Cypress Semiconductor Corp - <u>CY8C20667-24LQXIT Datasheet</u>

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application enacific microcontrollars are anaineered to

Details	
Product Status	Obsolete
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY8C20xx7/S
RAM Size	3K x 8
Interface	I ² C, SPI
Number of I/O	33
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20667-24lqxit

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PSoC® Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the "Logic Block Diagram" on page 2, consists of three main areas:

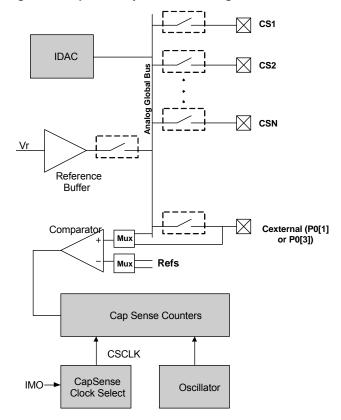
- The core
- CapSense analog system
- System resources

A common, versatile bus allows connection between I/O and the analog system.

Each CY8C20x37/47/67/S PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 34 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-million instructions per second (MIPS), 8-bit Harvard-architecture microprocessor.


CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1 V or 1.2 V analog reference, which together support capacitive sensing of up to 31 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins is completed quickly and easily across multiple ports.

SmartSense™ Auto-tuning

SmartSense auto-tuning is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy to use and provides robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all required tuning parameters of each sensor during run time. SmartSense auto-tuning allows engineers to go from prototyping to mass production without retuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Note

2. 34 GPIOs = 31 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.

Designing with PSoC Designer

The PSoC development process can be summarized in the following four steps:

- 1. Select User Modules
- 2. Configure User Modules
- 3. Organize and Connect
- 4. Generate and Verify

Select Components

PSoC Designer provides a library of pre-built, pre-tested hardware peripheral components called "user modules". User modules make selecting and implementing peripheral devices, both analog and digital, simple.

Configure Components

Each of the User Modules you select establishes the basic register settings that implement the selected function. They also provide parameters and properties that allow you to tailor their precise configuration to your particular application. The user module parameters permit you to establish the pulse width and duty cycle. Configure the parameters and properties to correspond to your chosen application. Enter values directly or by selecting values from drop-down menus. All the user modules are documented in datasheets that may be viewed directly in PSoC Designer or on the Cypress website. These user module datasheets explain the internal operation of the User Module and provide performance specifications. Each datasheet describes the use of each user module parameter, and other information you may need to successfully implement your design.

Organize and Connect

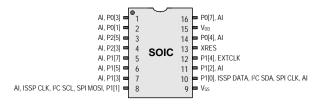
You build signal chains at the chip level by interconnecting user modules to each other and the I/O pins. You perform the selection, configuration, and routing so that you have complete control over all on-chip resources.

Generate, Verify, and Debug

When you are ready to test the hardware configuration or move on to developing code for the project, you perform the "Generate Configuration Files" step. This causes PSoC Designer to generate source code that automatically configures the device to your specification and provides the software for the system. The generated code provides application programming interfaces (APIs) with high-level functions to control and respond to hardware events at run time and interrupt service routines that you can adapt as needed.

A complete code development environment allows you to develop and customize your applications in C, assembly language, or both.

Pinouts


The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

16-pin SOIC (10 Sensing Inputs)

Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI [3]

Table 1: 1 111 Definitions						
Pin	Ту	pe	Name	Description		
No.	Digital	Analog	Name	Description		
1	I/O	ı	P0[3]	Integrating Input		
2	I/O	I	P0[1]	Integrating Input		
3	I/O	I	P2[5]	Crystal output (XOut)		
4	I/O	I	P2[3]	Crystal input (XIn)		
5	I/O	I	P1[7]	I2C SCL, SPI SS		
6	I/O		P1[5]	I2C SDA, SPI MISO		
7	I/O		P1[3]			
8	I/O	I	P1[1]	ISSP CLK ^[4] , I ² C SCL, SPI MOSI		
9	Po	wer	V_{SS}	Ground connection ^[7]		
10	I/O	I	P1[0]	ISSP DATA ^[4] , I ² C SDA, SPI CLK ^[5]		
11	I/O		P1[2]	Driven Shield Output (optional)		
12	I/O	I	P1[4]	Optional external clock (EXTCLK)		
13	INF	PUT	XRES	Active high external reset with internal pull-down ^[6]		
14	I/O	I	P0[4]			
15	Po	wer	V_{DD}	Supply voltage		
16	I/O	I	P0[7]			

Figure 2. CY8C20237-24SXI, CY8C20247/S-24SXI **Device**

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 3. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.

 4. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 5. Alternate SPI clock.
- The internal pull down is 5KOhm.
- 7. All VSS pins should be brought out to one common GND plane.

Document Number: 001-69257 Rev. *O

16-pin QFN (10 Sensing Inputs)[8]

Table 2. Pin Definitions - CY8C20237, CY8C20247/S [9]

Pin	Ту	ре	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	ı	P2[5]	Crystal output (XOut)
2	I/O	ı	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	ı	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[10] , I ² C SCL, SPI MOSI
7	Po	Power		Ground connection ^[13]
8	IOHR	I	P1[0]	ISSP DATA ^[10] , I ² C SDA, SPI CLK ^[11]
9	IOHR	I	P1[2]	Driven Shield Output (optional)
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	In	put	XRES	Active high external reset with internal pull-down ^[12]
12	IOH	I	P0[4]	
13	Po	wer	V_{DD}	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	ı	P0[1]	Integrating input

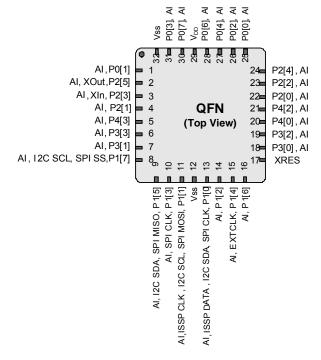
Figure 3. CY8C20237, CY8C20247/S Device AI, XOut, P2[5] P0[4], AI AI, XIn, P2[3] **XRES** AI, I2 C SCL, SPI SS, P1[7] = 3 (Top View) 10= P1[4], EXTCLK, AI AI, I2 C SDA, SPI MISO, P1[5] P1[2], AI AI, ISSP CLK, SPI MOSI, P1[13] ISSP DATA, I2C SDA, SPI CIK, P1[0]

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 8. No center pad.
 9. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 10. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.

 11. Alternate SPI clock.
- 12. The internal pull down is 5KOhm.
- 13. All VSS pins should be brought out to one common GND plane.



32-pin QFN (25 Sensing Inputs)[25]

Table 5. Pin Definitions - CY8C20437, CY8C20447/S, CY8C20467/S [26]

Pin	Τ\	/pe		
No.	Digital	Analog	Name	Description
1	IOH	1	P0[1]	Integrating input
2	I/O		P2[5]	Crystal output (XOut)
3	I/O	ı	P2[3]	Crystal input (XIn)
4	I/O	ı	P2[1]	
5	I/O	ı	P4[3]	
6	I/O		P3[3]	
7	I/O		P3[1]	
8	IOHR	ı	P1[7]	I ² C SCL, SPI SS
9	IOHR		P1[5]	I ² C SDA, SPI MISO
10	IOHR		P1[3]	SPI CLK.
11	IOHR	I	P1[1]	ISSP CLK ^[27] , I ² C SCL, SPI MOSI.
12	Po	wer	V_{SS}	Ground connection ^[30]
13	IOHR	I	P1[0]	ISSP DATA ^[27] , I ² C SDA, SPI CLK ^[28]
14	IOHR	I	P1[2]	Driven Shield Output (optional)
15	IOHR	I	P1[4]	Optional external clock input (EXTCLK)
16	IOHR		P1[6]	
17	In	put	XRES	Active high external reset with internal pull-down ^[29]
18	I/O		P3[0]	
19	I/O	ı	P3[2]	
20	I/O		P4[0]	
21	I/O	ı	P4[2]	
22	I/O		P2[0]	
23	I/O		P2[2]	Driven Shield Output (optional)
24	I/O	ı	P2[4]	Driven Shield Output (optional)
25	IOH	ı	P0[0]	Driven Shield Output (optional)
26	IOH		P0[2]	Driven Shield Output (optional)
27	IOH		P0[4]	
28	IOH	ı	P0[6]	
29	Po	wer	V_{DD}	
30	IOH	I	P0[7]	
31	IOH		P0[3]	Integrating input
32	Po	wer	V_{SS}	Ground connection ^[30]
СР	Po	wer	V_{SS}	Center pad must be connected to ground

Figure 6. CY8C20437, CY8C20447/S, CY8C20467/S Device

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 25. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
- it must be electrically floated and not connected to any other signal.

 26. 28 GPIOs = 25 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
- 27. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.
- 28. Alternate SPI clock.
- 29. The internal pull down is 5KOhm.
- 30. All VSS pins should be brought out to one common GND plane.

48-pin QFN (31 Sensing Inputs)[31]

Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S [32]

Pin No.	Digital	Analog	Name	Description	Figure 7. CY8C20637, CY8C20647/S, CY8C20667/S Device V				
1			NC	No connection					# 4 4 4 4 4 4 4 4 4 8 % % 3° NC
2	I/O	ı	P2[7]					NO	
3	I/O	ı	P2[5]	Crystal output (XOut)				Al ,P2[7	31
4	I/O	-	P2[3]	Crystal input (XIn)				, XOut,P2[5	L 2/: ::
5	I/O	- 1	P2[1]				А	I , XIn ,P2[3	-
6	I/O	ı	P4[3]					Al ,P2[1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
7	I/O	ı	P4[1]					AI ,P4[3 AI ,P4[1	4
8	I/O	-	P3[7]					AI ,P4[1 AI ,P3[7	
9	I/O	- 1	P3[5]					AI ,P3[5	
10	I/O	- 1	P3[3]					AI ,P3[3	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
11	I/O	I	P3[1]]			Al P3[1	
12	IOHR	I	P1[7]	I ² C SCL, SPI SS]	AI ,I2 C	SCL, S] = 12 ²²
13	IOHR	ı	P1[5]	I ² C SDA, SPI MISO					
14			NC	No connection					SPI MSO, A1, P1[5] SPI CLK, A1, P1[3] CL, SPI MOSI, P1[1] CL, SPI MOSI, P1[1] AN EXTCLK, P1[4] A1, EXTCLK, P1[4]
15			NC	No connection					7. X. X. T. Y.
16	IOHR	ı	P1[3]	SPI CLK					0, A MOS A C L
17	IOHR		P1[1]	ISSP CLK ^[33] , I ² C SCL, SPI MOSI					MIS. SPICE
18	Pow	er	V_{SS}	Ground connection ^[36]					SPI SSPI A, S
19			NC	No connection					2C 5
20			NC	No connection					A, ISSP CLK, I2C SDA, SPI MSO, A1, P1[5] A, ISSP CLK, I2C SCL, SPI MOSI, P1[1] Vosa NC NC NC NC NC NC NC NC NC N
21	Pow	er	V_{DD}	Supply voltage					126 CLK
22	IOHR		P1[0]	ISSP DATA ^[33] , I ² C SDA, SPI CLK ^[34]					dS I dS
23	IOHR	ı	P1[2]	Driven Shield Output (optional)					SI '
24	IOHR	I	P1[4]	Optional external clock input (EXTCLK)					Ř Ř
25	IOHR	ı	P1[6]						
26	Inp	ut	XRES	Active high external reset with	1				
				internal pull-down ^[35]					
27	I/O	I	P3[0]						
28	I/O	ı	P3[2]						
29	I/O	I	P3[4]		Ġ	_	5		io
					Pin No.	Digital	Analog	Name	Description
30	I/O	ı	P3[6]		40	IOH	I	P0[6]	
31	I/O	ı	P4[0]		41	Pov	ver	V_{DD}	Supply voltage
32	I/O	ı	P4[2]		42			NC	No connection
33	I/O	ı	P2[0]		43			NC	No connection
34	I/O	ı	P2[2]	Driven Shield Output (optional)	44	IOH	I	P0[7]	
35	I/O	I	P2[4]	Driven Shield Output (optional)	45		•	NC	No connection
36			NC	No connection	46	IOH	I	P0[3]	Integrating input
37	IOH	I	P0[0]	Driven Shield Output (optional)	47	Pov	ver	V _{SS}	Ground connection ^{[36}
00	1011		DOIOI	Daires Objete of October (continued)	40	1011	1.	D0[4]	Late and the action of

 V_{SS} LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.

38

39

IOH I

Power

P0[1]

Integrating input

Center pad must be connected to ground

48

СР

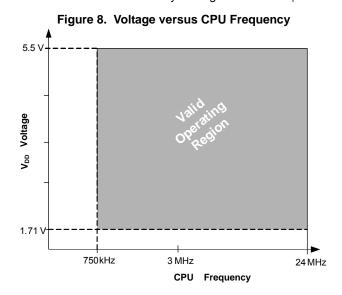
Driven Shield Output (optional)

- 31. The center pad (CP) on the QFN package must be connected to ground (V_{SS}) for best mechanical, thermal, and electrical performance. If not connected to ground, it must be electrically floated and not connected to any other signal.
 32. 34 GPIOs = 31 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 33. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.
- 34. Alternate SPI clock.

IOH

IOH

- 35. The internal pull down is 5KOhm.
- 36. All VSS pins should be brought out to one common GND plane.


P0[2]

P0[4]

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	– 55	+25	+125	°C
V_{DD}	Supply voltage relative to V _{SS}	-	-0.5	-	+6.0	V
V _{IO}	DC input voltage	-	V _{SS} – 0.5	_	$V_{DD} + 0.5$	V
V_{IOZ}	DC voltage applied to tristate	-	V _{SS} – 0.5	_	$V_{DD} + 0.5$	V
I _{MIO}	Maximum current into any port pin	-	-25	-	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	ı	ı	200	mA

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Conditions	Min	Тур	Max	Units
T _A	Ambient temperature	-	-40	_	+85	°C
T _C	Commercial temperature range	-	0		70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. See the Thermal Impedances on page 30. The user must limit the power consumption to comply with this requirement.	-4 0	-	+100	°C

DC Chip-Level Specifications

Table 9 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 9. DC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{DD} ^[37, 38, 39]	Supply voltage	See Table 14 on page 17.	1.71	_	5.50	V
I _{DD24}	Supply current, IMO = 24 MHz	Conditions are $V_{DD} \le 3.0$ V, T_A = 25 °C, CPU = 24 MHz. CapSense running at 12 MHz, no I/O sourcing current	-	2.88	4.00	mA
I _{DD12}	Supply current, IMO = 12 MHz	Conditions are $V_{DD} \le 3.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, CPU = 12 MHz. CapSense running at 12 MHz, no I/O sourcing current	_	1.71	2.60	mA
I _{DD6}	Supply current, IMO = 6 MHz	Conditions are $V_{DD} \le 3.0$ V, $T_A = 25$ °C, CPU = 6 MHz. CapSense running at 6 MHz, no I/O sourcing current	-	1.16	1.80	mA
I _{SB0} [40, 41, 42, 43]	Deep sleep current	$V_{DD} \le 3.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, I/O regulator turned off	-	0.10	1.1	μΑ
I _{SB1} [40, 41, 42, 43]	Standby current with POR, LVD and sleep timer	$V_{DD} \le 3.0 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$, I/O regulator turned off	_	1.07	1.50	μА
I _{SBI2C} [40, 41, 42, 43]	Standby current with I ² C enabled	Conditions are V_{DD} = 3.3 V, T_A = 25 °C and CPU = 24 MHz	_	1.64	-	μА

Notes

<sup>Notes
37. When V_{DD} remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SR_{POWER_UP} parameter.
38. If powering down in standby sleep mode, to properly detect and recover from a V_{DD} brown out condition any of the following actions must be taken:

a. Bring the device out of sleep before powering down.
b. Assure that V_{DD} falls below 100 mV before powering back up.
c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.
d. Increase the buzz rate to assure that the falling edge of V_{DD} is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows V_{DD} brown out conditions to be detected and resets the device when V_{DD} goes lower than 1.1 V at edge rates slower than 1 V/ms.
39. For proper CapSense block functionality, if the drop in V_{DD} exceeds 5% of the base V_{DD}, the rate at which V_{DD} drops should not exceed 200 mV/s. Base V_{DD} can</sup>

^{39.} For proper CapSense block functionality, if the drop in VDD exceeds 5% of the base VDD, the rate at which VDD drops should not exceed 200 mV/s. Base VDD can be between 1.8 V and 5.5 V.

^{40.} Errata: When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice. For more information, see the "Errata" on page 37.
41. Errata: When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run. For more information, see the "Errata" on page 37.

^{42.} Errata: If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed. For more information, see the "Errata" on page 37.

^{43.} Errata: Device wakes up from sleep when an analog interrupt is trigger. For more information, see the "Errata" on page 37.

Table 11. 2.4 V to 3.0 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} < 10 μ A, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH2}	High output voltage Port 2 or 3 Pins	I _{OH} = 0.2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.40	_	_	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for port 1	I _{OH} < 10 μA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.20	_	_	V
V _{OH4}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} - 0.50	_	_	V
V _{OH5A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I_{OH} < 10 μ A, V_{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.50	1.80	2.10	V
V _{OH6A}	High output voltage Port 1 pins with LDO enabled for 1.8 V out	I _{OH} = 1 mA, V _{DD} > 2.4 V, maximum of 20 mA source current in all I/Os	1.20	_	-	V
V _{OL}	Low output voltage	I _{OL} = 10 mA, maximum of 30 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.75	V
V _{IL}	Input low voltage	-	_	_	0.72	V
V _{IH}	Input high voltage	-	$V_{DD} \times 0.65$	_	V _{DD} + 0.7	V
V_{H}	Input hysteresis voltage	-	_	80	_	mV
I _{IL}	Input leakage (absolute value)	_	_	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent Temp = 25 °C	0.50	1.70	7	pF
V _{ILLVT2.5}	Input Low Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	0.7	V	_	
V _{IHLVT2.5}	Input High Voltage with low threshold enable set, Enable for Port1	Bit3 of IO_CFG1 set to enable low threshold voltage of Port1 input	1.2		_	V

Table 12. 1.71 V to 2.4 V DC GPIO Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{PU}	Pull-up resistor	-	4	5.60	8	kΩ
V _{OH1}	High output voltage Port 2 or 3 pins	I_{OH} = 10 μ A, maximum of 10 mA source current in all I/Os			-	V
V _{OH2}	High output voltage Port 2 or 3 pins	I _{OH} = 0.5 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	-	V
V _{OH3}	High output voltage Port 0 or 1 pins with LDO regulator Disabled for Port 1	I_{OH} = 100 μ A, maximum of 10 mA source current in all I/Os	V _{DD} – 0.20	-	-	V
V _{OH4}	High output voltage Port 0 or 1 Pins with LDO Regulator Disabled for Port 1	I _{OH} = 2 mA, maximum of 10 mA source current in all I/Os	V _{DD} – 0.50	-	_	V

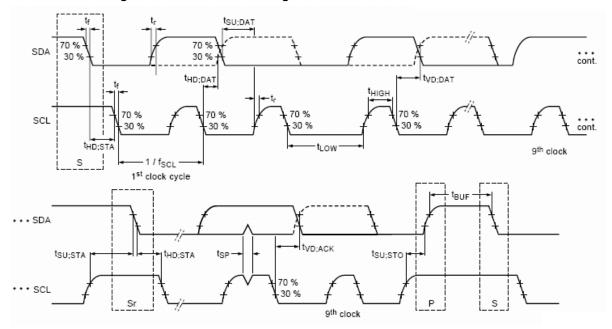

AC I²C Specifications

Table 29 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 29. AC Characteristics of the I²C SDA and SCL Pins

Symbol	Description		ndard ode	Fast Mode		Units
		Min	Max	Min	Max	
f _{SCL}	SCL clock frequency	0	100	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition. After this period, the first clock pulse is generated	4.0	_	0.6	-	μs
t_{LOW}	LOW period of the SCL clock	4.7	_	1.3	-	μs
t _{HIGH}	HIGH Period of the SCL clock	4.0	-	0.6	_	μs
t _{SU;STA}	Setup time for a repeated START condition	4.7	-	0.6	_	μs
t _{HD;DAT} [55]	Data hold time	20	3.45	20	0.90	μs
t _{SU;DAT}	Data setup time	250	-	100 ^[56]	_	ns
t _{SU;STO}	Setup time for STOP condition	4.0	-	0.6	_	μs
t _{BUF}	Bus free time between a STOP and START condition	4.7	_	1.3	_	μs
t _{SP}	Pulse width of spikes are suppressed by the input filter	-	_	0	50	ns

Figure 11. Definition for Timing for Fast/Standard Mode on the I²C Bus

Notes

Document Number: 001-69257 Rev. *O

 ^{55.} Errata: To wake up from sleep using I2C hardware address match event, I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL. For more information see item #5 in the "Errata" on page 37.
 56. A Fast-Mode I²C-bus device can be used in a standard mode I²C-bus system, but the requirement t_{SU:DAT} ≥ 250 ns must then be met. This automatically be the case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line t_{rmax} + t_{SU:DAT} = 1000 + 250 = 1250 ns (according to the Standard-Mode I²C-bus specification) before the SCL line is released.

Table 30. SPI Master AC Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{c} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	_ _	_ _	6 3	MHz MHz
DC	SCLK duty cycle	-	-	50	_	%
t _{SETUP}	MISO to SCLK setup time	$\begin{array}{c} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	60 100		_ _	ns ns
t _{HOLD}	SCLK to MISO hold time	-	40	_	_	ns
t _{OUT_VAL}	SCLK to MOSI valid time	_	_	_	40	ns
t _{OUT_H}	MOSI high time	_	40	-	-	ns

Figure 12. SPI Master Mode 0 and 2

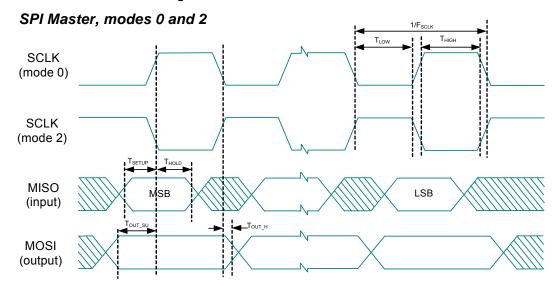
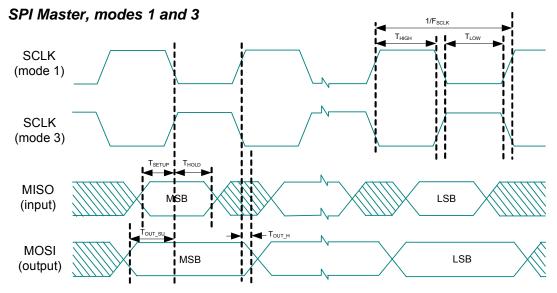



Figure 13. SPI Master Mode 1 and 3

Packaging Information

This section illustrates the packaging specifications for the CY8C20x37/47/67 PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

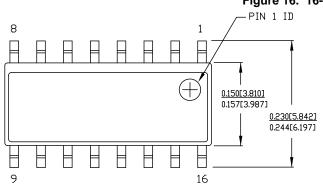


Figure 16. 16-pin (150 Mil) SOIC

NOTE:

- 1. DIMENSIONS IN INCHESIMM) MANK.
- 2. REFERENCE JEDEC MS-012
- 3. PACKAGE WEIGHT: refer to PMDD spec. 001-04308

PART #				
\$16.15	STANDARD PKG.			
SZ16.15	LEAD FREE PKG.			

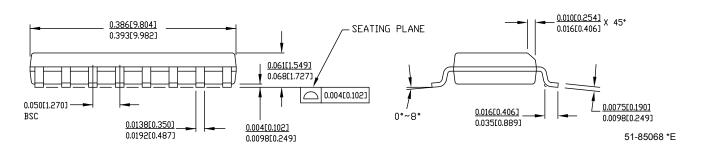
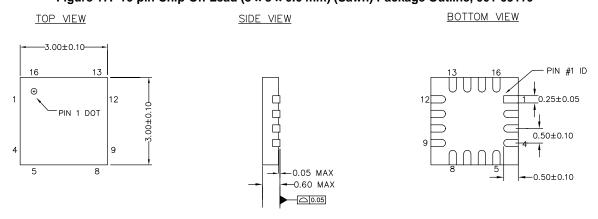



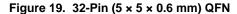
Figure 17. 16-pin Chip-On-Lead (3 x 3 x 0.6 mm) (Sawn) Package Outline, 001-09116

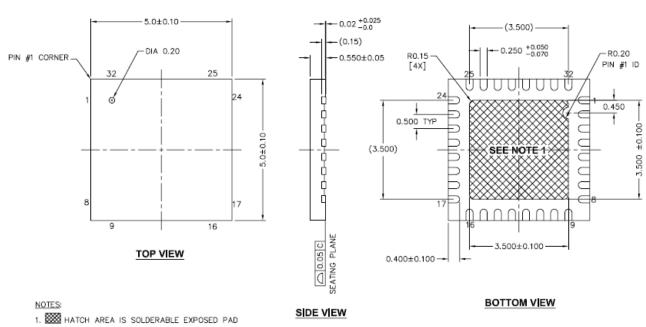
NOTES

1. REFERENCE JEDEC # MO-220

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-09116 *J




Figure 18. 24-Pin (4 \times 4 \times 0.6 mm) QFN SIDE VIEW TOP VIEW BOTTOM VIEW 4.00±0.10 24 19 PIN# 1 ID 18 0.50<u>+</u>0.05 PIN 1 DOT -2.65 ± 0.10 13 0.25<u>+</u>0.07 6 0.05 MAX 12 - 0.60 MAX -0.40±0.10 2.65±0.10 -0.08

NOTES:

- 1. HATCH IS SOLDERABLE EXPOSED METAL.
- 2. REFERENCE JEDEC # MO-248
- 3. PACKAGE WEIGHT: $29 \pm 3 \text{ mg}$
- 4. ALL DIMENSIONS ARE IN MILLIMETERS

001-13937 *F

- 2. BASED ON REF JEDEC # MO-248
- 3. PACKAGE WEIGHT: 0.0388g
- 4. DIMENSIONS ARE IN MILLIMETERS

001-42168 *E

Development Tool Selection

Software

PSoC Designer™

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is a Microsoft® Windows-based, integrated development environment for the Programmable System-on-Chip (PSoC) devices. The PSoC Designer IDE and application runs on Windows XP and Windows Vista.

This system provides design database management by project, in-system programming support, and built-in support for third-party assemblers and C compilers. PSoC Designer also supports C language compilers developed specifically for the devices in the PSoC family. PSoC Designer is available free of charge at

http://www.cypress.com/psocdesigner and includes a free C compiler.

PSoC Designer Software Subsystems

You choose a base device to work with and then select different onboard analog and digital components called user modules that use the PSoC blocks. Examples of user modules are ADCs, DACs, Amplifiers, and Filters. You configure the user modules for your chosen application and connect them to each other and to the proper pins. Then you generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration allows for changing configurations at run time. Code Generation Tools PSoC Designer supports multiple third-party C compilers and assemblers. The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. The choice is yours.

Assemblers. The assemblers allow assembly code to be merged seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all the features of C tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

PSoC Programmer

PSoC Programmer is flexible enough and is used on the bench in development and is also suitable for factory programming. PSoC Programmer works either as a standalone programming application or operates directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE Cube in-circuit Emulator and PSoC MiniProg. PSoC programmer is available free of cost at

http://www.cypress.com/psocprogrammer.

Development Kits

All development kits are sold at the Cypress Online Store.

Evaluation Tools

All evaluation tools are sold at the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC devices through the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC through a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-pin CY8C29466-24PXI PDIP PSoC device sample
- 28-pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

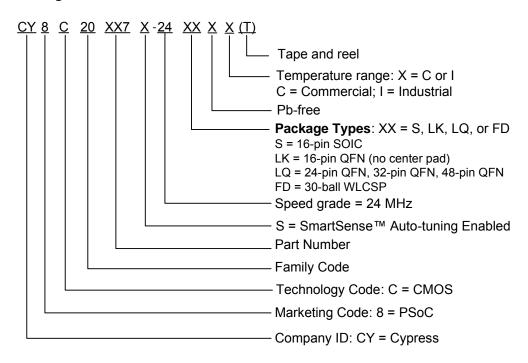

- Evaluation board with LCD module
- MiniProg programming unit
- Two 28-pin CY8C29466-24PXI PDIP PSoC device samples
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Table 35. PSoC Device Key Features and Ordering Information (continued)

Ordering Code	Package		SRAM (Bytes)	CapSense Sensors	Digital I/O Pins	Analog Inputs [59]	XRES Pin	ADC
CY8C20767-24FDXC	30-pin WLCSP	32 K	2 K	24	27	27	Yes	Yes
CY8C20767-24FDXCT	30-pin WLCSP (Tape and Reel)	32 K	2 K	24	27	27	Yes	Yes

Ordering Code Definitions

Acronyms

The following table lists the acronyms that are used in this document.

Table 36. Acronyms Used in this Document

Acronym	Description		
AC	alternating current		
ADC	analog-to-digital converter		
API	application programming interface		
CMOS	complementary metal oxide semiconductor		
CPU	central processing unit		
DAC	digital-to-analog converter		
DC	direct current		
ESD	electrostatic discharge		
FSR	full scale range		
GPIO	general purpose input/output		
I ² C	inter-integrated circuit		
ICE	in-circuit emulator		
ILO	internal low speed oscillator		
IMO	internal main oscillator		
I/O	input/output		
ISSP	in-system serial programming		
LCD	liquid crystal display		
LDO	low dropout (regulator)		
LED	light-emitting diode		
LPC	low power comparator		
LSB	least-significant bit		
LVD	low voltage detect		
MCU	micro-controller unit		
MIPS	million instructions per second		
MISO	master in slave out		
MOSI	master out slave in		
MSB	most-significant bit		
OCD	on-chip debug		
PCB	printed circuit board		
POR	power on reset		
PSRR	power supply rejection ratio		
PWRSYS	power system		
PSoC	programmable system-on-chip		
QFN	quad flat no-lead		
SCLK	serial I ² C clock		
SDA	serial I ² C data		
SDATA	serial ISSP data		
SOIC	small outline integrated circuit		
SPI	serial peripheral interface		
SRAM	static random access memory		
SS	slave select		
USB	universal serial bus		
WLCSP	wafer level chip scale package		

Reference Documents

- Technical reference manual for CY20xx7 devices
- In-system Serial Programming (ISSP) protocol for 20xx7
- Host Sourced Serial Programming for 20xx7 devices

Document Conventions

Units of Measure

Table 37 lists all the abbreviations used to measure the PSoC devices.

Table 37. Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
dB	decibel		
kHz	kilohertz		
ksps	kilo samples per second		
kΩ	kilohm		
MHz	megahertz		
μΑ	microampere		
μS	microsecond		
mA	milliampere		
mm	millimeter		
ms	millisecond		
mV	millivolt		
nA	nanoampere		
ns	nanosecond		
Ω	ohm		
%	percent		
pF	picofarad		
V	volt		
W	watt		

Document Number: 001-69257 Rev. *O

5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]

■Problem Definition

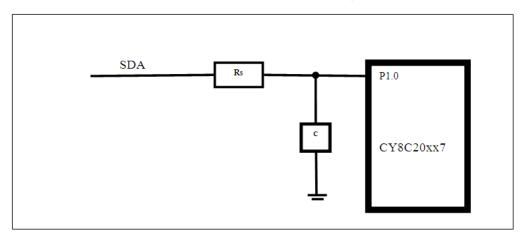
I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware address match event.

■Parameters Affected

 $t_{HD:DAT}$ increased to 20 ns from 0 ns

■Trigger Condition(S)

This is an issue only when all these three conditions are met:


- 1) P1.0 and P1.1 are used as I2C pins,
- 2) Wakeup from sleep with hardware address match feature is enabled, and
- 3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.

■Scope of Impact

These trigger conditions cause the device to never wake-up from sleep based on I2C address match event.

■Workaround

For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around. The R and C values proposed are 100 ohm and 200 pF respectively.

■Fix Status

Will not be fixed

■Changes

None

6. I2C Port Pin Pull-up Supply Voltage

■Problem Definition

Pull-up resistor on I2C interface cannot be connected to a supply voltage that is greater than 0.7 V of CY8C20xx7/S V_{DD}.

■Parameters Affected

None.

■Trigger Condition(S)

This problem occurs only when the I2C master is powered at a higher voltage than CY8C20xx7/S.

■Scope of Impact

This trigger condition will corrupt the I2C communication between the I2C host and the CY8C20xx7/S CapSense controller.

■Workaround

I2C master cannot be powered at a supply voltage that is greater than 0.7 V compared to CY8C20xx7/S supply voltage.

■Fix Status

Will not be fixed

■Changes

None

7. Port1 Pin Voltage

■Problem Definition

Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S V_{DD}.

■Parameters Affected

None.

■Trigger Condition(S)

This problem occurs only when port1 pins are at voltage 0.7 V higher than V_{DD} of CY8C20xx7/S.

■Scope of Impact

This trigger condition will not allow CY8C20xx7/S to drive the output signal on port1 pins, input path is unaffected by this condition.

■Workaround

Port1 should not be connected to a higher voltage than V_{DD} of CY8C20xx7/S.

■Fix Status

Will not be fixed

■Changes

None

Document History Page (continued)

Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense [™] Auto-tuning 31 Buttons, 6 Sliders, Proximit Sensors Document Number: 001-69257					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
*K	4248645	DST	01/16/2014	Updated Pinouts: Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Figure 6. Updated Packaging Information: spec 001-09116 – Changed revision from *H to *I.	
*[4404150	SLAN	06/10/2014	Updated Pinouts: Updated 16-pin SOIC (10 Sensing Inputs): Updated 16-pin SOIC (10 Sensing Inputs) 8 : Updated 16-pin QFN (10 Sensing Inputs) 8 : Updated 16-pin QFN (10 Sensing Inputs) 8 : Updated Table 2: Added Note 12 and referred the same note in description of XRES pin. Updated 24-pin QFN (16 Sensing Inputs)[14]: Updated Table 3: Added Note 18 and referred the same note in description of XRES pin. Updated 30-ball WLCSP (24 Sensing Inputs): Updated Table 4: Added Note 21 and referred the same note in description of XRES pin. Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Table 5: Added Note 29 and referred the same note in description of XRES pin. Updated 48-pin QFN (31 Sensing Inputs)[31]: Updated 48-pin QFN (31 Sensing Inputs)[31]: Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 10: Updated Electrical Specifications: Updated Table 10: Updated Table 11: Updated Table 11: Updated Table 124: Removed minimum and maximum values of V _{IH} parameter. Updated Table 24: Removed minimum and maximum values of "ILO untrimmed frequency". Updated Packaging Information: spec 001-09116 – Changed revision from *I to *J. Completing Sunset Review.	
*M	4825924	SLAN	07/07/2015	Added the footnote "All VSS pins should be brought out to one common GND plane" in pinout tables (Table 1 through Table 6). Updated Packaging Information: spec 001-13937 – Changed revision from *E to *F. Updated to new template.	
*N	5068999	ARVI	12/31/2015	Updated hyperlink of "Technical Reference Manual" in all instances across the document. Updated PSoC® Functional Overview: Updated Additional System Resources: Updated description. Updated Development Tool Selection: Removed "Accessories (Emulation and Programming)". Removed "Build a PSoC Emulator into Your Board".	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks & Buffers
Interface

Lighting & Power Control

Memory PSoC

Touch Sensing USB Controllers

Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.