

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	e200z2
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	CANbus, Ethernet, LINbus, SPI, UART/USART
Peripherals	DMA, LVD, POR, WDT
Number of I/O	-
Program Memory Size	1.5MB (1.5M x 8)
Program Memory Type	FLASH
EEPROM Size	32K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	3.3V, 5V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-TQFP Exposed Pad
Supplier Device Package	80-eTQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/spc572l64f2bc6ar

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.12.3	S/D ADC electrical specification
3.13	Tempe	rature sensor
3.14	LVDS F	Fast Asynchronous Serial Transmission (LFAST) pad electrical teristics 57
	3.14.1	LFAST interface timing diagrams58
	3.14.2	LFAST and MSC/DSPI LVDS interface electrical characteristics 59
3.15	Power	management: PMC, POR/LVD, sequencing
	3.15.1	Power management integration63
	3.15.2	Main voltage regulator electrical characteristics
	3.15.3	Device voltage monitoring65
	3.15.4	Power up/down sequencing
3.16	Flash n	nemory electrical characteristics 67
3.17	AC spe	cifications
	3.17.1	Debug and calibration interface timing
	3.17.2	DSPI timing with CMOS and LVDS pads
	3.17.3	FEC timing
	3.17.4	UART timing
	3.17.5	GPIO delay timing
Pack	age cha	aracteristics
4.1	ECOPA	ACK [®]
4.2	eTQFP	280 case drawing
4.3	eTQFP	950 case drawing
4.4	Therma	al characteristics
	4.4.1	General notes for specifications at maximum junction temperature 98
Orde	ring inf	ormation
Revis	sion his	tory

4

5

6

Feature	Description
SENT bus	4 channels
Ethernet	Yes
Zipwire (SIPI / LFAST) Interprocessor bus	High speed (4-phase only)
System timers	4 PIT channels 1 AUTOSAR [®] (STM) 64-bit PIT
GTM timer	16 input channels, 56 output channels
GTM RAM	18.53 KB
Interrupt controller	1024 sources
ADC (SAR)	3
ADC (SD)	1
Temperature sensor	Yes
PLL	Single PLL with no FM
Internal linear voltage regulator	1.2 V
External power supplies	5 V ⁽¹⁾ 3.3 V ⁽²⁾
Low-power modes	Stop mode Slow mode
Packages	eTQFP80 eTQFP100

Table 2. SPC572Lx device feature summary (continued)

1. The device can be powered up at 5 V only.

2. Optional: can be used for special I/O segments

1.4 Block diagram

Figure 1 and *Figure 2* show the top-level block diagrams.

Symbol		6	Paramotor	Conditions		Value		
Symbol			Farameter	Conditions	Min	Тур	Max	Unit
V _{IN}	SR	С	I/O input voltage range	_	0	—	5.5	V
			I	njection current				
I _{IC}	SR	Т	DC injection current (per pin) ^{(13),(14),(15)}	Digital pins and analog pins	-3.0	—	3.0	mA
IMAXSEG	SR	D	Maximum current per power segment ⁽¹⁶⁾	_	-80	—	80	mA

Table 9. Device operating conditions⁽¹⁾ (continued)

1. The ranges in this table are design targets and actual data may vary in the given range.

- 2. Maximum operating frequency is applicable to the core and platform for the device. See the Clocking chapter in the SPC572Lx Microcontroller Reference Manual for more information on the clock limitations for the various IP blocks on the device.
- 3. Core voltage as measured on device pin to guarantee published silicon performance.
- 4. During power ramp, voltage measured on silicon might be lower. Maximum performance is not guaranteed, but correct silicon operation is guaranteed. Refer to the Power Management and Reset Generation Module chapters in the SPC572Lx Microcontroller Reference Manual for further information.
- 5. The V_{DD HV PMC} supply providing power to the internal regulator is shorted with the V_{DD HV IO} supply within package.
- 6. LVD400 can be disabled by SW (always enabled after power-up).
- 7. Maximum voltage is not permitted for entire product life. See Absolute maximum rating.
- 8. When internal LVD/HVDs are disabled, external monitoring is required to guarantee correct device operation.
- Reduced output/input capabilities below 4.2 V. See performance operating values in I/O pad electrical characteristics. Not all functionality are guaranteed below 4.2 V. Please check specific supply constraints by module in *Table 9 (Device* operating conditions).
- 10. $V_{DD\ HV\ IO\ JTAG}$ supply is shorted with $V_{DD\ HV\ OSC}$ supply within package.
- 11. Flash read, program, and erase operations are supported for a minimum $V_{DD_{-}HV_{-}FLA}$ value of 3.0 V.
- 12. This voltage can be measured on the pin but is not supplied by an external regulator. The Power Management Controller generates PORs based on this voltage.
- 13. Full device lifetime without performance degradation
- 14. I/O and analog input specifications are only valid if the injection current on adjacent pins is within these limits. See the Absolute maximum ratings table for maximum input current for reliability requirements.
- 15. The I/O pins on the device are clamped to the I/O supply rails for ESD protection. When the voltage of the input pin is above the supply rail, current is injected through the clamp diode to the supply rail. For external RC network calculation, assume typical 0.3 V drop across the active diode. The diode voltage drop varies with temperature.
- Sum of all controller pins (including both digital and analog) must not exceed 150 mA. A V_{DD_HV_IO} power segment is defined as one or more GPIO pins located between two V_{DD_HV_IO} supply pins.

3.7 DC electrical specifications

The following table describes the DC electrical specifications.

Symbol		<u> </u>	Deremeter	Conditions(1)		Value ⁽²⁾		Unit
Symbo	JI	C	Parameter	Conditions	Min	Тур	Max	Unit
R _{OH_W}	СС	Р	PMOS output impedance weak configuration	4.5 V < V _{DD_HV_IO} < 5.5 V Push pull, I _{OH} < 0.5 mA	520	800	1040	Ω
R _{OL_W}	СС	Р	NMOS output impedance weak configuration	4.5 V < V _{DD_HV_IO} < 5.5 V Push pull, I _{OL} < 0.5 mA	520	800	1040	Ω
f _{MAX_W}	CC	Т	Output frequency	C _L = 25 pF ⁽³⁾		_	2	MHz
			weak configuration	C _L = 50 pF ⁽³⁾	—	—	1	
		D		C _L = 200 pF ⁽³⁾	—	—	0.25	
t _{TR_W}	СС	Т	Transition time output pin weak configuration ⁽⁴⁾	C _L = 25 pF, 4.5 V < V _{DD_HV_IO} < 5.5 V	40	_	120	ns
				C _L = 50 pF, 4.5 V < V _{DD_HV_IO} < 5.5 V	80	-	240	
		D		C _L = 200 pF, 4.5 V < V _{DD_HV_IO} < 5.5 V	320	-	820	
				C _L = 25 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	50	_	150	
				C _L = 50 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	100	—	300	
				C _L = 200 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	350	—	1050	
t _{skew_w}	СС	Т	Difference between rise and fall time	—		_	25	%
I _{DCMAX_W}	CC	D	Maximum DC current	—	_	—	4	mA
T _{PHL/PLH}	СС	D	Propagation delay	C _L = 25 pF, 4.5 V < V _{DD_HV_IO} < 5.9 V	—	-	120	ns
				C _L = 25 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V	_	—	150	
				C _L = 50 pF, 4.5 V < V _{DD_HV_IO} < 5.9 V	_	-	240	
				C_{L} = 50 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	_	-	300	

Table 14. WEAK	configuration	output buffer	electrical	characteristics
	oomigaration	output sunor	01000110001	0114140101101100

 All VDD_HV_IO conditions for 4.5V to 5.5V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0V to 3.6V are valid for VSIO[VSIO_xx] = 0

2. All values need to be confirmed during device validation.

3. C_L is the sum of external capacitance. Device and package capacitances (C_{IN} , defined in *Table 12*) are to be added to calculate total signal capacitance ($C_{TOT} = C_L + C_{IN}$).

4. Transition time maximum value is approximated by the following formula: 0 pF < C_L < 50 pFt_{TR_W}(ns) = 22 ns + C_L (pF) × 4.4 ns/pF

50 pF < C_L < 200 pFt_{TR_W}(ns) = 50 ns + C_L(pF) \times 3.85 ns/pF

5. Only for $V_{DD_HV_IO_JTAG}$ segment when VSIO[VSIO_IJ] = 0 or $V_{DD_HV_IO_ETH}$ segment when VSIO[VSIO_IF] = 0.

Table 15 shows the MEDIUM configuration output buffer electrical characteristics.

- 4. Transition time maximum value is approximated by the following formula: 0 pF < C_L < 50 pFt_{TR_M}(ns) = 5.6 ns + C_L(pF) × 1.11 ns/pF 50 pF < C_L < 200 pFt_{TR_M}(ns) = 13 ns + C_L(pF) × 0.96 ns/pF
- 5. Only for $V_{DD_HV_IO_JTAG}$ segment when VSIO[VSIO_IJ] = 0 or $V_{DD_HV_IO_ETH}$ segment when VSIO[VSIO_IF] = 0

Table 16 shows the STRONG configuration output buffer electrical characteristics.

Table 16. STRONG configuration	output buffer electrical	characteristics

Sumbo	.1	~	Doromotor	Conditions ⁽¹⁾	Value ⁽²⁾		Unit	
Symbo	Л	J	Parameter	Conditions.	Min	Тур	Max	Unit
R _{OH_S}	CC	Ρ	PMOS output impedance STRONG configuration	4.5 V < V _{DD_HV_IO} < 5.5 V Push pull, I _{OH} < 8 mA	30	50	65	Ω
R _{OL_S}	СС	Ρ	NMOS output impedance STRONG configuration	4.5 V < V _{DD_HV_IO} < 5.5 V Push pull, I _{OL} < 8 mA	30	50	65	Ω
f _{MAX_S}	СС	Т	Output frequency	C _L = 25 pF ⁽³⁾		—	40	MHz
			STRONG configuration	C _L = 50 pF ⁽³⁾	_	—	20	
				C _L = 200 pF ⁽³⁾	_	—	5	
t _{TR_S}	СС	Т	Transition time output pin STRONG configuration ⁽⁴⁾	C _L = 25 pF 4.5 V < V _{DD_HV_IO} < 5.5 V	2.5		10	ns
				C _L = 50 pF 4.5 V < V _{DD_HV_IO} < 5.5 V	3.5	—	16	
				C _L = 200 pF 4.5 V < V _{DD_HV_IO} < 5.5 V	13	—	50	
				$C_L = 25 \text{ pF},$ 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	4	_	15	
				C_{L} = 50 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	6	—	27	
				C _L = 200 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	20	—	83	
I _{DCMAX_S}	CC	D	Maximum DC current	—	—	_	10	mA
t _{skew_s}	CC	Т	Difference between rise and fall time	_	_	—	25	%

Symbo		c	Paramotor	or Conditions ⁽¹⁾ Value ⁽²⁾	Parameter Conditions ⁽¹⁾ Value ⁽²	Value ⁽²⁾		Conditions ⁽¹⁾		Unit
Symbo	,)	Falameter	Conditions	Min	Тур	Max	Onit		
T _{PHL/PLH}	СС	D	Propagation delay	C _L = 25 pF, 4.5 V < V _{DD_HV_IO} < 5.9 V	_	_	12	ns		
				C _L = 25 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V	_	_	18			
				C _L = 50 pF, 4.5 V < V _{DD_HV_IO} < 5.9 V	_	-	20			
				C_{L} = 50 pF, 3.0 V < V _{DD_HV_IO} < 3.6 V ⁽⁵⁾	—	—	36			

Table 16. STRONG configuration output buffer electrical characteristics (continued)

All V_{DD_HV_IO} conditions for 4.5 V to 5.5 V are valid for VSIO[VSIO_xx] = 1, and all specifications for 3.0 V to 3.6 V are valid for VSIO[VSIO_xx] = 0

2. All values need to be confirmed during device validation.

3. C_L is the sum of external capacitance. Device and package capacitances (C_{IN} , defined in *Table 12*) are to be added to calculate total signal capacitance ($C_{TOT} = C_L + C_{IN}$).

4. Transition time maximum value is approximated by the following formula: $t_{TR_S}(ns) = 4.5 \text{ ns} + C_L(pF) \times 0.23 \text{ ns/pF}$.

5. Only for V_{DD_HV_IO_JTAG} segment when VSIO[VSIO_IJ] = 0 or V_{DD_HV_IO_ETH} segment when VSIO[VSIO_IF] = 0

Table 17 shows the VERY STRONG configuration output buffer electrical characteristics.

Symbo		c	Baramatar	Conditions ⁽¹⁾		Value ⁽²⁾		Unit
Symbo	J	C	Falameter	Conditions	Min	Тур	Max	Unit
R _{OH_V}	CC	Ρ	PMOS output impedance VERY STRONG configuration	V _{DD_HV_IO} = 5.0 V ± 10%, VSIŌ[VSIO_xx] = 1, I _{OH} = 8 mA	20	40	60	Ω
		С		$V_{\text{DD} \ \text{HV} \ \text{IO}} = 3.3 \text{ V} \pm 10\%,$ VSIO[VSIO_xx] = 0, I _{OH} = 7 mA ⁽³⁾	30	50	75	
R _{OL_V}	СС	Ρ	NMOS output impedance VERY STRONG configuration	V _{DD_HV_IO} = 5.0 V ± 10%, VSIO[VSIO_xx] = 1, I _{OL} = 8 mA	20	40	60	Ω
		С		$V_{DD \ HV \ IO} = 3.3 V \pm 10\%,$ VSIO[VSIO xx] = 0, I _{OL} = 7 mA ⁽³⁾	30	50	75	
f _{MAX_V}	CC	Т	Output frequency VERY STRONG	$V_{DD_HV_IO} = 5.0 V \pm 10\%,$ $C_L = 25 \text{ pF}^{(4)}$	—	_	50	MHz
			configuration	VSIO[VSIO_xx] = 1, $C_L = 15 \text{ pF}^{(3),(4)}$	_	_	50	

Table 17. VERY STRONG configuration output buffer electrical characteristics

Symbol		6	Poromotor	Conditions	Value			Unit
Symb		0	Falameter	Conditions	Min	Тур	Max	Unit
I _{DYN_S}	СС	D	Dynamic I/O current for STRONG configuration	C _L = 25 pF, V _{DD} = 5.0 V ± 10%	—	_	50	mA
				C _L = 50 pF, V _{DD} = 5.0 V ± 10%		-	55	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%		-	22	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%		_	25	
I _{DYN_V}	СС	D	Dynamic I/O current for VERY STRONG configuration	C _L = 25 pF, V _{DD} = 5.0 V ± 10%		_	60	mA
				C _L = 50 pF, V _{DD} = 5.0 V ± 10%		_	64	
				C _L = 25 pF, V _{DD} = 3.3 V ± 10%		_	26	
				C _L = 50 pF, V _{DD} = 3.3 V ± 10%	_	—	29	

Table 18. I/O consumption⁽¹⁾ (continued)

1. I/O current consumption specifications for the 4.5 V <= $V_{DD_HV_IO}$ <= 5.5 V range are valid for VSIO_[VSIO_xx] = 1, and VSIO[VSIO_xx] = 0 for 3.0 V <= $V_{DD_HV_IO}$ <= 3.6 V.

2. Stated maximum values represent peak consumption that lasts only a few ns during I/O transition. When possible (timed output) it is recommended to delay transition between pads by few cycles to reduce noise and consumption.

3.10 Reset pad (PORST, ESR0) electrical characteristics

The device implements a dedicated bidirectional reset pin (PORST).

Note: \overrightarrow{PORST} pin does not require active control. It is possible to implement an external pull-up to ensure correct reset exit sequence. Recommended value is 4.7 k Ω .

						Value		
Sy	mbol		Parameter	Conditions	Min	Тур	Max	Unit
I _{OL_R}	CC	С	Strong pull-down current ⁽¹⁾	Device under power-on reset $V_{DD_HV_IO} = V_{DD_POR},$ $V_{OL} = 0.35 * V_{DD_HV_IO}$	0.2	_		mA
				_	_	_	_	_
				Device under power-on reset $3.0 V < V_{DD_HV_IO} < 5.5 V,$ $V_{OL} > 1.0 V$	12			mA
I _{WPU}	CC	Ρ	Weak pull-up current absolute value	ESR0 pin V _{IN} = 0.69 * V _{DD_HV_IO}	23	—	_	μA
				ESR0 pin V _{IN} = 0.49 * V _{DD_HV_IO}		—	82	
I _{WPD}	CC	Р	Weak pull-down current absolute value	PORST pin V _{IN} = 0.69 * V _{DD_HV_IO}	_	—	130	μA
				PORST pin V _{IN} = 0.49 * V _{DD_HV_IO}	40	—	_	
W _{FRST}	SR	Ρ	PORST and ESR0 input filtered pulse	—		—	500	ns
W _{NFRST}	SR	Ρ	PORST and ESR0 input not filtered pulse	_	2000	—	—	ns
W _{FNMI}	SR	Ρ	ESR1 input filtered pulse	—		—	15	ns
W _{NFNMI}	SR	Р	ESR1 input not filtered pulse	_	400	_		ns

Table 19.	Reset electrical	characteristics	(continued)
-----------	-------------------------	-----------------	-------------

I_{OL, R} applies to both PORST and ESR0: Strong pull-down is active on PHASE0 for PORST. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for ESR0.

PORST must be connected to an external power-on supply circuitry. Minimum requested circuitry is external pull-up to ensure device can exit reset.

Note: No restrictions exist on reset signal slew rate apart from absolute maximum rating compliance.

3.11 Oscillator and PLL

Single phase-locked loop (PLL) module with the reference PLL (PLL0) generating the system and auxiliary clocks from the main oscillator driver.

- 1. PLL0IN clock retrieved directly from either Internal RC Oscillator (IRCOSC) or External Oscillator (XOSC) clock. Input characteristics are granted when using XOSC.
- f_{PLL0IN} frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure PFD input signal is in the range of 8 MHz-20 MHz.
- V_{DD_LV} noise due to application in the range V_{DD_LV} = 1.25 V ± 5% with frequency below PLL bandwidth (40 kHz) is filtered.

Symbol		~	Deveneeter	Cond	141	Valu	е	Unit
Symbo)	C	Parameter	Cona	itions	Min	Max	Unit
f _{XTAL}	СС	D	Crystal frequency range ⁽¹⁾	-	_	4	8	MHz
				-	_	> 8	20	
				-	_	> 20	40	
t _{cst}	СС	Т	Crystal start-up time ⁽²⁾⁽³⁾	_	_		5	ms
t _{rec}	СС	Т	Crystal recovery time ⁽⁴⁾	-	_	_	0.5	ms
V _{IHEXT}	СС	D	EXTAL input high voltage (External Reference)	V _{REF} = 0.28 * V _{DD_HV_IO_JTAG}		V _{REF} + 0.6	—	V
V _{ILEXT}	СС	D	EXTAL input low voltage ⁽⁵⁾	V _{REF} = 0.28 * V _{DD_HV_IO_JTAG}			V _{REF} - 0.6	V
C _{S_EXTAL}	СС	Т	Total on-chip stray capacitance on EXTAL pin	_		_	2.5 + value from <i>Table 22</i>	pF
C _{S_XTAL}	СС	Т	Total on-chip stray capacitance on XTAL pin	-	_	_	2.5 + value from <i>Table 22</i>	pF
9 _m	СС	D	Oscillator Transconductance	$T_J = -40 \ ^{\circ}C$ to	f _{XTAL} ≤ _{8 MHz}	2.6	11.0	mA/V
		D		150 °C 4 5 V <	f _{XTAL} ≤ _{20 MHz}	7.9	26.0	
		D		V _{DD_HV_IO} < 5.5 V	f _{XTAL} ≤ _{40 MHz}	10.4	34.0	
I _{XTAL}	СС	D	XTAL current ⁽⁶⁾	T _J = 1	50 °C	—	14	mA
V _{HYS}	СС	D	Comparator Hysteresis	T _J = 1	50 °C	0.1	1.0	V

Table 21. External oscillator electrical specifications

1. The range is selectable by DCF record.

2. This value is determined by the crystal manufacturer and board design.

3. Proper PC board layout procedures must be followed to achieve specifications.

4. Crystal recovery time is the time for the oscillator to settle to the correct frequency after adjustment of the integrated load capacitor value.

5. Applies to an external clock input and not to crystal mode.

 I_{XTAL} is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded. Test circuit is shown in Figure 11.

Symbol		~	Devenueter	Conditions	Value		Unit
Symbol		C	Parameter	Conditions	Min	Max	Unit
I _{LK_INREF}	CC	С	Input leakage current, two ADC channels input with weak pull-up and weak pull-down and alternate reference	T _J < 40 °C, no current injection on adjacent pin		160	nA
		С		T _J < 150 °C, no current injection on adjacent pin	_	400	
I _{LK_INOUT}	СС	С	Input leakage current, two ADC channels input, GPIO output buffer with weak pull-up and weak pull-down	T _J < 40 °C, no current injection on adjacent pin	_	140	nA
		С		T _J < 150 °C, no current injection on adjacent pin	_	380	
I _{INJ}	СС	Т	Injection current on analog input preserving functionality	Applies to any analog pins	-3	3	mA
C _{HV_ADC}	SR	D	V _{DD_HV_ADV} external capacitance ⁽²⁾		1	2.2	μF
C _{P1}	CC	D	Pad capacitance	—	0	10	pF
C _{P2}	CC	D	Internal routing capacitance	SARn channels	0	0.5	pF
		D		SARB channels ⁽³⁾	0	1	
C _{P3}	СС	D	Internal routing capacitance	Only for SARB channels	0	1	pF
C _S	CC	D	SAR ADC sampling capacitance	—	6	8.5	pF
R _{SWn}	CC	D	Analog switches resistance	SARn channels	0	1.1	kΩ
		D		SARB channels ⁽⁴⁾	0	1.7	
R _{AD}	CC	D	ADC input analog switches resistance	_	0	0.6	kΩ
R _{CMSW}	CC	D	Common mode switch resistance	—	0	2.6	kΩ
R _{CMRL}	CC	D	Common mode resistive ladder	_	0	3.5	kΩ
R _{SAFEPD} ⁽⁴⁾	CC	D	Discharge resistance for AN7 channels (strong pull-down for safety)	_	0	300	W
Σl _{ADR}	CC	C+ P	Sum of ADC and S/D reference consumption	ADC enabled	—	40	μA

Table 24. ADC pin specification⁽¹⁾ (continued)

1. All specifications in this table valid for the full input voltage range for the analog inputs.

2. For noise filtering, add a high frequency bypass capacitance of 0.1 μF between $V_{DD_HV_ADV}$ and $V_{SS_HV_ADV}$.

3. Characteristics corresponding to fast SARn channels also apply to SARB fast channels (AN16, AN17 and AN24).

4. Safety pull-down is available for port pin PE[14]. It enables discharge of up to 100 nF from 5 V every 300 ms.

3.12.2 SAR ADC electrical specification

The SARn ADCs are 12-bit Successive Approximation Register analog-to-digital converters with full capacitive DAC. The SARn architecture allows input channel multiplexing.

Symbol		•	Parameter Conditions		Va	lue	Unit
Symbol		C	Parameter	Conditions	Min	Max	Unit
V _{ALTREF}	SR	Ρ	ADC alternate	V _{ALTREF} < V _{DD_HV_IO_MAIN}	4.5	5.5	V
		С	reference voltage	V _{ALTREF} < V _{DD_HV_ADV}	2.0	4.0	
		С			4.0	5.9	
V _{IN}	SR	D	ADC input signal	0 < V _{IN} < V _{DD_HV_IO_MAIN}	V _{SS_HV_ADR}	V _{DD_HV_ADR}	V
f _{ADCK}	SR	Ρ	Clock frequency	Т _Ј < 150 °С	7.5	14.6	MHz
t _{ADCPRECH}	SR	Т	ADC precharge time	Fast SAR—fast precharge	135	—	ns
				Fast SAR—full precharge	270	—	
				Slow SAR (SARADC_B) ⁽²⁾ — fast precharge	270	—	
				Slow SAR (SARADC_B) ⁽²⁾ — full precharge	540	—	
ΔV _{PRECH}	SR	D	ADC precharge voltage	Full precharge V _{PRECH} = V _{DD_HV_ADR} /2 T _J < 150 °C	-0.25	0.25	V
		D		Fast precharge V _{PRECH} = V _{DD_HV_ADR} /2 T _J < 150 °C	-0.5	0.5	V
ΔV _{INTREF}	СС	Ρ	Internal reference voltage precision	Applies to all internal reference points (V _{SS_HV_ADR} , 1/3 * V _{DD_HV_ADR} , 2/3 * V _{DD_HV_ADR} , V _{DD_HV_ADR})	-0.20	0.20	V
t _{ADCSAMPLE}	SR	Ρ	ADC sample time ⁽³⁾	Fast SAR – 12-bit configuration	0.750	—	μs
		D		Fast SAR – 10-bit configuration	0.555	—	
		Ρ		Slow SAR (SARADC_B) ⁽²⁾ – 12-bit configuration	1.500	—	
		D		Slow SAR (SARADC_B) ⁽²⁾ – 10-bit configuration	0.833	_]
t _{ADCEVAL}	SR	Ρ	ADC evaluation time	12-bit configuration (25 clock cycles)	1.712	_	μs
		D		10-bit configuration (21 clock cycles)	1.458	—	

Table 25. SARn ADC electrical specification⁽¹⁾

- 9. Extra bias current is present only when BIAS is selected. Apply only once for all ADCs.
- 10. Extended bench validation performed on 3 samples for each process corner.
- 11. This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to ± 6 LSB.

3.12.3 S/D ADC electrical specification

The SDn ADCs are Sigma Delta 16-bit analog-to-digital converters with 333 Ksps maximum output rate.

Symbol		^	Parameter Conditions			e	Unit	
Symbol		C	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IN}	SR	Ρ	ADC input signal	ADC input signal —		—	V _{DD_HV_ADR_} D	V
V _{IN_PK2PK} ⁽²⁾	SR	D	Input range peak to Single ended $V_{DD_HV_ADR}$ /GAIN peak $V_{INM} = V_{SS_HV_ADR}$		_R /GAIN	V		
		D	$V_{\text{INP}} = V_{\text{INP}}^{(3)}$	Single ended V _{INM} = 0.5*V _{DD_HV_ADR} GAIN = 1	$\pm 0.5^{*}V_{DD_{HV}ADR}$			
		D		Single ended V _{INM} = 0.5*V _{DD_HV_ADR} GAIN = 2,4,8,16	±V _{DD_HV_ADR} /GAIN			
		D		Differential, 0 < V _{IN} < V _{DD_HV_IO_MAIN}	:	±V _{DD_HV_} AI	_{DR} /GAIN	
f _{ADCD_M}	SR	Ρ	S/D modulator Input Clock	ut —		14.4	16	MHz
f _{IN}	SR	D	Input signal frequency	SNR = 80 dB f _{ADCD_S} = 150 kHz	0.01	—	50 ⁽⁵⁾	kHz
		D		SNR = 74 dB f _{ADCD_S} = 333 kHz	0.01	—	111 ⁽⁵⁾	
f _{ADCD_S}	SR	D	Output conversion rate	_	—	_	333	ksps
—	СС	D	Oversampling ratio	Internal modulator	24	—	256	_
				External modulator			256	_
RESOLUTION	СС	D	S/D register resolution ⁽⁶⁾	2's complement notation 16			bit	
GAIN	SR	D	ADC gain	Defined via ADC_SD[PGA] 1 register. Only integer powers of 2 are valid gain values.			16	

 Table 26. SDn ADC electrical specification⁽¹⁾

Symbol		c	Parameter Conditions			Value	9	Unit
		C		Conditions	Min	Тур	Max	Unit
δ _{GAIN}	CC	С	Absolute value of the ADC gain	Before calibration (applies to gain setting = 1)		—	1.5	%
		D		After calibration, ΔV _{DD_HV_ADR} < 5% ΔV _{DD_HV_ADV} < 10% ΔT _J < 50 °C	_	—	5	mV
				After calibration, ΔV _{DD_HV_ADR} < 5% ΔV _{DD_HV_ADV} < 10% ΔT _J < 100 °C	_	_	7.5	
			After calibration, ΔV _{DD_HV_ADR} < 5% ΔV _{DD_HV_ADV} < 10% ΔT _J < 150 °C		—	10		
V _{OFFSET}	CC	Ρ	Input Referred Offset Error ^{(7),(8),(9)}	Before calibration (applies to all gain settings – 1, 2, 4, 8, 16)		10* (1+1/gain)	20	mV
		D		After calibration, ΔV _{DD_HV_ADR} < 10% ΔT _J < 50 °C		—	5	
				After calibration, ΔV _{DD_HV_ADV} < 10% ΔT _J < 100 °C			7.5	
				After calibration, ΔV _{DD_HV_ADV} < 10% ΔT _J < 150 °C	0.5		10	

 Table 26. SDn ADC electrical specification⁽¹⁾ (continued)

Symbol		0	Parameter Conditions			Valu	e	Unit
Symbol		U	Parameter	Conditions	Min	Тур	Мах	Unit
t _{SETTLING}	СС	D	Settling time after mux change	Analog inputs are muxed HPF = ON	—	—	2*δ _{GROUP} + 3*f _{ADCD_} s	—
				HPF = OFF	—	—	2*δ _{GROUP} + 2*f _{ADCD_S}	—
todrecovery	СС	D	Overdrive recovery time	After input comes within range from saturation HPF = ON		—	2*δ _{GROUP} + f _{ADCD_S}	
				HPF = OFF	_		2*δ _{GROUP}	
C _{S_D}	CC	D	S/D ADC sampling	GAIN = 1, 2, 4, 8	—		75*GAIN	fF
		D	capacitance after sampling switch ⁽¹⁴⁾	GAIN = 16	—	—	600	fF
IBIAS	СС	D	Bias consumption	At least 1 ADCD enabled	—		3.5	mA
I _{ADV_D}	СС	Ρ	V _{DD_HV_ADV} power supply current (single S/D ADC)	S/D ADC Dynamic consumption	—	_	3.5	mA
I _{ADCS/D_REFH}	СС	Т	S/D ADC Reference High Current	Dynamic consumption (Conversion)	_	—	3.5	μA
		Т		Static consumption (Power down)	—	—	+8	

Table 26. SDn ADC electrical specification⁽¹⁾ (continued)

 Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

- 2. For input voltage above the maximum and below the clamp voltage of the input pad, there is no latch-up concern, and the signal will only be 'clipped'.
- 3. V_{INP} is the input voltage applied to the positive terminal of the SDADC.
- 4. V_{INM} is the input voltage applied to the negative terminal of the SDADC.
- 5. Maximum input of 166.67 kHz supported with reduced accuracy. See SNR specifications.
- 6. When using a GAIN setting of 16, the conversion result will always have a value of zero in the least significant bit. This gives an effective resolution of 15 bits.
- 7. Offset and gain error due to temperature drift can occur in either direction (+/-) for each of the SDADCs on the device.
- 8. Calibration of gain is possible when gain = 1. Offset Calibration should be done with respect to 0.5*V_{DD_HV_ADR} for *differential mode* and *single ended mode with negative input=0.5*V_{DD_HV_ADR}*. Offset Calibration should be done with respect to 0 for "single ended mode with negative input=0". Both offset and Gain Calibration is guaranteed for ±5% variation of V_{DD_HV_ADR}, ±10% variation of V_{DD_HV_ADV}, and ± 50 °C temperature variation.
- 9. Conversion offset error must be divided by the applied gain factor (1, 2, 4, 8, or 16) to obtain the actual input referred offset error.
- 10. This parameter is guaranteed by bench validation with a small sample of typical devices, and tested in production to a value of 6 dB less.
- 11. Impedance given at $f_{ADCD_M} = 16$ MHz. Impedance is inversely proportional to frequency: $Z_{DIFF}(f_{ADCD_M}) = 16$ MHz/ $f_{ADCD_M} * Z_{DIFF}$ $Z_{CM}(f_{ADCD_M}) = 16$ MHz/ $f_{ADCD_M} * Z_{CM}$
- 12. SNR values guaranteed only if external noise on the ADC input pin is attenuated by the required SNR value in the frequency range of f_{ADCD M} f_{ADCD S} to f_{ADCD M} + f_{ADCD S}, where f_{ADCD M} is the input sampling frequency, and f_{ADCD S} is the output sample frequency. A proper external input filter should be used to remove any interfering signals in this frequency range.
- 13. The $\pm 1\%$ passband ripple specification is equivalent to 20 * log₁₀ (0.99) = 0.087 dB.

Symbol C I		Paramotor	tor Conditions	Value ⁽²⁾			Unit	
Symbol		C	Falameter	Conditions	Min	Тур	Мах	Unit
t _{VDASSERT}	CC	D	Voltage detector threshold crossing assertion	_	0.1	—	2	μs
t _{vdrelease}	СС	D	Voltage detector threshold crossing de-assertion	_	5	_	20	μs

 Table 32. Voltage monitor electrical characteristics⁽¹⁾ (continued)

1. For V_{DD_LV} levels, a maximum of 30 mV IR drop is incurred from the pin to all sinks on the die. For other LVD, the IR drop is estimated by the multiplying the supply current by 0.5 Ω .

2. The threshold for all PORs and LVDs are defined when the output transits to 1, i.e., when the sense goes above the reference.

3. Across process, temperature and voltage range.

3.15.4 Power up/down sequencing

The following table shows the constraints and relationships for the different power supplies.

Table 33. Device supply relation during power-up/power-down sequence

		Supply 2 ⁽¹⁾						
		V _{DD_LV}	V _{DD_HV_IO}	V _{DD_HV_ADV}	$V_{DD_HV_ADR}$	ALTREF ⁽²⁾		
	V _{DD_LV}							
(1)	V _{DD_HV_IO}							
ply 1	V _{DD_HV_ADV}							
Sup	V _{DD_HV_ADR}			5 mA				
	ALTREF		10 mA ⁽³⁾	10 mA ⁽³⁾				

1. Grey cells: Supply 1 (row) can exceed Supply 2 (column), granted that external circuitry ensures current flowing from supply1 is less than absolute maximum rating current value provided.

 ALTREF are the alternate references for the ADC that can be used in place of the default reference (V_{DD_HV_ADR_*}). It is the SARB.ALTREF.

3. ADC performance is not guaranteed with ALTREFn above $V_{DD \ HV \ IO}/V_{DD \ HV \ ADV}$.

During power-up, all functional terminals are maintained into a known state as described in the following table.

Table 34. Functional terminals state during power-up and reset

TERMINAL ⁽¹⁾	POWER-UP ⁽²⁾ pad state	RESET pad state	Default pad state ⁽³⁾	Comments
PORST	Strong pull- down ⁽⁴⁾	Weak pull-down	Weak pull-down	Power-on reset pad
ESR0 ⁽⁵⁾	Strong pull-down	Strong pull-down	Weak pull-up	Functional reset pad

TERMINAL ⁽¹⁾	POWER-UP ⁽²⁾ pad state	RESET pad state	Default pad state ⁽³⁾	Comments			
ESR1	High impedance	Weak pull-down	Weak pull-down	—			
TEST_MODE	Weak pull-down	Weak pull-down ⁽⁶⁾	Weak pull-down ⁽⁶⁾	_			
GPIO	Weak pull-up ⁽⁴⁾	Weak pull-up	Weak pull-up	—			
ANALOG	High impedance	High impedance	High impedance	—			
ERROR	High impedance	High impedance	High impedance	—			
TRST	High impedance	Weak pull-down	Weak pull-down	—			
ТСК	High impedance	Weak pull-down	Weak pull-down	—			
TMS	High impedance	Weak pull-up	Weak pull-up	—			
TDI	High impedance	Weak pull-up	Weak pull-up	—			
TDO	High impedance	High impedance	High impedance	_			

Table 34. Functional terminals state during power-up and reset (continued)

1. Refer to pinout information for terminal type.

2. POWER-UP state is guaranteed from $V_{DD HV IO}$ > 1.1 V and maintained until supply crosses the power-on reset threshold: V_{PORUP_LV} for LV supply, V_{PORUP_HV} for high voltage supply.

3. Before software configuration.

4. Pull-down and pull-up strength are provided as part of Section 3.8.2, I/O output DC characteristics.

5. As opposed to ESR0, ESR1 is provided via normal GPIO and implements weak pull-up during power-up.

6. TESTMODE pull-down is implemented to prevent device to enter TESTMODE. It is recommended to connect TESTMODE pin to $V_{SS_HV_IO}$ on the board.

3.16 Flash memory electrical characteristics

The flash array access time for reads is affected by the number of wait-states added to the minimum time, which is one cycle.

Wait states are set in the RWSC field of the Platform Flash Configuration Register 1 (PFCR1) to a value corresponding to the operating frequency of the flash memory controller and the actual read access time of the flash memory controller. Higher operating frequencies require non-zero settings for this field for proper flash operation.

Shown below are the maximum operating frequencies (f_{sys}) for legal RWSC settings based on specified access times at 150 °C:

Flash operating frequency range (MHz)	RWSC
00 MHz < f _{sys} < 20 MHz	0
20 MHz < f _{sys} < 40 MHz	1
40 MHz < f _{sys} < 60 MHz	2
60 MHz < f _{sys} < 80 MHz	3

Table 35. RWSC settings

Table 36 shows the estimated Program/Erase characteristics.

3.17.1.2 Nexus interface timing

Table 39. Nexus de	bua port timina ⁽¹⁾
--------------------	--------------------------------

#	Symb	Symbol		Characteristic	Value		Unit
#	Synno	01	C	Characteristic		Max	Unit
7	t _{EVTIPW}	CC	D	EVTI pulse width	4	—	t _{CYC} ⁽²⁾
8	t _{EVTOPW}	СС	D	EVTO pulse width	40	-	ns
9	t _{TCYC}	СС	D	TCK cycle time	2 ^{(3),(4)}		$t_{CYC}^{(2)}$
9	t _{TCYC}	CC	D	Absolute minimum TCK cycle time ⁽⁵⁾ (TDO/TDOC sampled on posedge of TCK)	40 ⁽⁶⁾	_	ns
				Absolute minimum TCK cycle time ⁽⁷⁾ (TDO/TDOC sampled on negedge of TCK)	20 ⁽⁶⁾		
11 ⁽⁸⁾	t _{NTDIS}	CC	D	TDI/TDIC data setup time	5	_	ns

Date	Revision	Changes
18-May-2015	3 (cont.)	Table 28 (LVDS pad startup and receiver electrical characteristics): Replaced "C" with "T" in the characteristics column of I_{LVDS_BIAS} and I_{LVDS_RX} . Table 29 (LFAST transmitter electrical characteristics), and Table 30 (MSC/DSPI LVDS transmitter electrical characteristics): Replaced "C" with "T" in the characteristics column of I_{LVDS_TX} . Table 39 (Nexus debug port timing): Replaced "P" with "D" in the characteristics column of t_{EVTIPW} and t_{EVTOPW} . <i>Figure 18</i> (Voltage regulator capacitance connection): Updated the figure. Table 31 (Voltage regulator capacitance connection): Updated the figure. Table 32 (Collage regulator capacitance connection): Updated the conditions column of C _{DECBV and} C _{DECHV} . Changed the classification of $I_{MREGINT}$ from "P" to "D". Added "with full load" to note 0. Added "with full load" to note 7. Table 36 (Flash memory program and erase specifications (pending silicon characterization)): For tpsus, replaced lifetime max value of "20" WITH "30". For tpsus, replaced lifetime max value of "20" WITH "30". Table 41 (DSPI channel frequency support): Removed "Full duplex" from LVDS (Master mode). Table 41 (DSPI CMOS master classic timing (full duplex and output only) – MTFE = 0, CPHA = 0 or 1): Updated the minimum values of t _{CSC} .

Table 55. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID027866 Rev 5

