NXP USA Inc. - KMC8113TMP4800V Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	SC140 Core
Interface	Ethernet, I ² C, TDM, UART
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmc8113tmp4800v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin Assignments				
	1.1	FC-PBGA Ball Layout Diagrams4			
	1.2	Signal List By Ball Location7			
2	Elect	rical Characteristics			
	2.1	Maximum Ratings			
	2.2	Recommended Operating Conditions14			
	2.3	Thermal Characteristics14			
	2.4	DC Electrical Characteristics14			
	2.5	AC Timings			
3	Hard	ware Design Considerations			
	3.1	Start-up Sequencing Recommendations			
	3.2	Power Supply Design Considerations			
	3.3	Connectivity Guidelines			
	3.4	External SDRAM Selection			
	3.5	Thermal Considerations41			
4	Orde	ring Information			
5	Pack	age Information			
6	Produ	uct Documentation			
7	Revis	ion History			

List of Figures

Figure 1.	MSC8113 Block Diagram 3
Figure 2.	StarCore [®] SC140 DSP Extended Core Block Diagram . 3
Figure 3.	MSC8113 Package, Top View 5
Figure 4.	MSC8113 Package, Bottom View 6
Figure 5.	Overshoot/Undershoot Voltage for V_{IH} and $V_{\text{IL}},\ldots,$ 15
Figure 6.	Start-Up Sequence: V_{DD} and V_{DDH} Raised Together 16
Figure 7.	Start-Up Sequence: V _{DD} Raised Before V _{DDH} with CLKIN
	Started with V _{DDH} 17
Figure 8.	Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN} 17
Figure 9.	Timing Diagram for a Reset Configuration Write 21

Figure 10 Internal Tick Spacing for Memory Controller Signals 21
Figure 11 SILI Timing Diagram
Figure 12 CLKOLIT and CLKIN Signals 25
Figure 13 DMA Signals 26
Figure 14 Asynchronous Single- and Dual-Strobe Modes Read
Timing Diagram 27
Figure 15 Asynchronous Single- and Dual-Strobe Modes Write
Timing Diagram 28
Figure 16 Asynchronous Broadcast Write Timing Diagram
Figure 17 DSI Synchronous Mode Signals Timing Diagram
Figure 19 TDM Inpute Signals 71111119 Diagram
Figure 10 TDM Output Signals
Figure 19.1 DM Output Signals
Figure 20.0ART input filming
Figure 21.UART Output Timing
Figure 22. Timer Timing
Figure 23.MDIO Timing Relationship to MDC
Figure 24.MII Mode Signal Timing
Figure 25.RMII Mode Signal Timing
Figure 26.SMII Mode Signal Timing
Figure 27.GPIO Timing
Figure 28.EE Pin Timing
Figure 29.Test Clock Input Timing Diagram
Figure 30.Boundary Scan (JTAG) Timing Diagram
Figure 31.Test Access Port Timing Diagram
Figure 32.TRST Timing Diagram
Figure 33.Core Power Supply Decoupling
Figure 34.V _{CCSYN} Bypass
Figure 35.MSC8113 Mechanical Information, 431-pin FC-PBGA
Package

Notes: 1. The arrows show the data transfer direction.
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.

Figure 2. StarCore[®] SC140 DSP Extended Core Block Diagram

1.2 Signal List By Ball Location

 Table 1 presents signal list sorted by ball number.

```
Table 1. MSC8113 Signal Listing by Ball Designator
```

Des.	Signal Name	Des.	Signal Name		
B3	V _{DD}	C18	GPIO1/TIMER0/CHIP_ID1/IRQ5/ETHTXD1		
B4	GND	C19	GPIO7/TDM3RCLK/IRQ5/ETHTXD3		
B5	GND	C20	GPIO3/TDM3TSYN/IRQ1/ETHTXD2		
B6	NMI_OUT	C21	GPIO5/TDM3TDAT/IRQ3/ETHRXD3		
B7	GND	C22	GPIO6/TDM3RSYN/IRQ4/ETHRXD2		
B8	V _{DD}	D2	TDI		
B9	GND	D3	EE0		
B10	V _{DD}	D4	EE1		
B11	GND	D5	GND		
B12	V _{DD}	D6	V _{DDH}		
B13	GND	D7	HCID2		
B14	V _{DD}	D8	HCID3/HA8		
B15	GND	D9	GND		
B16	V _{DD}	D10	V _{DD}		
B17	GND	D11	GND		
B18	V _{DD}	D12	V _{DD}		
B19	GPIO0/CHIP_ID0/IRQ4/ETHTXD0	D13	GND		
B20	V _{DD}	D14	V _{DD}		
B21	V _{DD}	D15	V _{DD}		
B22	GND	D16	GPIO31/TIMER3/SCL		
C2	GND	D17	GPIO29/CHIP_ID3/ETHTX_EN		
C3	V _{DD}	D18	V _{DDH}		
C4	TDO	D19	GPIO4/TDM3TCLK/IRQ2/ETHTX_ER		
C5	SRESET	D20	V _{DDH}		
C6	GPIO28/UTXD/DREQ2	D21	GND		
C7	HCID1	D22	GPIO8/TDM3RDAT/IRQ6/ETHCOL		
C8	GND	E2	ТСК		
C9	V _{DD}	E3	TRST		
C10	GND	E4	TMS		
C11	V _{DD}	E5	HRESET		
C12	GND	E6	GPIO27/URXD/DREQ1		
C13	V _{DD}	E7	HCID0		
C14	GND	E8	GND		
C15	GND	E9	V _{DD}		
C16	GPIO30/TIMER2/TMCLK/SDA	E10	GND		
C17	GPIO2/TIMER1/CHIP_ID2/IRQ6	E11	V _{DD}		

Des.	Des. Signal Name		Signal Name		
M15	V _{DDH}	P12	V _{CCSYN}		
M16	HBRST	P13	GND		
M17	V _{DDH}	P14	GND		
M18	V _{DDH}	P15	TĀ		
M19	GND	P16	BR		
M20	V _{DDH}	P17	TEA		
M21	A24	P18	PSDVAL		
M22	A21	P19	DP0/DREQ1/EXT_BR2		
N2	HD26	P20	V _{DDH}		
N3	HD30	P21	GND		
N4	HD29	P22	A19		
N5	HD24	R2	HD18		
N6	PWE2/PSDDQM2/PBS2	R3	V _{DDH}		
N7	V _{DDH}	R4	GND		
N8	HWBS0/HDBS0/HWBE0/HDBE0	R5	HD22		
N9	HBCS	R6	HWBS6/HDBS6/HWBE6/HDBE6/PWE6/PSDDQM6/PBS6		
N10	GND	R7	HWBS4/HDBS4/HWBE4/HDBE4/PWE4/PSDDQM4/PBS4		
N14	GND	R8	TSZ1		
N15	HRDS/HRW/HRDE	R9	TSZ3		
N16	BG	R10	IRQ1/GBL		
N17	HCS	R11	V _{DD}		
N18	CSO	R12	V _{DD}		
N19	PSDWE/PGPL1	R13	V _{DD}		
N20	GPIO26/TDM0RDAT	R14	TT0/HA7		
N21	A23	R15	IRQ7/DP7/DREQ4		
N22	A20	R16	IRQ6/DP6/DREQ3		
P2	HD20	R17	IRQ3/DP3/DREQ2/EXT_BR3		
P3	HD27	R18	TS		
P4	HD25	R19	IRQ2/DP2/DACK2/EXT_DBG2		
P5	HD23	R20	A17		
P6	HWBS3/HDBS3/HWBE3/HDBE3	R21	A18		
P7	HWBS2/HDBS2/HWBE2/HDBE2	R22	A16		
P8	HWBS1/HDBS1/HWBE1/HDBE1	T2	HD17		
P9	HCLKIN	Т3	HD21		
P10	GND	T4	HD1/DSISYNC		
P11	GND _{SYN}	T5	HD0/SWTE		

Table 1. MSC8113 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
T6	HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7	U21	A12
T7	HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5	U22	A13
Т8	TSZ0	V2	HD3/MODCK1
Т9	TSZ2	V3	V _{DDH}
T10	TBST	V4	GND
T11	V _{DD}	V5	D0
T12	D16	V6	D1
T13	TT1	V7	D4
T14	D21	V8	D5
T15	D23	V9	D7
T16	IRQ5/DP5/DACK4/EXT_BG3	V10	D10
T17	IRQ4/DP4/DACK3/EXT_DBG3	V11	D12
T18	IRQ1/DP1/DACK1/EXT_BG2	V12	D13
T19	D30	V13	D18
T20	GND	V14	D20
T21	A15	V15	GND
T22	A14	V16	D24
U2	HD16	V17	D27
U3	HD19	V18	D29
U4	HD2/DSI64	V19	A8
U5	D2	V20	A9
U6	D3	V21	A10
U7	D6	V22	A11
U8	D8	W2	HD6
U9	D9	W3	HD5/CNFGS
U10	D11	W4	HD4/MODCK2
U11	D14	W5	GND
U12	D15	W6	GND
U13	D17	W7	V _{DDH}
U14	D19	W8	V _{DDH}
U15	D22	W9	GND
U16	D25	W10	HDST1/HA10
U17	D26	W11	HDST0/HA9
U18	D28	W12	V _{DDH}
U19	D31	W13	GND
U20	V _{DDH}	W14	HD40/D40/ETHRXD0

Table 1. MSC8113 Signal Listing by Ball Designator (continued)

rical Characteristics

2.2 Recommended Operating Conditions

Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.

Rating	Symbol	Value	Unit
Core and PLL supply voltage:	V _{DD} V _{CCSYN}	1.07 to 1.13	V
I/O supply voltage	V _{DDH}	3.135 to 3.465	V
Input voltage	V _{IN}	–0.2 to V _{DDH} +0.2	V
Operating temperature range:	TJ	-40 to 105	°C

Table 3. Recommended Operating Conditions

2.3 Thermal Characteristics

 Table 4 describes thermal characteristics of the MSC8113 for the FC-PBGA packages.

Symbol		FC-PBGA 20 × 20 mm ⁵		
Symbol	Natural Convection	200 ft/min (1 m/s) airflow	Unit	
$R_{ extsf{ heta}JA}$	26	21	°C/W	
$R_{ extsf{ heta}JA}$	19	15	°C/W	
$R_{\theta JB}$	9		°C/W	
R _{θJC}	0.9		°C/W	
Ψ_{JT}	1		°C/W	
n-chip power dissip rer dissipation of o ne single layer boa nted circuit board p te top surface as r ne temperature dif	pation, package thermal other components on the ard horizontal. per JEDEC JESD 51-8. I measured by the cold pla ference between packad	resistance, mounting si board, and board therm Board temperature is me ate method (MIL SPEC-4 ge top and the junction t	te (board) hal easured on 883 Method emperature	
= 	$\frac{R_{\theta JA}}{R_{\theta JB}}$ $\frac{R_{\theta JB}}{\Psi_{JT}}$ $\frac{\Psi_{JT}}{\Psi_{JT}}$ $\frac{\Psi_{TT}}{\Psi_{TT}}$	Natural Convection $R_{\theta,JA}$ 26 $R_{\theta,JA}$ 19 $R_{\theta,JB}$ 9 $R_{\theta,JC}$ 0.9 Ψ_{JT} 1 -chip power dissipation, package thermal er dissipation of other components on the e single layer board horizontal. e top surface as measured by the cold plate e temperature difference between package	Natural Convection200 ft/min (1 m/s) airflow $R_{\theta,JA}$ 2621 $R_{\theta,JA}$ 1915 $R_{\theta,JB}$ 99 $R_{\theta,JC}$ 0.99 Ψ_{JT} 1-chip power dissipation, package thermal resistance, mounting si er dissipation of other components on the board, and board therme single layer board horizontal.e top surface as measured by the cold plate method (MIL SPEC-4)e temperature difference between package top and the junction t	

Table 4. Thermal Characteristics for the MSC8113

Section 3.5, *Thermal Considerations* provides a detailed explanation of these characteristics.

2.4 DC Electrical Characteristics

This section describes the DC electrical characteristics for the MSC8113. The measurements in **Table 5** assume the following system conditions:

- $T_A = 25 \ ^{\circ}C$
- $V_{DD} = 1.1 \text{ V nominal} = 1.07 1.13 \text{ V}_{DC}$
- $V_{\text{DDH}} = 3.3 \text{ V} \pm 5\% \text{ V}_{DC}$
- GND = $0 V_{DC}$

Note: The leakage current is measured for nominal V_{DDH} and V_{DD} .

rical Characteristics

Table 7.	Maximum	Frequencies
----------	---------	-------------

Characteristic	Maximum in MHz		
Internal bus frequency (BLCK)	100/133		
 DSI clock frequency (HCLKIN) Core frequency = 300 MHz Core frequency = 400 MHz 	HCLKIN ≤ (min{70 MHz, CLKOUT}) HCLKIN ≤ (min{100 MHz, CLKOUT})		
External clock frequency (CLKIN or CLKOUT)	100/133		

Table 8. Clock Frequencies

	Symbol	300 MF	Iz Device	400 MHz Device		
Characteristics		Min	Мах	Min	Max	
CLKIN frequency	F _{CLKIN}	20	100	20	133.3	
BCLK frequency	F _{BCLK}	40	100	40	133.3	
Reference clock (REFCLK) frequency	F _{REFCLK}	40	100	40	133.3	
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	100	40	133.3	
SC140 core clock frequency	F _{CORE}	200	300	200	400	
Note: The rise and fall time of external clocks should be 3 ns maximum						

Table 9. System Clock Parameters

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	—	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	—	3	ns
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
300 MHz core		1200	MHz
400 MHz core		1600	MHz
CLKOUT frequency jitter ¹	—	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps.	—	500	ps
Notes:1.Peak-to-peak.2.Not tested. Guaranteed by design.			

2.5.4 Reset Timing

The MSC8113 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8113 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 10** describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8113 and configures various attributes of the MSC8113. On PORESET, the entire MSC8113 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
Extern <u>al hard</u> reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8113. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in <i>Hard Reset Configuration Word</i> section of the <i>Reset</i> chapter in the <i>MSC8113 Reference Manual</i> .
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8113 detects an external assertion of SRESET only if it occurs while the MSC8113 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8113 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8113 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

Table 11 summarizes the reset actions that occur as a result of the different reset sources.

Table 11. R	Reset Actions	for Each	Reset Source	;
-------------	---------------	----------	---------------------	---

Poset Action/Poset Source	Power-On <u>Reset</u> (PORESET)	Hard Reset (HRESET)	Soft	Reset (SRESET)
	External only	External or Internal (Software Watchdog or Bus Monitor)	External	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (Refer to Section 2.5.4.1 for details).	Yes	No	No	No
SPLL state reset	Yes	No	No	No
System reset configuration write through the DSI	Yes	No	No	No
System reset configuration write though the system bus	Yes	Yes	No	No
HRESET driven	Yes	Yes	No	No
SIU registers reset	Yes	Yes	No	No
IPBus modules reset (TDM, UART, Timers, DSI, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes
SRESET driven	Yes	Yes	Yes	Depends on command
SC140 extended cores reset	Yes	Yes	Yes	Yes
MQBS reset	Yes	Yes	Yes	Yes

2.5.4.1 Power-On Reset (PORESET) Pin

Asserting $\overline{\text{PORESET}}$ initiates the power-on reset flow. $\overline{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after V_{DD} and V_{DDH} are both at their nominal levels.

rical Characteristics

2.5.4.2 Reset Configuration

The MSC8113 has two mechanisms for writing the reset configuration:

- Through the direct slave interface (DSI)
- Through the system bus. When the reset configuration is written through the system bus, the MSC8113 acts as a configuration master or a configuration slave. If configuration slave is selected, but no special configuration word is written, a default configuration word is applied.

Fourteen signal levels (see **Chapter 1** for signal description details) are sampled on **PORESET** deassertion to define the Reset Configuration Mode and boot and operating conditions:

- RSTCONF
- CNFGS
- DSISYNC
- DSI64
- CHIP_ID[0-3]
- BM[0-2]
- SWTE
- MODCK[1-2]

2.5.4.3 Reset Timing Tables

Table 12 and Figure 9 describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum • CLKIN = 20 MHz • CLKIN = 100 MHz (300 MHz core) • CLKIN = 133 MHz (400 MHz core)	16/CLKIN	800 160 120		ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 133 MHz	1024/CLKIN	6.17	51.2	μs
3	 Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 100 MHz (RDF = 1) (300 MHz core) CLKIN = 133 MHz (RDF = 2) (400 MHz core) 	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 64 96	320 64 96	μs μs
5	Delay from SPLL to HRESET deassertion • REFCLK = 40 MHz to 133 MHz	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion • REFCLK = 40 MHz to 133 MHz	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of PORESET		3		ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2]		5		ns
Note:	Timings are not tested, but are guaranteed by design.				

Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

Figure 9. Timing Diagram for a Reset Configuration Write

2.5.5 System Bus Access Timing

2.5.5.1 Core Data Transfers

Generally, all MSC8113 bus and system output signals are driven from the rising edge of the reference clock (REFCLK). The REFCLK is the CLKIN signal. Memory controller signals, however, trigger on four points within a REFCLK cycle. Each cycle is divided by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising edge of REFCLK (and T3 at the falling edge), but the spacing of T2 and T4 depends on the PLL clock ratio selected, as **Table 13** shows.

Table 13. Tick Spacing for Memory	y Controller Signals
-----------------------------------	----------------------

PCI K/SC140 alaak	Tick Spacing (T1 Occurs at the Rising Edge of REFCLK)					
BCER/SC140 CIOCK	T2	Т3	T4			
1:4, 1:6, 1:8, 1:10	1/4 REFCLK	1/2 REFCLK	3/4 REFCLK			
1:3	1/6 REFCLK	1/2 REFCLK	4/6 REFCLK			
1:5	2/10 REFCLK	1/2 REFCLK	7/10 REFCLK			

Figure 10 is a graphical representation of Table 13.

2.5.5.2 CLKIN to CLKOUT Skew

Table 17 describes the CLKOUT-to-CLKIN skew timing.

No.	Characteristic	Min ¹	Max ¹	Units
20	Rise-to-rise skew	0.0	0.95	ns
21	Fall-to-fall skew	-1.5	1.0	ns
23	CLKOUT phase (1.1 V, 133 MHz) • Phase high • Phase low	2.2 2.2		ns ns
24	CLKOUT phase (1.1 V, 100 MHz) Phase high Phase low 	3.3 3.3		ns ns
Notes:	 A positive number indicates that CLKOUT precedes CLKIN, A negative num Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. CLKOUT skews are measured using a load of 10 pF. CLKOUT skews and phase are not measured for 500/166 Mbz parts becautive for	nber indicates that C The same skew is v	LKOUT follows CLK valid for all clock mod	.IN. Jes.

Table 16. CLKOUT Skew

For designs that use the CLKOUT synchronization mode, use the skew values listed in **Table 16** to adjust the rise-to-fall timing values specified for CLKIN synchronization. **Figure 12** shows the relationship between the CLKOUT and CLKIN timings.

Figure 12. CLKOUT and CLKIN Signals.

2.5.5.3 DMA Data Transfers

 Table 17 describes the DMA signal timing.

Table 17. DMA Signals

No.	Characteristic	Ref =	Unite	
		Min	Max	Units
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	_	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK	0.5	—	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK	5.0	—	ns
40	DONE hold time after the 50% level of the rising edge of REFCLK	0.5	_	ns
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	ns

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 17**. Figure 13 shows synchronous peripheral interaction.

Figure 14 shows DSI asynchronous read signals timing.

Notes: 1. Used for single-strobe mode access.

- **2.** Used for dual-strobe mode access.
- **3.** HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 14. Asynchronous Single- and Dual-Strobe Modes Read Timing Diagram

Figure 15 shows DSI asynchronous write signals timing.

Notes: 1. Used for single-strobe mode access.

- 2. Used for dual-strobe mode access.
- 3. HTA released at logic 0 (DCR[HTAAD] = 0) at end of access; used with pull-down implementation.
- 4. HTA released at logic 1 (DCR[HTAAD] = 1) at end of access; used with pull-up implementation.

Figure 15. Asynchronous Single- and Dual-Strobe Modes Write Timing Diagram

Figure 16 shows DSI asynchronous broadcast write signals timing.

Figure 16. Asynchronous Broadcast Write Timing Diagram

Figure 17. DSI Synchronous Mode Signals Timing Diagram

2.5.7 TDM Timing

Table 21. TDM Timing

No	Characteristic	Everacion	1.1 V Core		Unito
NO.		Expression	Min	Max	Units
300	TDMxRCLK/TDMxTCLK	TC ¹	16	_	ns
301	TDMxRCLK/TDMxTCLK high pulse width	$(0.5\pm0.1) imes TC$	7	_	ns
302	TDMxRCLK/TDMxTCLK low pulse width	$(0.5\pm0.1) imes TC$	7	—	ns
303	TDM receive all input set-up time		1.3	—	ns
304	TDM receive all input hold time		1.0	—	ns
305	TDMxTCLK high to TDMxTDAT/TDMxRCLK output active ^{2,3}		2.8	—	ns
306	TDMxTCLK high to TDMxTDAT/TDMxRCLK output		_	10.0	ns
307	All output hold time ⁴		2.5	_	ns
308	TDMxTCLK high to TDmXTDAT/TDMxRCLK output high impedance ^{2,3}		—	10.7	ns
309	TDMxTCLK high to TDMXTSYN output valid ²		_	9.7	ns
310	TDMxTSYN output hold time ⁴		2.5	_	ns
Notes:	 Values are based on a a maximum frequency of 62.5 MHz. The TD Devices operating at 300 MHz are limited to a maximum TDMxRCL Values are based on 20 pF capacitive load. When configured as an output, TDMxRCLK acts as a second data I 	M interface supports ar K/TDMxTCLK frequence ink. See the <i>MSC8113</i>	ny frequency cy of 50 MH: <i>Reference</i>	/ below 62.5 z. <i>Manual</i> for c	o MHz. details.

4. Values are based on 10 pF capacitive load.

Electrical Characteristics

2.5.10 Ethernet Timing

2.5.10.1 Management Interface Timing

Table 24. Ethernet Controller Management Interface Timing

No.	Characteristics	Min	Max	Unit
801	ETHMDIO to ETHMDC rising edge set-up time	10		ns
802	ETHMDC rising edge to ETHMDIO hold time	10	—	ns

Figure 23. MDIO Timing Relationship to MDC

2.5.10.4 SMII Mode

No.	Characteristics	Min	Max	Unit
808	ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time	1.0	_	ns
809	ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time	1.0	_	ns
810	ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay	1.5 ¹	6.0 ²	ns
Notes:	 Measured using a 5 pF load. Measured using a 15 pF load. 			

Figure 26. SMII Mode Signal Timing

2.5.11 GPIO Timing

Table 28. GPIO Timing

No.	Characteristics	Ref = CLKIN		Unit
		Min	Max	Onit
601	REFCLK edge to GPIO out valid (GPIO out delay time)	—	6.1	ns
602	REFCLK edge to GPIO out not valid (GPIO out hold time)	1.1	_	ns
603	REFCLK edge to high impedance on GPIO out	—	5.4	ns
604	GPIO in valid to REFCLK edge (GPIO in set-up time)	3.5	_	ns
605	REFCLK edge to GPIO in not valid (GPIO in hold time)	0.5	_	ns

Figure 27. GPIO Timing

2.5.12 EE Signals

Number	Characteristics	Туре	Min
65	EE0 (input)	Asynchronous	4 core clock periods
66	EE1 (output)	Synchronous to Core clock	1 core clock period

Table 29. EE Pin Timing

Notes: 1. The core clock is the SC140 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.
 2. Refer to Table 1-4 on page 1-6 for details on EE pin functionality.

Figure 28 shows the signal behavior of the EE pins.

2.5.13 JTAG Signals

Table 30. JTAG Timing

No.	Characteristics	All frequencies		Unit
			Max	
700	TCK frequency of operation $(1/(T_{c} \times 4); maximum 25 MHz)$	0.0	25	MHz
701	TCK cycle time	40.0	_	ns
702	TCK clock pulse width measured at V_{M} = 1.6 V			
	• High	20.0	—	ns
	• Low	16.0		ns
703	TCK rise and fall times	0.0	3.0	ns
704	Boundary scan input data set-up time	5.0	—	ns
705	Boundary scan input data hold time	20.0	_	ns
706	TCK low to output data valid	0.0	30.0	ns
707	TCK low to output high impedance	0.0	30.0	ns
708	TMS, TDI data set-up time	5.0	_	ns
709	TMS, TDI data hold time	20.0	_	ns
710	TCK low to TDO data valid	0.0	20.0	ns
711	TCK low to TDO high impedance	0.0	20.0	ns
712	TRST assert time	100.0	—	ns
713	TRST set-up time to TCK low	30.0	—	ns
Note:	All timings apply to OnCE module data transfers as well as any other transfers via the JTAG port.			

Hardware Design Considerations

Each V_{CC} and V_{DD} pin on the MSC8113 device should have a low-impedance path to the board power supply. Similarly, each GND pin should have a low-impedance path to the ground plane. The power supply pins drive distinct groups of logic on the chip. The V_{CC} power supply should have at least four 0.1 µF by-pass capacitors to ground located as closely as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} , V_{DD} , and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MSC8113 have fast rise and fall times. PCB trace interconnection length should be minimized to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PCB trace lengths of six inches are recommended. For the DSI control signals in synchronous mode, ensure that the layout supports the DSI AC timing requirements and minimizes any signal crosstalk. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC}, V_{DD}, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.

Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply pins: V_{CCSYN} -GND_{SYN}. To ensure internal clock stability, filter the power to the V_{CCSYN} input with a circuit similar to the one in **Figure 34**. For optimal noise filtering, place the circuit as close as possible to V_{CCSYN} . The 0.01- μ F capacitor should be closest to V_{CCSYN} , followed by the 10- μ F capacitor, the 10-nH inductor, and finally the 10- Ω resistor to V_{DD} . These traces should be kept short and direct. Provide an extremely low impedance path to the ground plane for GND_{SYN}. Bypass GND_{SYN} to V_{CCSYN} by a 0.01- μ F capacitor located as close as possible to the chip package. For best results, place this capacitor on the backside of the PCB aligned with the depopulated void on the MSC8113 located in the square defined by positions, L11, L12, L13, M11, M12, M13, N11, N12, and N13.

Figure 34. V_{CCSYN} Bypass

3.3 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to V_{DDH} or GND, except for the following:

- If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be disconnected.
- When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either up or down, depending on design requirements.
- HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the DCR[DSRFA] bit is set.
- When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3]/HDBE[1-3] and HWBS[4-7]/HDBS[4-7]/HWBE[4-7]/HDBE[4-7]/PWE[4-7]/PWE[4-7]/PSDDQM[4-7]/PBS[4-7].
- When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3] must be pulled up.
- When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.
- The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.
- In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):
 - BG, DBG, and TS can be left unconnected.
 - EXT_BG[2-3], EXT_DBG[2-3], and GBL can be left unconnected if they are multiplexed to the system bus functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.
 - **BR** must be pulled up.
 - EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.

ware Design Considerations

- If there is an external bus master (BCR[EBM] = 1):
 - BR, BG, DBG, and TS must be pulled up.
 - EXT_BR[2-3], EXT_BG[2-3], and EXT_DBG[2-3] must be pulled up if multiplexed to the system bus functionality.
- In single-master mode, ABB and DBB can be selected as IRQ inputs and be connected to the non-active value. In other modes, they must be pulled up.
- **Note:** The MSC8113 does not support DLL-enabled mode. For the following two clock schemes, ensure that the DLL is disabled (that is, the DLLDIS bit in the Hard Reset Configuration Word is set).
 - If no system synchronization is required (for example, the design does not use SDRAM), you can use any of the available clock modes.
 - In the CLKIN synchronization mode, use the following connections:
 - Connect the oscillator output through a buffer to CLKIN.
 - Connect the CLKIN buffer output to the slave device (for example, SDRAM) making sure that the delay path between the clock buffer to the MSC8113 and the SDRAM is equal (that is, has a skew less than 100 ps).
 - Valid clock modes in this scheme are: 0, 7, 15, 19, 21, 23, 28, 29, 30, and 31.

Note: See the Clock chapter in the *MSC8113 Reference Manual* for details.

- If the 60x-compatible system bus is not used and SIUMCR[PBSE] is set, PPBS can be disconnected. Otherwise, it should be pulled up.
- The following signals: SWTE, DSISYNC, DSI64, MODCK[1–2], CNFGS, CHIPID[0–3], RSTCONF and BM[0–2] are
 used to configure the MSC8113 and are sampled on the deassertion of the PORESET signal. Therefore, they should
 be tied to GND or V_{DDH} or through a pull-down or a pull-up resistor until the deassertion of the PORESET signal.
- When they are used, INT_OUT (if SIUMCR[INTODC] is cleared), NMI_OUT, and IRQxx (if not full drive) signals must be pulled up.
- When the Ethernet controller is enabled and the SMII mode is selected, GPIO10 and GPIO14 must not be connected externally to any signal line.
- **Note:** For details on configuration, see the *MSC8113 User's Guide* and *MSC8113 Reference Manual*. For additional information, refer to the *MSC8113 Design Checklist* (ANxxxx).

3.4 External SDRAM Selection

The external bus speed implemented in a system determines the speed of the SDRAM used on that bus. However, because of differences in timing characteristics among various SDRAM manufacturers, you may have use a faster speed rated SDRAM to assure efficient data transfer across the bus. For example, for 133 MHz operation, you may have to use 133 or 166 MHz SDRAM. Always perform a detailed timing analysis using the MSC8113 bus timing values and the manufacturer specifications for the SDRAM to ensure correct operation within your system design. The output delay listed in SDRAM specifications is usually given for a load of 30 pF. Scale the number to your specific board load using the typical scaling number provided by the SDRAM manufacturer.