

Welcome to **E-XFL.COM**

<u>Embedded - Microcontrollers - Application</u>
<u>Specific</u>: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers - Application Specific</u>?

Application enacific microcontrollars are anaineared to

Details	
Product Status	Active
Applications	Capacitive Sensing
Core Processor	M8C
Program Memory Type	FLASH (32kB)
Controller Series	CY8C20xx7/S
RAM Size	3K x 8
Interface	I ² C, SPI
Number of I/O	33
Voltage - Supply	1.71V ~ 5.5V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c20667s-24lqxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

PSoC® Functional Overview	4
PSoC Core	4
CapSense System	4
Additional System Resources	5
Getting Started	
Application Notes/Design Guides	
Development Kits	
Training	
CYPros Consultants	
Solutions Library	
Technical Support	5
Designing with PSoC Designer	
Select Components	6
Configure Components	6
Organize and Connect	6
Generate, Verify, and Debug	6
Pinouts	
16-pin SOIC (10 Sensing Inputs)	
16-pin QFN (10 Sensing Inputs)[9]	
24-pin QFN (16 Sensing Inputs)[15]	
30-ball WLCSP (24 Sensing Inputs)	
32-pin QFN (25 Sensing Inputs)[26]	
48-pin QFN (31 Sensing Inputs)[32]	
Electrical Specifications	
Absolute Maximum Ratings	
Operating Temperature	
DC Chip-Level Specifications	
DC GPIO Specifications	
DC Analog Mux Bus Specifications	
DC Low Power Comparator Specifications	
Comparator User Module Electrical Specifications .	
ADC Electrical Specifications	
DC POR and LVD Specifications	
DC Programming Specifications	
DC I2C Specifications	
Shield Driver DC Specifications	20

DC IDAC Specifications	20
AC Chip-Level Specifications	
AC General Purpose I/O Specifications	
AC Comparator Specifications	
AC External Clock Specifications	
AC Programming Specifications	23
AC I2C Specifications	
Packaging Information	27
Thermal Impedances	30
Capacitance on Crystal Pins	30
Solder Reflow Peak Temperature	30
Development Tool Selection	31
Software	31
Development Kits	
Evaluation Tools	
Device Programmers	32
Third Party Tools	32
Ordering Information	
Ordering Code Definitions	
Acronyms	
Reference Documents	
Document Conventions	
Units of Measure	
Numeric Naming	
Glossary	
Errata	
CY8C20xx7/S Qualification Status	
CY8C20xx7/S Errata Summary	
Document History Page	
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC® Solutions	
Cypress Developer Community	
Leconical Support	71

PSoC® Functional Overview

The PSoC family consists of many devices with on-chip controllers. These devices are designed to replace multiple traditional MCU-based system components with one low-cost single-chip programmable component. A PSoC device includes configurable blocks of analog and digital logic, and programmable interconnect. This architecture makes it possible for you to create customized peripheral configurations, to match the requirements of each individual application. Additionally, a fast central processing unit (CPU), flash program memory, SRAM data memory, and configurable I/O are included in a range of convenient pinouts.

The architecture for this device family, as shown in the "Logic Block Diagram" on page 2, consists of three main areas:

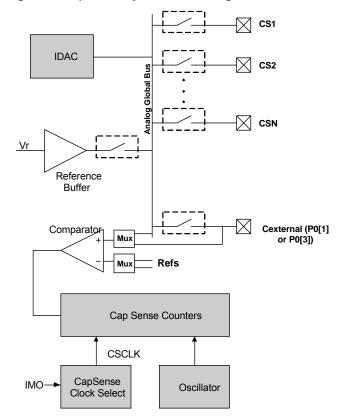
- The core
- CapSense analog system
- System resources

A common, versatile bus allows connection between I/O and the analog system.

Each CY8C20x37/47/67/S PSoC device includes a dedicated CapSense block that provides sensing and scanning control circuitry for capacitive sensing applications. Depending on the PSoC package, up to 34 GPIOs are also included. The GPIOs provide access to the MCU and analog mux.

PSoC Core

The PSoC core is a powerful engine that supports a rich instruction set. It encompasses SRAM for data storage, an interrupt controller, sleep and watchdog timers, and IMO and ILO. The CPU core, called the M8C, is a powerful processor with speeds up to 24 MHz. The M8C is a 4-million instructions per second (MIPS), 8-bit Harvard-architecture microprocessor.


CapSense System

The analog system contains the capacitive sensing hardware. Several hardware algorithms are supported. This hardware performs capacitive sensing and scanning without requiring external components. The analog system is composed of the CapSense PSoC block and an internal 1 V or 1.2 V analog reference, which together support capacitive sensing of up to 31 inputs^[2]. Capacitive sensing is configurable on each GPIO pin. Scanning of enabled CapSense pins is completed quickly and easily across multiple ports.

SmartSense™ Auto-tuning

SmartSense auto-tuning is an innovative solution from Cypress that removes manual tuning of CapSense applications. This solution is easy to use and provides robust noise immunity. It is the only auto-tuning solution that establishes, monitors, and maintains all required tuning parameters of each sensor during run time. SmartSense auto-tuning allows engineers to go from prototyping to mass production without retuning for manufacturing variations in PCB and/or overlay material properties.

Figure 1. CapSense System Block Diagram

Analog Multiplexer System

The analog mux bus can connect to every GPIO pin. Pins are connected to the bus individually or in any combination. The bus also connects to the analog system for analysis with the CapSense block comparator.

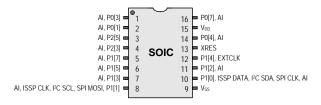
Switch-control logic enables selected pins to precharge continuously under hardware control. This enables capacitive measurement for applications such as touch sensing. Other multiplexer applications include:

- Complex capacitive sensing interfaces, such as sliders and touchpads.
- Chip-wide mux that allows analog input from any I/O pin.
- Crosspoint connection between any I/O pin combinations.

Note

2. 34 GPIOs = 31 pins for capacitive sensing+2 pins for $I^2C + 1$ pin for modulator capacitor.

Pinouts


The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every port pin (labeled with a "P") is capable of digital I/O and connection to the common analog bus. However, V_{SS}, V_{DD}, and XRES are not capable of digital I/O.

16-pin SOIC (10 Sensing Inputs)

Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI [3]

	Tubic 1: 1 iii Deliiiitiolis							
Pin	Ту	pe	Name	Description				
No.	Digital	Analog	Name	Description				
1	I/O	ı	P0[3]	Integrating Input				
2	I/O	I	P0[1]	Integrating Input				
3	I/O	I	P2[5]	Crystal output (XOut)				
4	I/O	I	P2[3]	Crystal input (XIn)				
5	I/O	I	P1[7]	I2C SCL, SPI SS				
6	I/O		P1[5]	I2C SDA, SPI MISO				
7	I/O		P1[3]					
8	I/O	I	P1[1]	ISSP CLK ^[4] , I ² C SCL, SPI MOSI				
9	Po	wer	V_{SS}	Ground connection ^[7]				
10	I/O	I	P1[0]	ISSP DATA ^[4] , I ² C SDA, SPI CLK ^[5]				
11	I/O		P1[2]	Driven Shield Output (optional)				
12	I/O	I	P1[4]	Optional external clock (EXTCLK)				
13	INPUT		XRES	Active high external reset with internal pull-down ^[6]				
14	I/O	I	P0[4]					
15	Po	wer	V_{DD}	Supply voltage				
16	I/O	I	P0[7]					

Figure 2. CY8C20237-24SXI, CY8C20247/S-24SXI **Device**

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 3. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.

 4. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.
- 5. Alternate SPI clock.
- The internal pull down is 5KOhm.
- 7. All VSS pins should be brought out to one common GND plane.

Document Number: 001-69257 Rev. *O

16-pin QFN (10 Sensing Inputs)[8]

Table 2. Pin Definitions - CY8C20237, CY8C20247/S [9]

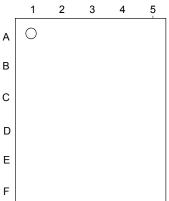
Pin	Ту	ре	Name	Description
No.	Digital	Analog	Name	Description
1	I/O	ı	P2[5]	Crystal output (XOut)
2	I/O	ı	P2[3]	Crystal input (XIn)
3	IOHR	I	P1[7]	I ² C SCL, SPI SS
4	IOHR	I	P1[5]	I ² C SDA, SPI MISO
5	IOHR	ı	P1[3]	SPI CLK
6	IOHR	I	P1[1]	ISSP CLK ^[10] , I ² C SCL, SPI MOSI
7	Power		V_{SS}	Ground connection ^[13]
8	IOHR	I	P1[0]	ISSP DATA ^[10] , I ² C SDA, SPI CLK ^[11]
9	IOHR	I	P1[2]	Driven Shield Output (optional)
10	IOHR	I	P1[4]	Optional external clock (EXTCLK)
11	In	put	XRES	Active high external reset with internal pull-down ^[12]
12	IOH	I	P0[4]	
13	Power		V_{DD}	Supply voltage
14	IOH	I	P0[7]	
15	IOH	I	P0[3]	Integrating input
16	IOH	ı	P0[1]	Integrating input

Figure 3. CY8C20237, CY8C20247/S Device AI, XOut, P2[5] P0[4], AI AI, XIn, P2[3] **XRES** AI, I2 C SCL, SPI SS, P1[7] = 3 (Top View) 10= P1[4], EXTCLK, AI AI, I2 C SDA, SPI MISO, P1[5] P1[2], AI AI, ISSP CLK, SPI MOSI, P1[13] ISSP DATA, I2C SDA, SPI CIK, P1[0]

LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.

Notes

- 8. No center pad.
 9. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.
 10. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.


 11. Alternate SPI clock.
- 12. The internal pull down is 5KOhm.
- 13. All VSS pins should be brought out to one common GND plane.

30-ball WLCSP (24 Sensing Inputs)

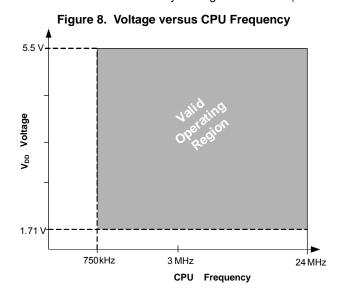
Table 4. Pin Definitions – CY8C20767, CY8C20747 30-ball Part Pinout (WLCSP) [20]

	Туре				
Pin No.	Digital	Analog	Name	Description	
A1	IOH	I	P0[2]	Driven Shield Output (optional)	
A2	IOH	I	P0[6]		
A3	Pow	er	V_{DD}	Supply voltage	
A4	IOH	ı	P0[1]	Integrating Input	
A5	I/O	I	P2[7]		
B1	I/O	I	P4[2]		
B2	IOH	I	P0[0]	Driven Shield Output (optional)	
B3	IOH	I	P0[4]		
B4	IOH	I	P0[3]	Integrating Input	
B5	I/O	I	P2[5]	Crystal Output (Xout)	
C1	I/O	I	P2[2]	Driven Shield Output (optional)	
C2	I/O	I	P2[4]	Driven Shield Output (optional)	
C3	I/O	I	P0[7]		
C4	IOH	I	P3[2]		
C5	I/O	I	P2[3]	Crystal Input (Xin)	
D1	I/O	ı	P2[0]		
D2	I/O	I	P3[0]		
D3	I/O	I	P3[1]		
D4	I/O	I	P3[3]		
D5	I/O	I	P2[1]		
E1	Inpu	ıt	XRES	Active high external reset with internal pull-down ^[21]	
E2	IOHR	I	P1[6]		
E3	IOHR	I	P1[4]	Optional external clock input (EXT CLK)	
E4	IOHR	I	P1[7]	I ² C SCL, SPI SS	
E5	IOHR	I	P1[5]	I ² C SDA, SPI MISO	
F1	IOHR	I	P1[2]	Driven Shield Output (optional)	
F2	IOHR	I	P1[0]	ISSP DATA ^[22] , I ² C SDA, SPI CLK ^[23]	
F3	Pow	er	V_{SS}	Supply ground ^[24]	
F4	IOHR	I	P1[1]	ISSP CLK ^[22] , I ² C SCL, SPI MOSI	
F5	IOHR	I	P1[3]	SPI CLK	
LEGEND:	A = Analog, I = Inp	out, O = Outpu	t, OH = 5 mA High	h Output Drive, R = Regulated Output	

^{20. 27} GPIOs = 24 pins for capacitive sensing+2 pins for I²C + 1 pin for modulator capacitor.

^{21.} The internal pull down is 5KOhm.

^{22.} On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I²C bus. Use alternate pins if you encounter issues.


^{23.} Alternate SPI clock.

^{24.} All VSS pins should be brought out to one common GND plane.

Electrical Specifications

This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.

Absolute Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Table 7. Absolute Maximum Ratings

Symbol	Description	Conditions	Min	Тур	Max	Units
T _{STG}	Storage temperature	Higher storage temperatures reduce data retention time. Recommended Storage Temperature is +25 °C ± 25 °C. Extended duration storage temperatures above 85 °C degrades reliability.	– 55	+25	+125	°C
V_{DD}	Supply voltage relative to V _{SS}	-	-0.5	-	+6.0	V
V _{IO}	DC input voltage	-	V _{SS} – 0.5	_	$V_{DD} + 0.5$	V
V_{IOZ}	DC voltage applied to tristate	-	V _{SS} – 0.5	_	$V_{DD} + 0.5$	V
I _{MIO}	Maximum current into any port pin	-	-25	-	+50	mA
ESD	Electro static discharge voltage	Human body model ESD	2000	-	-	V
LU	Latch up current	In accordance with JESD78 standard	ı	ı	200	mA

Operating Temperature

Table 8. Operating Temperature

Symbol	Description	Description Conditions		Тур	Max	Units
T _A	Ambient temperature	-	-40	_	+85	°C
T _C	Commercial temperature range	-	0		70	°C
TJ	Operational die temperature	The temperature rise from ambient to junction is package specific. See the Thermal Impedances on page 30. The user must limit the power consumption to comply with this requirement.	-4 0	-	+100	°C

Table 12. 1.71 V to 2.4 V DC GPIO Specifications (continued)

Symbol	Description	Conditions	Min	Тур	Max	Units
V _{OL}	Low output voltage	I _{OL} = 5 mA, maximum of 20 mA sink current on even port pins (for example, P0[2] and P1[4]) and 30 mA sink current on odd port pins (for example, P0[3] and P1[5])	-	-	0.40	V
V_{IL}	Input low voltage	-	-	_	0.30 × V _{DD}	V
V _{IH}	Input high voltage	-	0.65 × V _{DD}	_	-	V
V_{H}	Input hysteresis voltage	-	-	80	-	mV
I _{IL}	Input leakage (absolute value)	-	-	1	1000	nA
C _{PIN}	Capacitive load on pins	Package and pin dependent temp = 25 °C	0.50	1.70	7	pF

Table 13. GPIO Current Sink and Source Specifications

Supply Voltage	Mode	Port 0/1 per I/O (max)	Port 2/3/4 per I/O (max)	Total Current Even Pins (max) Total Current Odd Pins (max)		Units
1.71–2.4	Sink 5		5	20	30	mA
1.71-2.4	Source	2	0.5	10	mA	
2.4–3.0	Sink	10	10	30	30	mA
2.4–3.0	Source	2	0.2	10 ^[45]		mA
3.0–5.0	Sink	25	25	60	60	mA
3.0–5.0	Source	5	1	20 ^[45]		mA

DC Analog Mux Bus Specifications

Table 14 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 14. DC Analog Mux Bus Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
R _{SW}	Switch resistance to common analog bus	-	_	_	800	Ω
R _{GND}	Resistance of initialization switch to V _{SS}	-	_	_	800	Ω

The maximum pin voltage for measuring $\rm R_{SW}$ and $\rm R_{GND}$ is 1.8 $\rm V$

DC Low Power Comparator Specifications

Table 15 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 15. DC Comparator Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
V_{LPC}	Low power comparator (LPC) common mode	Maximum voltage limited to V _{DD}	0.2	1	1.8	V
I _{LPC}	LPC supply current	-	_	10	80	μΑ
V _{OSLPC}	LPC voltage offset	-	-	2.5	30	mV

Note

45. Total current (odd + even ports)

Document Number: 001-69257 Rev. *O

DC I²C Specifications

Table 20 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and $-40~^{\circ}\text{C} \le T_A \le 85~^{\circ}\text{C}$, $2.4~^{\circ}\text{C} \le T_A \le 85~^{\circ}\text{C}$, respectively. Typical parameters apply to 5 V and 3.3 V at 25 $^{\circ}\text{C}$ and are for design guidance only.

Table 20. DC I²C Specifications^[50]

Symbol	Description	Conditions	Min	Тур	Max	Units
		$3.1 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	-	_	$0.25 \times V_{DD}$	V
V _{ILI2C} Input lov	Input low level	$2.5 \text{ V} \le \text{V}_{DD} \le 3.0 \text{ V}$	-	_	0.3 × V _{DD}	V
		1.71 V ≤ V _{DD} ≤ 2.4 V	-	-	0.3 × V _{DD}	V
V _{IHI2C}	Input high level	1.71 V ≤ V _{DD} ≤ 5.5 V	0.65 × V _{DD}	-	V _{DD} + 0.7 V ^[51]	V

Shield Driver DC Specifications

Table 21 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C \leq T_A \leq 85 °C, 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, or 1.71 V to 2.4 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.

Table 21. Shield Driver DC Specifications

;	Symbol	Description	Conditions	Min	Тур	Max	Units
V_{Re}	ef	Reference buffer output	$1.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.942	-	1.106	V
V _{Re}	efHi	Reference buffer output	1.7 V ≤ V _{DD} ≤ 5.5 V	1.104	-	1.296	V

DC IDAC Specifications

Table 22 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 22. DC IDAC Specifications (8-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	Differential nonlinearity	– 1	_	1	LSB	-
IDAC_DNL	Integral nonlinearity	-2	_	2	LSB	-
IDAC_Current	Range = 4x	138	_	169	μA	DAC setting = 127 dec
IDAC_Current	Range = 8x	138	_	169	μΑ	DAC setting = 64 dec

Table 23. DC IDAC Specifications (7-bit IDAC)

Symbol	Description	Min	Тур	Max	Units	Notes
IDAC_DNL	NL Differential nonlinearity		_	1	LSB	_
IDAC_DNL	C_DNL Integral nonlinearity		_	2	LSB	_
IDAC Current	Range = 4x	137	_	168	μA	DAC setting = 127 dec
IDAC_Current	Range = 8x	138	_	169	μA	DAC setting = 64 dec

Notes

51. Errata: For more information see item #6 in the "Errata" on page 37.

Document Number: 001-69257 Rev. *O Page 20 of 45

^{50.} Errata: Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C20xx7/S power supply. For more information see item #6 in the "Errata" on page 37.

AC Chip-Level Specifications

Table 24 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.

Table 24. AC Chip-Level Specifications

Symbol	Description	Conditions	Min	Тур	Max	Units
F _{IMO24}	IMO frequency at 24 MHz Setting	-	22.8	24	25.2	MHz
F _{IMO12}	IMO frequency at 12 MHz setting	-	11.4	12	12.6	MHz
F _{IMO6}	IMO frequency at 6 MHz setting	-	5.7	6.0	6.3	MHz
F _{CPU}	CPU frequency	-	0.75	_	25.20	MHz
F _{32K1}	ILO frequency	-	15	32	50	kHz
F _{32K_U}	ILO untrimmed frequency	-	_	32	_	kHz
DC _{IMO}	Duty cycle of IMO	-	40	50	60	%
DC _{ILO}	ILO duty cycle	-	40	50	60	%
SR _{POWER_UP}	Power supply slew rate	V _{DD} slew rate during power-up	_	_	250	V/ms
t _{XRST}	External reset pulse width at power-up	After supply voltage is valid	1	_	_	ms
t _{XRST2}	External reset pulse width after power-up ^[52]	Applies after part has booted	10	_	_	μS
	6 MHz IMO cycle-to-cycle jitter (RMS)	-	-	0.7	6.7	ns
	6 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	_	4.3	29.3	ns
	6 MHz IMO period jitter (RMS)	-	_	0.7	3.3	ns
	12 MHz IMO cycle-to-cycle jitter (RMS)	-	_	0.5	5.2	ns
t _{JIT_IMO} ^[53]	12 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	_	2.3	5.6	ns
	12 MHz IMO period jitter (RMS)	-	_	0.4	2.6	ns
	24 MHz IMO cycle-to-cycle jitter (RMS)	_	_	1.0	8.7	ns
	24 MHz IMO long term N cycle-to-cycle jitter (RMS); N = 32	-	-	1.4	6.0	ns
	24 MHz IMO period jitter (RMS)	_	_	0.6	4.0	ns

Note
52. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23).
53. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.

Table 30. SPI Master AC Specifications

Symbol	Description	Description Conditions		Тур	Max	Units
F _{SCLK}	SCLK clock frequency	$\begin{array}{c} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	_ _	_ _	6 3	MHz MHz
DC	SCLK duty cycle	_	_	50	_	%
t _{SETUP}	MISO to SCLK setup time	$\begin{array}{c} V_{DD} \geq 2.4 \ V \\ V_{DD} < 2.4 \ V \end{array}$	60 100	_ _	_ _	ns ns
t _{HOLD}	SCLK to MISO hold time	_	40	_	_	ns
t _{OUT_VAL}	SCLK to MOSI valid time	_	_	_	40	ns
t _{OUT_H}	MOSI high time	_	40	_	-	ns

Figure 12. SPI Master Mode 0 and 2

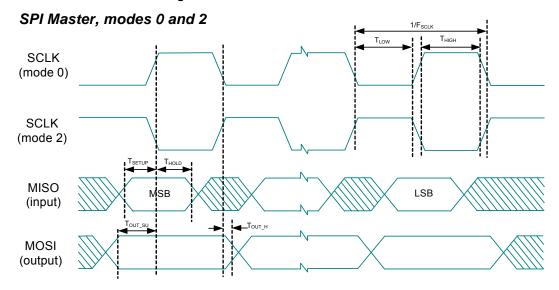
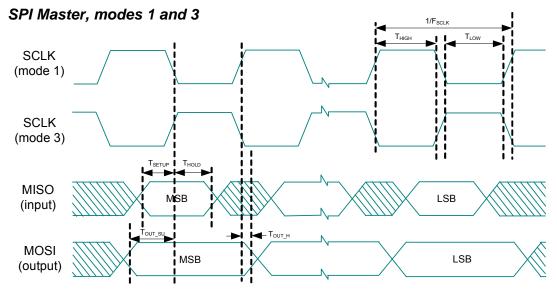



Figure 13. SPI Master Mode 1 and 3

Packaging Information

This section illustrates the packaging specifications for the CY8C20x37/47/67 PSoC device, along with the thermal impedances for each package.

Important Note Emulation tools may require a larger area on the target PCB than the chip's footprint. For a detailed description of the emulation tools' dimensions, refer to the document titled *PSoC Emulator Pod Dimensions* at http://www.cypress.com/design/MR10161.

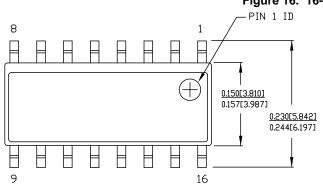


Figure 16. 16-pin (150 Mil) SOIC

NOTE:

- 1. DIMENSIONS IN INCHESIMM) MANK.
- 2. REFERENCE JEDEC MS-012
- 3. PACKAGE WEIGHT: refer to PMDD spec. 001-04308

PART #					
\$16.15	STANDARD PKG.				
SZ16.15	LEAD FREE PKG.				

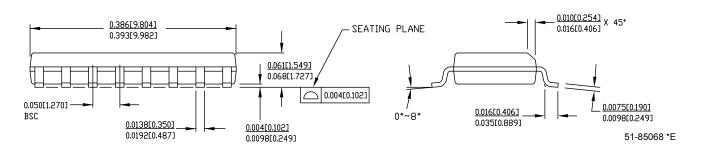
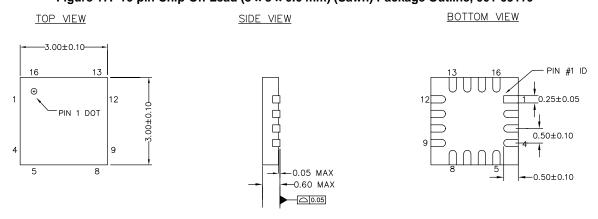



Figure 17. 16-pin Chip-On-Lead (3 x 3 x 0.6 mm) (Sawn) Package Outline, 001-09116

NOTES

1. REFERENCE JEDEC # MO-220

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-09116 *J

Device Programmers

All device programmers are purchased from the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg programming unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment.

CY3207ISSP In-System Serial Programmer (ISSP)

Note CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

Third Party Tools

Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.

Ordering Information

Table 35 lists the CY8C20x37/47/67/S PSoC devices' key package features and ordering codes.

Table 35. PSoC Device Key Features and Ordering Information

Ordering Code	Package	Flash (Bytes)	SRAM (Bytes)	CapSense Sensors	Digital I/O Pins	Analog Inputs [59]	XRES Pin	ADC
CY8C20237-24SXI	16-pin SOIC	8 K	1 K	10	13	13	Yes	Yes
CY8C20247S-24SXI	16-pin SOIC	16 K	2 K	10	13	13	Yes	Yes
CY8C20237-24LKXI	16-pin QFN	8 K	1 K	10	13	13	Yes	Yes
CY8C20237-24LKXIT	16-pin QFN (Tape and Reel)	8 K	1 K	10	13	13	Yes	Yes
CY8C20247S-24LKXI	16-pin QFN	16 K	2 K	10	13	13	Yes	Yes
CY8C20247S-24LKXIT	16-pin QFN (Tape and Reel)	16 K	2 K	10	13	13	Yes	Yes
CY8C20337-24LQXI	24-pin QFN	8 K	1 K	16	19	19	Yes	Yes
CY8C20337-24LQXIT	24-pin QFN (Tape and Reel)	8 K	1 K	16	19	19	Yes	Yes
CY8C20347-24LQXI	24-pin QFN	16 K	2 K	16	19	19	Yes	Yes
CY8C20347-24LQXIT	24-pin QFN (Tape and Reel)	16 K	2 K	16	19	19	Yes	Yes
CY8C20347S-24LQXI	24-pin QFN	16 K	2 K	16	19	19	Yes	Yes
CY8C20347S-24LQXIT	24-pin QFN (Tape and Reel)	16 K	2 K	16	19	19	Yes	Yes
CY8C20437-24LQXI	32-pin QFN	8 K	1 K	25	28	28	Yes	Yes
CY8C20437-24LQXIT	32-pin QFN (Tape and Reel)	8 K	1 K	25	28	28	Yes	Yes
CY8C20447-24LQXI	32-pin QFN	16 K	2 K	25	28	28	Yes	Yes
CY8C20447-24LQXIT	32-pin QFN (Tape and Reel)	16 K	2 K	25	28	28	Yes	Yes
CY8C20447S-24LQXI	32-pin QFN	16 K	2 K	25	28	28	Yes	Yes
CY8C20447S-24LQXIT	32-pin QFN (Tape and Reel)	16 K	2 K	25	28	28	Yes	Yes
CY8C20467-24LQXI	32-pin QFN	32 K	2 K	25	28	28	Yes	Yes
CY8C20467-24LQXIT	32-pin QFN (Tape and Reel)	32 K	2 K	25	28	28	Yes	Yes
CY8C20467S-24LQXI	32-pin QFN	32 K	2 K	25	28	28	Yes	Yes
CY8C20467S-24LQXIT	32-pin QFN (Tape and Reel)	32 K	2 K	25	28	28	Yes	Yes
CY8C20637-24LQXI	48-pin QFN	8 K	1 K	31	34	34	Yes	Yes
CY8C20637-24LQXIT	48-pin QFN (Tape and Reel)	8 K	1 K	31	34	34	Yes	Yes
CY8C20647-24LQXI	48-pin QFN	16 K	2 K	31	34	34	Yes	Yes
CY8C20647-24LQXIT	48-pin QFN (Tape and Reel)	16 K	2 K	31	34	34	Yes	Yes
CY8C20647S-24LQXI	48-pin QFN	16 K	2 K	31	34	34	Yes	Yes
CY8C20647S-24LQXIT	48-pin QFN (Tape and Reel)	16 K	2 K	31	34	34	Yes	Yes
CY8C20667-24LQXI	48-pin QFN	32 K	2 K	31	34	34	Yes	Yes
CY8C20667-24LQXIT	48-pin QFN (Tape and Reel)	32 K	2 K	31	34	34	Yes	Yes
CY8C20667S-24LQXI	48-pin QFN	32 K	2 K	31	34	34	Yes	Yes
CY8C20667S-24LQXIT	48-pin QFN (Tape and Reel)	32 K	2 K	31	34	34	Yes	Yes

Document Number: 001-69257 Rev. *O

Note 59. Dual-function Digital I/O Pins also connect to the common analog mux.

Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h', 'b', or 0x are decimal.

Glossary

Crosspoint connection Connection between any GPIO combination via analog multiplexer bus.

Differential non linearity Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly

one LSB apart. Differential non-linearity is a measure of the worst case deviation from the

ideal 1 LSB step.

Hold time Hold time is the time following a clock event during which the data input to a latch or flip-

flop must remain stable in order to guarantee that the latched data is correct.

It is a serial multi-master bus used to connect low speed peripherals to MCU.

Integral nonlinearity It is a term describing the maximum deviation between the ideal output of a DAC/ADC and

the actual output level.

Latch-up current Current at which the latch-up test is conducted according to JESD78 standard (at 125

degree Celsius)

Power supply rejection ratio (PSRR) The PSRR is defined as the ratio of the change in supply voltage to the corresponding

change in output voltage of the device.

Scan The conversion of all sensor capacitances to digital values.

Setup time Period required to prepare a device, machine, process, or system for it to be ready to

function.

Signal-to-noise ratio The ratio between a capacitive finger signal and system noise.

SPI Serial peripheral interface is a synchronous serial data link standard.

Errata

This section describes the errata for the CY8C20xx7/S family. Details include errata trigger conditions, scope of impact, available workaround, and silicon revision applicability.

Contact your local Cypress Sales Representative if you have questions.

CY8C20xx7/S Qualification Status

Product Status: Production released.

CY8C20xx7/S Errata Summary

The following Errata items apply to the CY8C20xx7/S datasheet 001-69257.

1. DoubleTimer0 ISR

■Problem Definition

When programmable timer 0 is used in "one-shot" mode by setting bit 1 of register 0,80h (PT0_CFG), and the timer interrupt is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.

■Scope of Impact

The ISR may be executed twice.

■Workaround

In the ISR, firmware should clear the one-shot bit with a statement such as "and req[B0h], FDh"

■Fix Status

Will not be fixed

■Changes

None

2. Missed GPIO Interrupt

■Problem Definition

When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the corresponding GPIO ISR not run.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.

■Scope of Impact

The GPIO interrupt service routine will not be run.

■Workaround

The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt. Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0. Alternatively, the ISR's for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system has attempted to generate a GPIO interrupt.

■Fix Status

Will not be fixed

■Changes

None

3. Missed Interrupt During Transition to Sleep

■Problem Definition

If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed.

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling sleep mode just prior to an interrupt.

■Scope of Impact

The relevant interrupt service routine will not be run.

■Workaround

None.

■Fix Status

Will not be fixed

■Changes

None

4. Wakeup from sleep with analog interrupt

■Problem Definition

Device wakes up from sleep when an analog interrupt is trigger

■Parameters Affected

No datasheet parameters are affected.

■Trigger Condition(S)

Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above

■Scope of Impact

Device unexpectedly wakes up from sleep

■Workaround

Disable the analog interrupt before entering sleep and turn it back on upon wake-up.

■Fix Status

Will not be fixed

■Changes

None

5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]

■Problem Definition

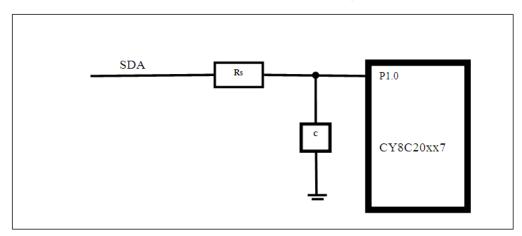
I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware address match event.

■Parameters Affected

 $t_{HD:DAT}$ increased to 20 ns from 0 ns

■Trigger Condition(S)

This is an issue only when all these three conditions are met:


- 1) P1.0 and P1.1 are used as I2C pins,
- 2) Wakeup from sleep with hardware address match feature is enabled, and
- 3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.

■Scope of Impact

These trigger conditions cause the device to never wake-up from sleep based on I2C address match event.

■Workaround

For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around. The R and C values proposed are 100 ohm and 200 pF respectively.

■Fix Status

Will not be fixed

■Changes

None

Document History Page (continued)

Document Sensors	Title: CY8C2	20xx7/S, 1.8	-	Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity
Revision	ECN	Orig. of Change	Submission Date	Description of Change
*K	4248645	DST	01/16/2014	Updated Pinouts: Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Figure 6. Updated Packaging Information: spec 001-09116 – Changed revision from *H to *I.
*[4404150	SLAN	06/10/2014	Updated Pinouts: Updated 16-pin SOIC (10 Sensing Inputs): Updated 16-pin SOIC (10 Sensing Inputs) 8 : Updated 16-pin QFN (10 Sensing Inputs) 8 : Updated 16-pin QFN (10 Sensing Inputs) 8 : Updated Table 2: Added Note 12 and referred the same note in description of XRES pin. Updated 24-pin QFN (16 Sensing Inputs)[14]: Updated Table 3: Added Note 18 and referred the same note in description of XRES pin. Updated 30-ball WLCSP (24 Sensing Inputs): Updated Table 4: Added Note 21 and referred the same note in description of XRES pin. Updated 32-pin QFN (25 Sensing Inputs)[25]: Updated Table 5: Added Note 29 and referred the same note in description of XRES pin. Updated 48-pin QFN (31 Sensing Inputs)[31]: Updated 48-pin QFN (31 Sensing Inputs)[31]: Updated Table 6: Added Note 35 and referred the same note in description of XRES pin. Updated Table 10: Updated Electrical Specifications: Updated Table 10: Updated Table 11: Updated Table 11: Updated Table 124: Removed minimum and maximum values of V _{IH} parameter. Updated Table 24: Removed minimum and maximum values of "ILO untrimmed frequency". Updated Packaging Information: spec 001-09116 – Changed revision from *I to *J. Completing Sunset Review.
*M	4825924	SLAN	07/07/2015	Added the footnote "All VSS pins should be brought out to one common GND plane" in pinout tables (Table 1 through Table 6). Updated Packaging Information: spec 001-13937 – Changed revision from *E to *F. Updated to new template.
*N	5068999	ARVI	12/31/2015	Updated hyperlink of "Technical Reference Manual" in all instances across the document. Updated PSoC® Functional Overview: Updated Additional System Resources: Updated description. Updated Development Tool Selection: Removed "Accessories (Emulation and Programming)". Removed "Build a PSoC Emulator into Your Board".

Document History Page (continued)

Document Title: CY8C20xx7/S, 1.8 V CapSense [®] Controller with SmartSense [™] Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors Document Number: 001-69257						
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
*0	5122184	JFMD	02/02/2016	Updated Features: Removed Note "Please contact your nearest sales office for additional details." and its reference. Updated Ordering Information: Updated Table 35: Updated part numbers.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive
Clocks & Buffers
Interface

Lighting & Power Control

Memory PSoC

Touch Sensing USB Controllers

Wireless/RF

cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2016. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.