

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

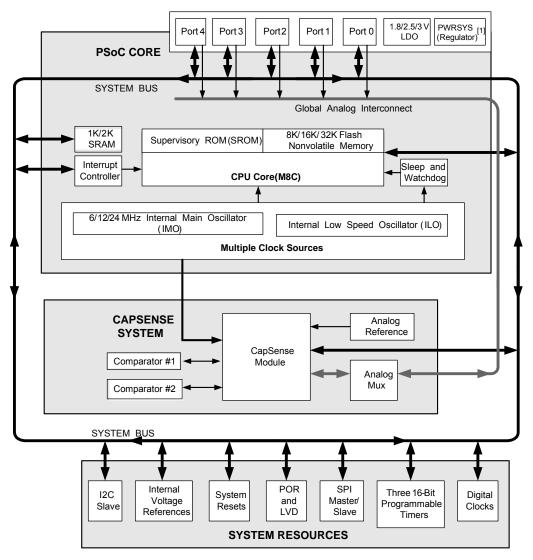
Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are angineered to

Details


Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (16kB)
Controller Series	CY8C20xx7/S
RAM Size	2K x 8
Interface	I ² C, SPI
Number of I/O	33
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20647s-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Logic Block Diagram

CY8C20xx7/S

Contents

0	
PSoC [®] Functional Overview	
PSoC Core	
CapSense System	
Additional System Resources	5
Getting Started	
Application Notes/Design Guides	
Development Kits	
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Designing with PSoC Designer	6
Select Components	6
Configure Components	6
Organize and Connect	6
Generate, Verify, and Debug	6
Pinouts	
16-pin SOIC (10 Sensing Inputs)	7
16-pin QFN (10 Sensing Inputs)[9]	8
24-pin QFN (16 Sensing Inputs)[15]	9
30-ball WLCSP (24 Sensing Inputs)	
32-pin QFN (25 Sensing Inputs)[26]	.11
48-pin QFN (31 Sensing Inputs)[32]	.12
Electrical Specifications	.13
Absolute Maximum Ratings	. 13
Operating Temperature	.13
DC Chip-Level Specifications	. 14
DC GPIO Specifications	. 15
DC Analog Mux Bus Specifications	. 17
DC Low Power Comparator Specifications	. 17
Comparator User Module Electrical Specifications	.18
ADC Electrical Specifications	
DC POR and LVD Specifications	
DC Programming Specifications	
DC I2C Specifications	
Shield Driver DC Specifications	
I	

DC IDAC Specifications	
AC Chip-Level Specifications	
AC General Purpose I/O Specifications	
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	
AC I2C Specifications	
Packaging Information	27
Thermal Impedances	
Capacitance on Crystal Pins	
Solder Reflow Peak Temperature	
Development Tool Selection	
Software	31
Development Kits	
Evaluation Tools	31
Device Programmers	
Third Party Tools	
Ordering Information	
Ordering Code Definitions	
Acronyms	
Reference Documents	
Document Conventions	35
Units of Measure	35
Numeric Naming	
Glossary	
Errata	
CY8C20xx7/S Qualification Status	
CY8C20xx7/S Errata Summary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Technical Support	45

Designing with PSoC Designer

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate and Verify

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules". User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

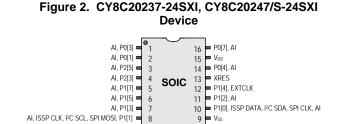
Organize and Connect

You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.


Pinouts

The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

16-pin SOIC (10 Sensing Inputs)

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P0[3]	Integrating Input
2	I/O	I	P0[1]	Integrating Input
3	I/O	I	P2[5]	Crystal output (XOut)
4	I/O	I	P2[3]	Crystal input (XIn)
5	I/O	I	P1[7]	I2C SCL, SPI SS
6	I/O	I	P1[5]	I2C SDA, SPI MISO
7	I/O	I	P1[3]	
8	I/O	I	P1[1]	ISSP CLK ^[4] , I ² C SCL, SPI MOSI
9	Po	wer	V _{SS}	Ground connection ^[7]
10	I/O	I	P1[0]	ISSP DATA ^[4] , I ² C SDA, SPI CLK ^[5]
11	I/O	I	P1[2]	Driven Shield Output (optional)
12	I/O	I	P1[4]	Optional external clock (EXTCLK)
13	INF	PUT	XRES	Active high external reset with internal pull-down ^[6]
14	I/O	I	P0[4]	
15	Po	wer	V _{DD}	Supply voltage
16	I/O	I	P0[7]	

Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI ^[3]

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

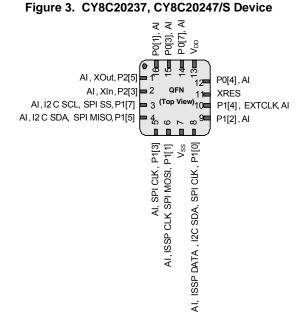
Notes

 Notes
 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use character area in the provide the state. alternate pins if you encounter issues.

5. Alternate SPI clock.

The internal pull down is 5KOhm. 6.

^{7.} All VSS pins should be brought out to one common GND plane.



CY8C20xx7/S

16-pin QFN (10 Sensing Inputs)^[8]

Table 2. Pin Definitions – CY8C20237, CY8C20247/S^[9]

Pin	Ту	pe	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	I	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[10] , I ² C SCL, SPI MOSI
7	Po	wer	V_{SS}	Ground connection ^[13]
8	IOHR	I	P1[0]	ISSP DATA ^[10] , I ² C SDA, SPI CLK ^[11]
9	IOHR	I	P1[2]	Driven Shield Output (optional)
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	Inj	put	XRES	Active high external reset with internal pull-down ^[12]
12	IOH	I	P0[4]	
13	Po	wer	V _{DD}	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	Ι	P0[1]	Integrating input

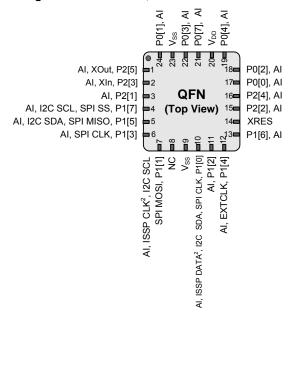
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- No center pad.
 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 10. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use cloced prior to be added t alternate pins if you encounter issues. 11. Alternate SPI clock.

^{12.} The internal pull down is 5KOhm.

^{13.} All VSS pins should be brought out to one common GND plane.



24-pin QFN (16 Sensing Inputs)^[14]

Table 3. Pin Definitions – CY8C20337, CY8C20347/S ^[15]

Pin	Ту	ре	Nama	Description
No.	Digital	Analog	Name	Description
1	I/O	I	P2[5]	Crystal output (XOut)
2	I/O	I	P2[3]	Crystal input (XIn)
3	I/O	I	P2[1]	
4	IOHR	I	P1[7]	I ² C SCL, SPI SS
5	IOHR	I	P1[5]	I ² C SDA, SPI MISO
6	IOHR	I	P1[3]	SPI CLK
7	IOHR	I	P1[1]	ISSP CLK ^[16] , I ² C SCL, SPI MOSI
8			NC	No connection
9	Po	wer	V _{SS}	Ground connection ^[19]
10	IOHR	I	P1[0]	ISSP DATA ^[16] , I ² C SDA, SPI CLK ^[17]
11	IOHR	I	P1[2]	Driven Shield Output (optional)
12	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
13	IOHR	I	P1[6]	
14	Inj	put	XRES	Active high external reset with internal pull-down ^[18]
15	I/O	I	P2[2]	Driven Shield Output (optional)
16	I/O	I	P2[4]	Driven Shield Output (optional)
17	IOH	I	P0[0]	Driven Shield Output (optional)
18	IOH	I	P0[2]	Driven Shield Output (optional)
19	IOH	I	P0[4]	
20	Po	wer	V_{DD}	Supply voltage
21	IOH	I	P0[7]	
22	IOH	I	P0[3]	Integrating input
23	Po	wer	V_{SS}	Ground connection ^[19]
24	IOH	I	P0[1]	Integrating input
СР	Po	wer	V_{SS}	Center pad must be connected to ground

Figure 4. CY8C20337, CY8C20347/S Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 14. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal. 15. 19 GPIOs = 16 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.
- 16. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

^{17.} Alternate SPI clock.

^{18.} The internal pull down is 5KOhm.

^{19.} All VSS pins should be brought out to one common GND plane.

48-pin QFN (31 Sensing Inputs)^[31] Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S [32]

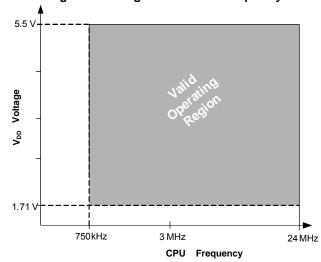
Pin No.	Digital	Analog	Name	Description		Figure 7. CY8C20637, CY8C20647/S, CY8C20667/S Devic reverses of the second seco			
					-				
1	1/0		NC	No connection				NC	
2	I/O	1	P2[7]					AI ,P2[7	
3	I/O	-	P2[5]	Crystal output (XOut)			Δ١	, XOut,P2[5]	
4	I/O	1	P2[3]	Crystal input (XIn)				, XUut, P2[3] J , XIn , P2[3]	
5	I/O	1	P2[1]				~	AI ,P2[1]	
6	I/O	1	P4[3]					AI ,P4[3]	
7	I/O	1	P4[1]					AI ,P4[1]	
8	I/O	1	P3[7]					AI ,P3[7	
9	I/O	1	P3[5]					AI ,P3[5	
10	I/O	1	P3[3]					AI ,P3[3	
11	I/O	1	P3[1]					AI P3[1]	1 1 26 XRES
12	IOHR	1	P1[7]	I ² C SCL, SPI SS		AI ,12 C	SCL,	SPI SS, P1[7]	■ 12 ²² 7 12 12 12 12 12 12 12 12 12 12 12 12 12
13	IOHR	Ι	P1[5]	I ² C SDA, SPI MISO					
14			NC	No connection					MSO, AI, PT[5] NCCLK, AI, PT[5] NCCLK, AI, PT[3] NCC NCC AI, PT[2] AI, PT[2] AI, PT[2]
15			NC	No connection					AL H K, P K, F
16	IOHR		P1[3]	SPI CLK					TCL A MO
17	IOHR		P1[1]	ISSP CLK ^[33] , I ² C SCL, SPI MOSI					I2C SDA, SPI MISO, AI, P1[5] NC NC SPI CLK, AI, P1[3] LK, I2C SCL, SPI MOSI, P1[1] VS NC NC NC ATAI, I2C SDA, SPI CLK, P1[2] AI, EXTCLK, P1[4]
18	Pow	er	V _{SS}	Ground connection ^[36]					SPI N SPI N A, A
19			NC	No connection					DA, 12C C Si
20			NC	No connection					A, 12 C SI
21	Pow	er	V _{DD}	Supply voltage					I2C SDA, SPI MSO, AI, P1[5] NC SPI CLK, AI, P1[3] AI, ISSP CLK, I2C SCL, SPI MOSI, P1[1] VSS NC NC AI, ISSP DATA', I2C SDA, SPI CLK, P1[4] AI, ISSP DATA', I2C SDA, SPI CLK, P1[4]
22	IOHR	Ι	P1[0]	ISSP DATA ^[33] , I ² C SDA, SPI CLK ^[34]					SS SS
23	IOHR	Ι	P1[2]	Driven Shield Output (optional)					AI, IS AI, IS
24	IOHR	Ι	P1[4]	Optional external clock input (EXTCLK)					4 4
25	IOHR	Ι	P1[6]						
26	Inpu	ut	XRES	Active high external reset with internal pull-down ^[35]					
27	I/O	1	P3[0]						
28	I/O	Ι	P3[2]						
29	I/O	Ι	P3[4]		Pin No.	Digital	Analog	Name	Description
30	I/O		P3[6]		40	IOH	I	P0[6]	
31	I/O	-	P4[0]		41	Pov	wer	V _{DD}	Supply voltage
32	I/O	_	P4[2]		42			NC	No connection
33	I/O		P2[0]		43			NC	No connection
34	I/O	Ι	P2[2]	Driven Shield Output (optional)	44	IOH	I	P0[7]	
35	I/O	-	P2[4]	Driven Shield Output (optional)	45			NC	No connection
36			NC	No connection	46	IOH	I	P0[3]	Integrating input
37	IOH	I	P0[0]	Driven Shield Output (optional)	47	Pov	ver	V _{SS}	Ground connection ^{[36}
38	IOH	Ι	P0[2]	Driven Shield Output (optional)	48	IOH	I	P0[1]	Integrating input
39	IOH	Ι	P0[4]		CP	Pov	ver	V _{SS}	Center pad must be connected to ground

LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

Notes

Notes
31. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
32. 34 GPIOs = 31 pins for capacitive sensing+2 pins for 1²C + 1 pin for modulator capacitor.
33. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the 1²C bus. Use alternate pins if you encounter issues.
34. Alternate SPI clock

34. Alternate SPI clock.


35. The internal pull down is 5KOhm.

36. All VSS pins should be brought out to one common GND plane.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Figure 8. Voltage versus CPU Frequency

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	-55	+25	+125	°C
V _{DD}	Supply voltage relative to V_{SS}	-	-0.5	-	+6.0	V
V _{IO}	DC input voltage	-	$V_{SS} - 0.5$	-	V _{DD} + 0.5	V
V _{IOZ}	DC voltage applied to tristate	-	$V_{\rm SS}-0.5$	-	V _{DD} + 0.5	V
I _{MIO}	Maximum current into any port pin	-	-25	-	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	_		200	mA

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	-	+85	°C
T _C	Commercial temperature range	-	0		70	°C
ТJ	Operational die temperature	The temperature rise from ambient to junction is package specific. See the Thermal Imped- ances on page 30. The user must limit the power consumption to comply with this requirement.	-40	_	+100	°C

DC GPIO Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and -40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 10. 3.0 V to 5.5 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	_	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	$I_{OH} \le 10 \ \mu$ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 1 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	_	V
	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	_	-	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} = 5 mA, maximum of 20 mA source current in all I/Os	V _{DD} – 0.90	_	-	V
V _{OH5}	High output voltage Port 1 Pins with LDO Regulator Enabled for 3 V out	I _{OH} < 10 μA, V _{DD} > 3.1 V, maximum of 4 I/Os all sourcing 5 mA	2.85	3.00	3.30	V
V _{OH6}	High output voltage Port 1 pins with LDO regulator enabled for 3 V out	I _{OH} = 5 mA, V _{DD} > 3.1 V, maximum of 20 mA source current in all I/Os	2.20	-	-	V
V _{OH7}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	2.35	2.50	2.75	V
V _{OH8}	High output voltage Port 1 pins with LDO enabled for 2.5 V out	I _{OH} = 2 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.90	_	_	V
V _{OH9}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} < 10 μA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.60	1.80	2.10	V
V _{OH10}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.7 V, maximum of 20 mA source current in all I/Os	1.20	-	_	V
V _{OL}	Low output voltage	I_{OL} = 25 mA, V_{DD} > 3.3 V, maximum of 60 mA sink current on even port pins (for example, P0[2] and P1[4]) and 60 mA sink current on odd port pins (for example, P0[3] and P1[5])	_	-	0.75	V
V _{IL}	Input low voltage	-	-	-	0.80	V
V _{IH}	Input high voltage	-	V _{DD} × 0.65	-	V _{DD} + 0.7	V
V _H	Input hysteresis voltage	_	_	80	_	mV
I _{IL}	Input leakage (Absolute Value)	_	_	0.001	1	μA
	Pin capacitance	Package and pin dependent Temp = 25 $^{\circ}$ C	0.50	1.70	7	pF
V	Input Low Voltage with low threshold enable set, Enable for Port1 ^[44]	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT3.3}	Input High Voltage with low threshold enable set, Enable for Port1	threshold voltage of Port1 input	1.4	_	_	V
V _{ILLVT5.5}	Input Low Voltage with low threshold enable set, Enable for Port1	threshold voltage of Port1 input	0.8	V	_	-
V _{IHLVT5.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.7	_	_	V

Note

^{44.} Errata: Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S VDD. For more information see item #7 in "Errata" on page 37.

DC POR and LVD Specifications

Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 18. DC POR and LVD Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{POR0}	1.66 V selected in PSoC Designer		1.61	1.66	1.71	V
V _{POR1}	2.36 V selected in PSoC Designer	V _{DD} must be greater than or equal to 1.71 V during startup, reset from the XRES pin, or	-	2.36	2.41	V
V _{POR2}	2.60 V selected in PSoC Designer	reset from watchdog.	-	2.60	2.66	V
V _{POR3}	2.82 V selected in PSoC Designer	C C	-	2.82	2.95	V
V _{LVD0}	2.45 V selected in PSoC Designer		2.40	2.45	2.51	V
V _{LVD1}	2.71 V selected in PSoC Designer		2.64 ^[46]	2.71	2.78	V
V _{LVD2}	2.92 V selected in PSoC Designer		2.85 ^[47]	2.92	2.99	V
V _{LVD3}	3.02 V selected in PSoC Designer		2.95 ^[48]	3.02	3.09	V
V _{LVD4}	3.13 V selected in PSoC Designer	_	3.06	3.13	3.20	V
V _{LVD5}	1.90 V selected in PSoC Designer		1.84	1.90	2.32	V
V _{LVD6}	1.80 V selected in PSoC Designer		1.75 ^[49]	1.80	1.84	V
V _{LVD7}	4.73 V selected in PSoC Designer		4.62	4.73	4.83	V

DC Programming Specifications

Table 19 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 19. DC Programming Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DDIWRITE}	Supply voltage for flash write operations	-	1.71	-	5.25	V
I _{DDP}	Supply current during programming or verify	-	_	5	25	mA
V _{ILP}	Input low voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15	_	-	V _{IL}	V
V _{IHP}	Input high voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15	V _{IH}	-	-	V
I _{ILP}	Input current when Applying V _{ILP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	_	0.2	mA
I _{IHP}	Input current when applying V _{IHP} to P1[0] or P1[1] during programming or verify	Driving internal pull-down resistor	-	-	1.5	mA
V _{OLP}	Output low voltage during programming or verify	-	_	-	V _{SS} + 0.75	V
V _{OHP}	Output high voltage during programming or verify	See appropriate "DC GPIO Specifica- tions" on page 15. For V_{DD} > 3V use V_{OH4} in Table 10 on page 15.	V _{OH}	-	V _{DD}	v
Flash _{ENPB}	Flash write endurance	Erase/write cycles per block	50,000	-	-	-
Flash _{DR}	Flash data retention	Following maximum Flash write cycles; ambient temperature of 55 °C	20	-	-	Years

Notes

- 46. Always greater than 50 mV above V_{PPOR1} voltage for falling supply. 47. Always greater than 50 mV above V_{PPOR2} voltage for falling supply. 48. Always greater than 50 mV above V_{PPOR3} voltage for falling supply. 49. Always greater than 50 mV above V_{PPOR0} voltage for falling supply.

AC Chip-Level Specifications

Table 24 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24 MHz Setting	-	22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12 MHz setting	-	11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6 MHz setting	-	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	-	0.75	_	25.20	MHz
F _{32K1}	ILO frequency	-	15	32	50	kHz
F _{32K_U}	ILO untrimmed frequency	-	-	32	-	kHz
DC _{IMO}	Duty cycle of IMO	-	40	50	60	%
DC _{ILO}	ILO duty cycle	-	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	-	_	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	-	ms
t _{XRST2}	External reset pulse width after power-up ^[52]	Applies after part has booted	10	_	-	μS
	6 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.7	6.7	ns
	6 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	_	4.3	29.3	ns
	6 MHz IMO period jitter (RMS)	-	-	0.7	3.3	ns
	12 MHz IMO cycle-to-cycle jitter (RMS)	-	_	0.5	5.2	ns
t _{JIT_IMO} [^{53]}	12 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-		2.3	5.6	ns
	12 MHz IMO period jitter (RMS)	-	_	0.4	2.6	ns
	24 MHz IMO cycle-to-cycle jitter (RMS)	-	_	1.0	8.7	ns
	24 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	_	1.4	6.0	ns
	24 MHz IMO period jitter (RMS)	-	-	0.6	4.0	ns

Note 52. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23). 53. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

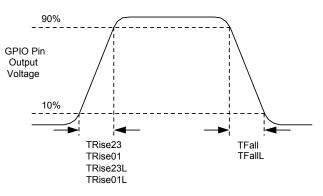

AC General Purpose I/O Specifications

Table 25 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 25. AC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
Faria	GPIO operating frequency	Normal strong mode Port 0, 1	0	-	6 MHz for 1.71 V <v<sub>DD < 2.40 V</v<sub>	MHz
F _{GPIO}	GFIO operating nequency	Normal strong mode Fort 0, 1	0	-	12 MHz for 2.40 V < V _{DD} < 5.50 V	MHz
t _{RISE23}	Rise time, strong mode, Cload = 50 pF Ports 2 or 3	V _{DD} = 3.0 to 3.6 V, 10% to 90%	15	-	80	ns
t _{RISE23L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 2 or 3	V _{DD} = 1.71 to 3.0 V, 10% to 90%	15	-	80	ns
t _{RISE01}	Rise time, strong mode, Cload = 50 pF Ports 0 or 1	V _{DD} = 3.0 to 3.6 V, 10% to 90% LDO enabled or disabled	10	-	50	ns
t _{RISE01L}	Rise time, strong mode low supply, Cload = 50 pF, Ports 0 or 1	V _{DD} = 1.71 to 3.0 V, 10% to 90% LDO enabled or disabled	10	-	80	ns
t _{FALL}	Fall time, strong mode, Cload = 50 pF all ports	V _{DD} = 3.0 to 3.6 V, 10% to 90%	10	_	50	ns
t _{FALLL}	Fall time, strong mode low supply, Cload = 50 pF, all ports	V _{DD} = 1.71 to 3.0 V, 10% to 90%	10	-	70	ns

Figure 9. GPIO Timing Diagram

AC Comparator Specifications

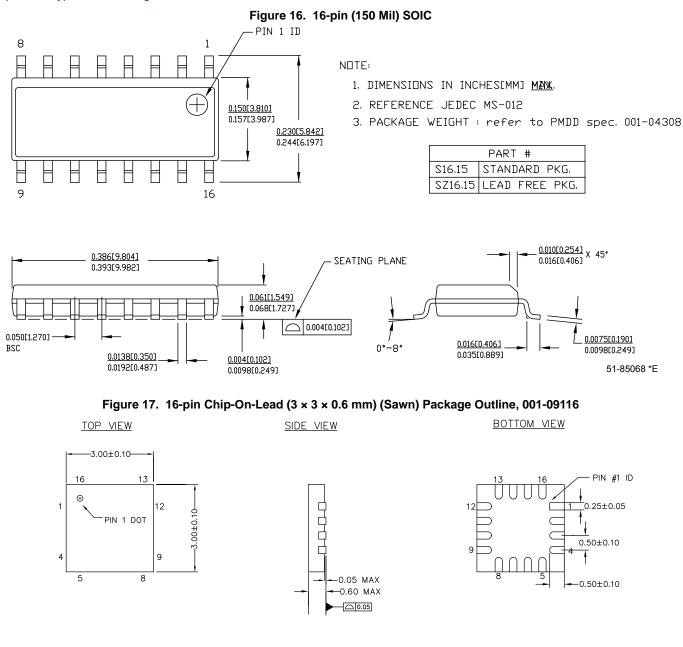
Table 26 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 26. AC Low Power Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
t _{LPC}	Comparator response time, 50 mV overdrive	50 mV overdrive does not include offset voltage.	-	-	100	ns

AC External Clock Specifications

Table 27 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

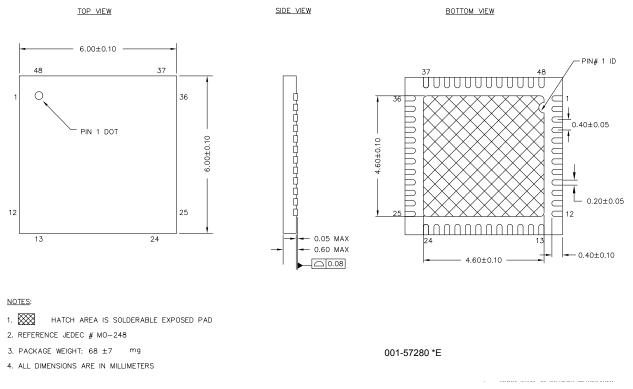

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{OSCEXT}	Frequency (external oscillator frequency)	_	0.75	-	25.20	MHz
	High period	_	20.60	-	5300	ns
	Low period	_	20.60	-	-	ns
	Power-up IMO to switch	_	150	-	-	μS

Packaging Information

This section illustrates the packaging specifications for the CY8C20x37/47/67 PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

NOTES


1. REFERENCE JEDEC # MO-220

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-09116 *J

Figure 20. 48-Pin (6 × 6 × 0.6 mm) QFN

Important Notes

- For information on the preferred dimensions for mounting QFN packages, see the following Application Note at http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.
- Pinned vias for thermal conduction are not required for the low power PSoC device.

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is a Microsoft[®] Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, in-system programming support, and built-in support for thirdparty assemblers and C compilers. PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Designer Software Subsystems

You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time. Code Generation Tools PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube in-circuit Emulator and PSoC MiniProg. PSoC programmer is available free of cost at

http://www.cypress.com/psocprogrammer.

Development Kits

All development kits are sold at the Cypress Online Store.

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Glossary

Crosspoint connection	Connection between any GPIO combination via analog multiplexer bus.
Differential non linearity	Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly one LSB apart. Differential non-linearity is a measure of the worst case deviation from the ideal 1 LSB step.
Hold time	Hold time is the time following a clock event during which the data input to a latch or flip- flop must remain stable in order to guarantee that the latched data is correct.
l ² C	It is a serial multi-master bus used to connect low speed peripherals to MCU.
Integral nonlinearity	It is a term describing the maximum deviation between the ideal output of a DAC/ADC and the actual output level.
Latch-up current	Current at which the latch-up test is conducted according to JESD78 standard (at 125 degree Celsius)
Power supply rejection ratio (PSRR)	The PSRR is defined as the ratio of the change in supply voltage to the corresponding change in output voltage of the device.
Scan	The conversion of all sensor capacitances to digital values.
Setup time	Period required to prepare a device, machine, process, or system for it to be ready to function.
Signal-to-noise ratio	The ratio between a capacitive finger signal and system noise.
SPI	Serial peripheral interface is a synchronous serial data link standard.

Errata

This section describes the errata for the CY8C20xx7/S family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY8C20xx7/S Qualification Status

Product Status: Production released.

CY8C20xx7/S Errata Summary

The following Errata items apply to the CY8C20xx7/S datasheet 001-69257.

1. DoubleTimer0 ISR

■Problem Definition

When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.

■Scope of Impact

The ISR may be executed twice.

Workaround

In the ISR, firmware should clear the one-shot bit with a statement such as "and reg[B0h], FDh"

■Fix Status

Will not be fixed

■Changes

None

2. Missed GPIO Interrupt

Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

■Scope of Impact

The GPIO interrupt service routine will not be run.

■Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt. Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0. Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

Fix Status

Will not be fixed

■Changes

None

5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]

■Problem Definition

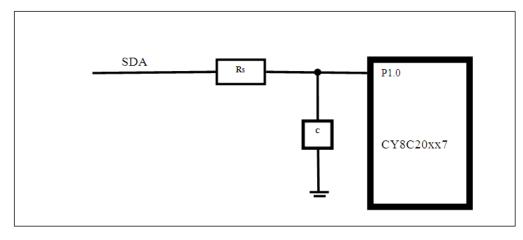
I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware address match event.

■Parameters Affected

t_{HD:DAT} increased to 20 ns from 0 ns

■Trigger Condition(S)

This is an issue only when all these three conditions are met:

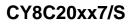

- 1) P1.0 and P1.1 are used as I2C pins,
- 2) Wakeup from sleep with hardware address match feature is enabled, and
- 3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.

■Scope of Impact

These trigger conditions cause the device to never wake-up from sleep based on I2C address match event.

■Workaround

For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around. The R and C values proposed are 100 ohm and 200 pF respectively.



■Fix Status

Will not be fixed

■Changes

None

Document History Page

Sensors	Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors Document Number: 001-69257					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	3276782	DST	06/27/2011	New silicon and document		
*A	3327230	DST	07/28/2011	Changed 48-pin dimensions to 6 × 6 × 0.6 mm QFN Updated pins name in Table 3 on page 9 and removed USB column and updated dimensions for 48-pin parts in Table 35 on page 33 Updated Figure 20 on page 29 Removed ICE and Debugger sections. Removed CY3215 Development Kit and CY3280-20x66 UCC sections. Updated Ordering Information.		
*B	3403111	YVA	10/12/2011	Moved status from Advance to Preliminary. Updated Ordering Information Removed the row named "48-Pin (6 × 6 mm) QFN (OCD)". Changed all 48-pin ordering code column from CY8C20XXX-24LTxx to CY8C20XXX-24LQxx. Updated 16-pin SOIC and 16-pin QFN package drawings.		
*C	3473317	DST	12/23/2011	Updated Features. Updated Pinouts (Removed PSoC in captions of Figure 2, Figure 3, Figure 4, Figure 6, and Figure 7). Updated DC Chip-Level Specifications under Electrical Specifications (Updated typical value of I_{DD24} parameter from 3.32 mA to 2.88 mA, updated typical value of I_{DD12} parameter from 1.86 mA to 1.71 mA, updated typical value of I_{DD6} parameter from 1.13 mA to 1.16 mA, updated maximum value of I_{BD0} parameter from 0.50 μ A to 1.1 μ A, added I_{SB12C} parameter and its details). Updated DC GPIO Specifications under Electrical Specifications (Added the parameters namely $V_{ILLVT3.3}$, $V_{ILLVT3.5}$, $V_{IHLVT2.5}$ and their details in Table 10, added the parameters namely $V_{ILLVT3.3}$, $V_{ILLVT3.5}$, $V_{IHLVT2.5}$ and their details in Table 11). Added the following sections namely DC I2C Specifications, Shield Driver DC Specifications, and DC IDAC Specifications under Electrical Specifications. Updated AC Chip-Level Specifications (Added the parameter namely t_{JIT_IMO} and its details).		
*D	3510277	YVA/DST	02/16/2012	Added CY8C20x37/37S/47/47S/67/67S part numbers and changed title to "1.8 V CapSense® Controller with SmartSense ™ Auto-tuning 31 Buttons, 6 Sliders" Updated Features. Modified comparator blocks in Logic Block Diagram. Replaced SmartSense with SmartSense auto-tuning. Added CY8C20xx7S part numbers in Pin Definitions. Added footnote for Table 20. Updated Table 21 and Table 22 and added Table 23. Updated Fa _{32K1} min value. Updated data hold time min values. Updated CY8C206x7 part information in Table "Emulation and Programming Accessories". Updated Ordering Information.		
*E	3539259	DST	03/01/2012	Changed Datasheet status from Preliminary to Final. Updated all Pinouts to include Driven Shield Output (optional) information. Updated Min value for V_{LPC} Table 15. Updated Offset and Input range in Table 16.		

Document History Page (continued)

Sensors	Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors Document Number: 001-69257					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*F	3645807	DST/BVI	07/03/2012	 Updated F_{SCLK} parameter in the Table 31, "SPI Slave AC Specifications," on page 26 Changed t_{OUT_HIGH} to t_{OUT_H} in Table 30, "SPI Master AC Specifications," on page 25 Updated Features section, "Programmable pin configurations" bullet: Included the following sub-bullet point - 5 mA source current on port 0 and 1 and 1 mA on port 2,3 and 4 Changed the bullet point "High sink current of 25 mA for each GPIO" to "High sink current of 25 mA for each GPIO. Total 120 mA maximum sink current per chip" Added "QuietZone™ Controller" bullet and updated "Low power CapSense[®] block with SmartSense™ auto-tuning" bullet. Updated package diagrams 001-13937 to *D and 001-57280 to *C revisions. 		
*G	3800055	DST	11/23/2012	Changed document title. Part named changed from CY8C20xx7 to CY8C20xx7/S Table 20: Update to VIHI2C to match Item #6 in K2 Si Errata document (001- 75370) Updated package diagrams: 51-85068 to *E 001-09116 to *G 001-13937 to *E 001-42168 to *E 001-57280 to *E		
*H	3881332	SRLI	02/04/2013	Updated Features: Added Note "Please contact your nearest sales office for additional details." and referred the same note in "24 Sensing Inputs – 30-pin WLCSP".		
*	3993458	DST	05/07/2013	Updated Electrical Specifications (Updated DC GPIO Specifications (Updated heading of third column as "Port 0/1 per I/O (max)" for Table 13)). Updated Packaging Information: spec 001-09116 – Changed revision from *G to *H (Figure 17). Added Errata.		
*ل	4081796	DST	07/31/2013	Added Errata footnotes (Note 40, 41, 42, 43, 44). Updated already existing footnotes (Note 50, 51, 55) as Errata footnotes. Updated Electrical Specifications: Updated DC Chip-Level Specifications: Added Note 40, 41, 42, 43 and referred the same notes in I _{SB0} , I _{SB1} , I _{SB12C} parameters. Updated DC GPIO Specifications: Added Note 44 and referred the same note in description of V _{ILLVT3.3} parameter in Table 10. Updated DC I2C Specifications: Updated Note 50, 51 referred in Table 20. Updated AC I2C Specifications: Updated Note 55 referred in Table 29. Updated to new template.		