IHI2C}	Input high level	1.71 V ≤ V _{DD} ≤ 5.5 V	0.65 × V _{DD}	-	V _{DD} + 0.7 V ^[51]	V

Shield Driver DC Specifications

Table 21 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. Shield Driver DC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{Ref}	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.942	-	1.106	V
V _{RefHi}	Reference buffer output	1.7 V ≤ V _{DD} ≤ 5.5 V	1.104	-	1.296	V

DC IDAC Specifications

Table 22 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. DC IDAC Specifications (8-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	–1	-	1	LSB	-
IDAC_DNL	Integral nonlinearity	-2	_	2	LSB	_
IDAC_Current	Range = 4x	138	_	169	μA	DAC setting = 127 dec
	Range = 8x	138	_	169	μA	DAC setting = 64 dec

Table 23. DC IDAC Specifications (7-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	-1	_	1	LSB	-
IDAC_DNL	Integral nonlinearity	-2	_	2	LSB	-
IDAC Current	Range = 4x	137	-	168	μA	DAC setting = 127 dec
	Range = 8x	138	-	169	μA	DAC setting = 64 dec

Notes

51. Errata: For more information see item #6 in the "Errata" on page 37.

^{50.} Errata: Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C20xx7/S power supply. For more information see item #6 in the "Errata" on page 37.

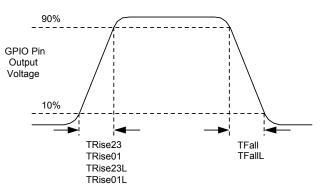

AC General Purpose I/O Specifications

Table 25 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Faria	GPIO operating frequency	Normal strong mode Port 0, 1	0	-	6 MHz for 1.71 V <v<sub>DD < 2.40 V</v<sub>	MHz
F _{GPIO}			0	-	12 MHz for 2.40 V < V _{DD} < 5.50 V	MHz
t _{RISE23}	Rise time, strong mode, Cload = 50 pF Ports 2 or 3	V _{DD} = 3.0 to 3.6 V, 10% to 90%	15	-	80	ns
t _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 2 or 3	V _{DD} = 1.71 to 3.0 V, 10% to 90%	15	-	80	ns
t _{RISE01}	Rise time, strong mode, Cload = 50 pF Ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% to 90% LDO enabled or disabled	10	-	50	ns
t _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% to 90% LDO enabled or disabled	10	-	80	ns
t _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% to 90%	10	_	50	ns
t _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% to 90%	10	-	70	ns

Figure 9. GPIO Timing Diagram

AC Comparator Specifications

Table 26 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 26. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	-	100	ns

AC External Clock Specifications

Table 27 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 27.	AC External Clock Specification	ons
-----------	---------------------------------	-----

Symbol	Description	Conditions	Min	Тур	Max	Units
	Frequency (external oscillator frequency)	_	0.75	-	25.20	MHz
FOSCEXT	High period	_	20.60	-	5300	ns
	Low period	_	20.60	-	-	ns
	Power-up IMO to switch	_	150	-	-	μS

AC Programming Specifications

Figure 10. AC Waveform

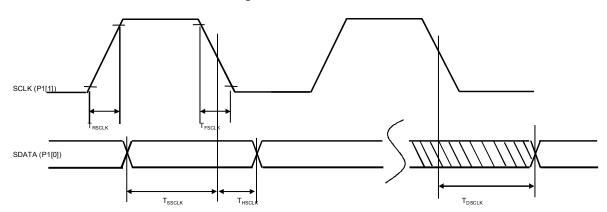


Table 28 lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 28.	AC Programming Specifications
-----------	-------------------------------

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{RSCLK}	Rise time of SCLK	_	1	_	20	ns
t _{FSCLK}	Fall time of SCLK	_	1	—	20	ns
t _{SSCLK}	Data setup time to falling edge of SCLK	_	40	—	-	ns
t _{HSCLK}	Data hold time from falling edge of SCLK	_	40	—	-	ns
F _{SCLK}	Frequency of SCLK	-	0	-	8	MHz
t _{ERASEB}	Flash erase time (block)	-	-	-	18	ms
t _{WRITE}	Flash block write time	_	-	—	25	ms
t _{DSCLK}	Data out delay from falling edge of SCLK	3.6 < V _{DD}	-	-	60	ns
t _{DSCLK3}	Data out delay from falling edge of SCLK	$3.0 \le V_{DD} \le 3.6$	-	-	85	ns
t _{DSCLK2}	Data out delay from falling edge of SCLK	$1.71 \le V_{DD} \le 3.0$	-	—	130	ns
t _{XRST3}	External reset pulse width after power-up	Required to enter programming mode when coming out of sleep	300	-	-	μs
t _{XRES}	XRES pulse length	_	300	-	-	μS
t _{VDDWAIT} ^[54]	V _{DD} stable to wait-and-poll hold off	_	0.1	—	1	ms
t _{VDDXRES} ^[54]	V _{DD} stable to XRES assertion delay	_	14.27	—	-	ms
t _{POLL}	SDAT high pulse time	_	0.01	—	200	ms
t _{ACQ} ^[54]	"Key window" time after a V _{DD} ramp acquire event, based on 256 ILO clocks.	_	3.20	-	19.60	ms
t _{XRESINI} ^[54]	"Key window" time after an XRES event, based on 8 ILO clocks	-	98	-	615	μS

Note 54. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67, CY8C20X47, CY8C20X37, Programming Spec for more details.

Table 30. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{l} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$			6 3	MHz MHz
DC	SCLK duty cycle	-	-	50	-	%
t _{SETUP}	MISO to SCLK setup time	$\begin{array}{l} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	60 100			ns ns
t _{HOLD}	SCLK to MISO hold time	-	40	-	-	ns
t _{OUT_VAL}	SCLK to MOSI valid time	-	-	-	40	ns
t _{OUT_H}	MOSI high time	-	40	-	_	ns

Figure 12. SPI Master Mode 0 and 2

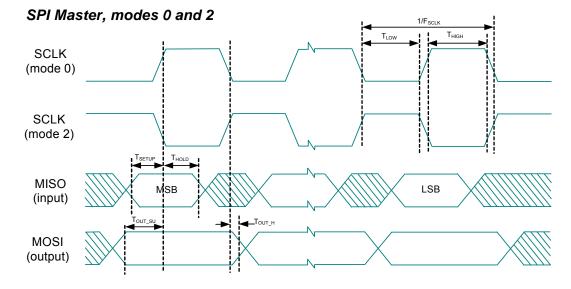
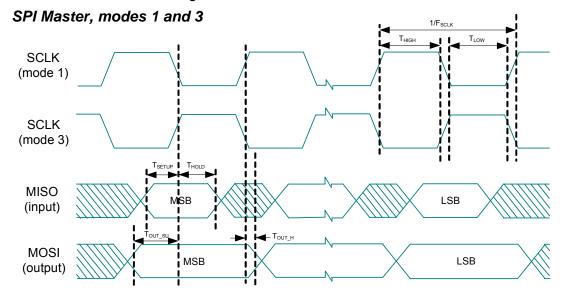



Figure 13. SPI Master Mode 1 and 3

Table 31. SPI Slave AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	-	-	-	4	MHz
t _{LOW}	SCLK low time	-	42	-	-	ns
t _{HIGH}	SCLK high time	-	42	-	-	ns
t _{SETUP}	MOSI to SCLK setup time	-	30	-	-	ns
t _{HOLD}	SCLK to MOSI hold time	-	50	-	-	ns
t _{ss_MISO}	SS high to MISO valid	-	-	-	153	ns
t _{SCLK_MISO}	SCLK to MISO valid	-	-	-	125	ns
t _{SS_HIGH}	SS high time	-	50	-	-	ns
t _{SS_CLK}	Time from SS low to first SCLK	-	2/SCLK	-	-	ns
t _{CLK_SS}	Time from last SCLK to SS high	-	2/SCLK	_	-	ns

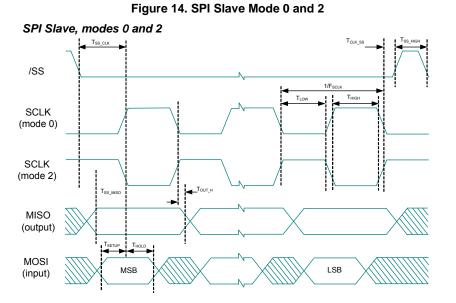
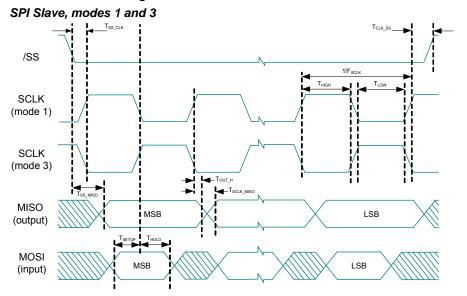



Figure 15. SPI Slave Mode 1 and 3

Thermal Impedances

Table 32. Thermal Impedances per Package

Package	Typical θ _{JA} ^[57]
16-pin SOIC	95 °C/W
16-pin QFN	33 °C/W
24-pin QFN ^[58]	21 °C/W
32-pin QFN ^[58]	20 °C/W
48-pin QFN ^[58]	18 °C/W
30-ball WLCSP	54 °C/W

Capacitance on Crystal Pins

Table 33. Typical Package Capacitance on Crystal Pins

Package	Package Capacitance
32-Pin QFN	3.2 pF
48-Pin QFN	3.3 pF

Solder Reflow Peak Temperature

Table 34 shows the solder reflow temperature limits that must not be exceeded.

Table 34. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature (T _C)	Maximum Time above T _C – 5 °C
16-pin SOIC	260 °C	30 seconds
16-pin QFN	260 °C	30 seconds
24-pin QFN	260 °C	30 seconds
32-pin QFN	260 °C	30 seconds
48-pin QFN	260 °C	30 seconds
30-ball WLCSP	260 °C	30 seconds

57. $T_J = T_A + Power \times \theta_{JA}$. 58. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.

Ordering Information

Table 35 lists the CY8C20x37/47/67/S PSoC devices' key package features and ordering codes.

Table 35. PSoC Device Key Features and Ordering Information

Ordering Code	Package	Flash (Bytes)	SRAM (Bytes)	CapSense Sensors	Digital I/O Pins	Analog Inputs ^[59]	XRES Pin	ADC
CY8C20237-24SXI	16-pin SOIC	8 K	1 K	10	13	13	Yes	Yes
CY8C20247S-24SXI	16-pin SOIC	16 K	2 K	10	13	13	Yes	Yes
CY8C20237-24LKXI	16-pin QFN	8 K	1 K	10	13	13	Yes	Yes
CY8C20237-24LKXIT	16-pin QFN (Tape and Reel)	8 K	1 K	10	13	13	Yes	Yes
CY8C20247S-24LKXI	16-pin QFN	16 K	2 K	10	13	13	Yes	Yes
CY8C20247S-24LKXIT	16-pin QFN (Tape and Reel)	16 K	2 K	10	13	13	Yes	Yes
CY8C20337-24LQXI	24-pin QFN	8 K	1 K	16	19	19	Yes	Yes
CY8C20337-24LQXIT	24-pin QFN (Tape and Reel)	8 K	1 K	16	19	19	Yes	Yes
CY8C20347-24LQXI	24-pin QFN	16 K	2 K	16	19	19	Yes	Yes
CY8C20347-24LQXIT	24-pin QFN (Tape and Reel)	16 K	2 K	16	19	19	Yes	Yes
CY8C20347S-24LQXI	24-pin QFN	16 K	2 K	16	19	19	Yes	Yes
CY8C20347S-24LQXIT	24-pin QFN (Tape and Reel)	16 K	2 K	16	19	19	Yes	Yes
CY8C20437-24LQXI	32-pin QFN	8 K	1 K	25	28	28	Yes	Yes
CY8C20437-24LQXIT	32-pin QFN (Tape and Reel)	8 K	1 K	25	28	28	Yes	Yes
CY8C20447-24LQXI	32-pin QFN	16 K	2 K	25	28	28	Yes	Yes
CY8C20447-24LQXIT	32-pin QFN (Tape and Reel)	16 K	2 K	25	28	28	Yes	Yes
CY8C20447S-24LQXI	32-pin QFN	16 K	2 K	25	28	28	Yes	Yes
CY8C20447S-24LQXIT	32-pin QFN (Tape and Reel)	16 K	2 K	25	28	28	Yes	Yes
CY8C20467-24LQXI	32-pin QFN	32 K	2 K	25	28	28	Yes	Yes
CY8C20467-24LQXIT	32-pin QFN (Tape and Reel)	32 K	2 K	25	28	28	Yes	Yes
CY8C20467S-24LQXI	32-pin QFN	32 K	2 K	25	28	28	Yes	Yes
CY8C20467S-24LQXIT	32-pin QFN (Tape and Reel)	32 K	2 K	25	28	28	Yes	Yes
CY8C20637-24LQXI	48-pin QFN	8 K	1 K	31	34	34	Yes	Yes
CY8C20637-24LQXIT	48-pin QFN (Tape and Reel)	8 K	1 K	31	34	34	Yes	Yes
CY8C20647-24LQXI	48-pin QFN	16 K	2 K	31	34	34	Yes	Yes
CY8C20647-24LQXIT	48-pin QFN (Tape and Reel)	16 K	2 K	31	34	34	Yes	Yes
CY8C20647S-24LQXI	48-pin QFN	16 K	2 K	31	34	34	Yes	Yes
CY8C20647S-24LQXIT	48-pin QFN (Tape and Reel)	16 K	2 K	31	34	34	Yes	Yes
CY8C20667-24LQXI	48-pin QFN	32 K	2 K	31	34	34	Yes	Yes
CY8C20667-24LQXIT	48-pin QFN (Tape and Reel)	32 K	2 K	31	34	34	Yes	Yes
CY8C20667S-24LQXI	48-pin QFN	32 K	2 K	31	34	34	Yes	Yes
CY8C20667S-24LQXIT	48-pin QFN (Tape and Reel)	32 K	2 K	31	34	34	Yes	Yes

Note 59. Dual-function Digital I/O Pins also connect to the common analog mux.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip- flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch-up current	Current at which the latch-up test is conducted according to JESD78 standard (at 125 degree Celsius)
Power supply rejection ratio (PSRR)	The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Scan	The conversion of all sensor capacitances to digital values.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
Signal-to-noise ratio	The ratio between a capacitive finger signal and system noise.
SPI	Serial peripheral interface is a synchronous serial data link standard.

5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]

■Problem Definition

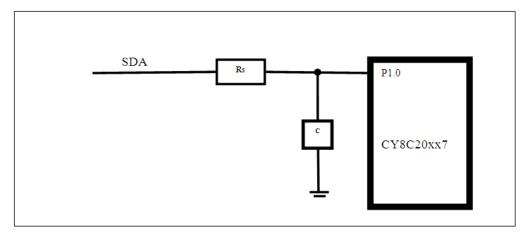
I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware address match event.

■Parameters Affected

t_{HD:DAT} increased to 20 ns from 0 ns

■Trigger Condition(S)

This is an issue only when all these three conditions are met:


- 1) P1.0 and P1.1 are used as I2C pins,
- 2) Wakeup from sleep with hardware address match feature is enabled, and
- 3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.

■Scope of Impact

These trigger conditions cause the device to never wake-up from sleep based on I2C address match event.

■Workaround

For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around. The R and C values proposed are 100 ohm and 200 pF respectively.

■Fix Status

Will not be fixed

■Changes

None

Document History Page (continued)

Revision	ECN	Orig. of Change	Submission Date	Description of Change
*К	4248645	DST	01/16/2014	Updated Pinouts: Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Figure 6. Updated Packaging Information:
				spec 001-09116 – Changed revision from *H to *I.
*L	4404150	SLAN	06/10/2014	Updated Pinouts: Updated 16-pin SOIC (10 Sensing Inputs): Updated Table 1: Added Note 6 and referred the same note in description of XRES pin. Updated Table 2: Added Note 12 and referred the same note in description of XRES pin. Updated 24-pin QFN (16 Sensing Inputs)[8]: Updated 24-pin QFN (16 Sensing Inputs)[14]: Updated Table 3: Added Note 18 and referred the same note in description of XRES pin. Updated Table 3: Added Note 18 and referred the same note in description of XRES pin. Updated Table 4: Added Note 21 and referred the same note in description of XRES pin. Updated Table 4: Added Note 21 and referred the same note in description of XRES pin. Updated Table 5: Added Note 29 and referred the same note in description of XRES pin. Updated Table 5: Added Note 29 and referred the same note in description of XRES pin. Updated Table 5: Added Note 35 and referred the same note in description of XRES pin. Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 10: Updated Table 10: Updated Table 10: Updated Table 10: Updated Table 11: Updated Table 11: Updated Table 12: Updated Table 12: Updated Table 12: Updated Table 24: Removed minimum and maximum values of V _{IH} parameter. Updated Table 24: Removed minimum and maximum values of "ILO untrimmed frequency". Updated Packaging Information: spec 001-09116 – Changed revision from *I to *J. Completing Sunset Review.
*M	4825924	SLAN	07/07/2015	Added the footnote "All VSS pins should be brought out to one common GNE plane" in pinout tables (Table 1 through Table 6). Updated Packaging Information: spec 001-13937 – Changed revision from *E to *F. Updated to new template.
*N	5068999	ARVI	12/31/2015	Updated hyperlink of "Technical Reference Manual" in all instances across the document. Updated PSoC [®] Functional Overview: Updated Additional System Resources: Updated description. Updated Development Tool Selection: Removed "Accessories (Emulation and Programming)". Removed "Build a PSoC Emulator into Your Board".

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-69257 Rev. *O

Revised February 2, 2016

All products and company names mentioned in this document may be the trademarks of their respective holders.