E·XFL

NXP USA Inc. - MSC8113TVT3600V Datasheet

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

2 0 0 0 0 0	
Product Status	Obsolete
Туре	SC140 Core
Interface	Ethernet, I ² C, TDM, UART
Clock Rate	300MHz
Non-Volatile Memory	External
On-Chip RAM	1.436MB
Voltage - I/O	3.30V
Voltage - Core	1.10V
Operating Temperature	-40°C ~ 105°C (TJ)
Mounting Type	Surface Mount
Package / Case	431-BFBGA, FCBGA
Supplier Device Package	431-FCPBGA (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/msc8113tvt3600v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1	Pin Assignments				
	1.1	FC-PBGA Ball Layout Diagrams4			
	1.2	Signal List By Ball Location7			
2	Elect	rical Characteristics			
	2.1	Maximum Ratings			
	2.2	Recommended Operating Conditions14			
	2.3	Thermal Characteristics14			
	2.4	DC Electrical Characteristics14			
	2.5	AC Timings			
3	Hard	ware Design Considerations			
	3.1	Start-up Sequencing Recommendations			
	3.2	Power Supply Design Considerations			
	3.3	Connectivity Guidelines			
	3.4	External SDRAM Selection			
	3.5	Thermal Considerations41			
4	Orde	ring Information			
5	Pack	age Information			
6	Produ	uct Documentation			
7	Revis	ion History			

List of Figures

Figure 1.	MSC8113 Block Diagram 3
Figure 2.	StarCore [®] SC140 DSP Extended Core Block Diagram . 3
Figure 3.	MSC8113 Package, Top View 5
Figure 4.	MSC8113 Package, Bottom View 6
Figure 5.	Overshoot/Undershoot Voltage for V_{IH} and $V_{\text{IL}},\ldots,$ 15
Figure 6.	Start-Up Sequence: V_{DD} and V_{DDH} Raised Together 16
Figure 7.	Start-Up Sequence: V _{DD} Raised Before V _{DDH} with CLKIN
	Started with V _{DDH} 17
Figure 8.	Power-Up Sequence for V_{DDH} and V_{DD}/V_{CCSYN} 17
Figure 9.	Timing Diagram for a Reset Configuration Write 21

Figure 10 Internal Tick Spacing for Memory Controller Signals 21
Figure 11 SILI Timing Diagram
Figure 12 CLKOLIT and CLKIN Signals 25
Figure 13 DMA Signals 26
Figure 14 Asynchronous Single- and Dual-Strobe Modes Read
Timing Diagram 27
Figure 15 Asynchronous Single- and Dual-Strobe Modes Write
Timing Diagram 28
Figure 16 Asynchronous Broadcast Write Timing Diagram
Figure 17 DSI Synchronous Mode Signals Timing Diagram
Figure 19 TDM Inpute Signals 71111119 Diagram
Figure 10 TDM Output Signals
Figure 19.1 DM Output Signals
Figure 20.0ART input filming
Figure 21.UART Output Timing
Figure 22. Timer Timing
Figure 23.MDIO Timing Relationship to MDC
Figure 24.MII Mode Signal Timing
Figure 25.RMII Mode Signal Timing
Figure 26.SMII Mode Signal Timing
Figure 27.GPIO Timing
Figure 28.EE Pin Timing
Figure 29.Test Clock Input Timing Diagram
Figure 30.Boundary Scan (JTAG) Timing Diagram
Figure 31.Test Access Port Timing Diagram
Figure 32.TRST Timing Diagram
Figure 33.Core Power Supply Decoupling
Figure 34.V _{CCSYN} Bypass
Figure 35.MSC8113 Mechanical Information, 431-pin FC-PBGA
Package

Notes: 1. The arrows show the data transfer direction.
2. The QBus interface includes a bus switch, write buffer, fetch unit, and a control unit that defines four QBus banks. In addition, the QBC handles internal memory contentions.

Figure 2. StarCore[®] SC140 DSP Extended Core Block Diagram

ssignments

1 Pin Assignments

This section includes diagrams of the MSC8113 package ball grid array layouts and pinout allocation tables.

1.1 FC-PBGA Ball Layout Diagrams

Top and bottom views of the FC-PBGA package are shown in Figure 3 and Figure 4 with their ball location index numbers.

Figure 4. MSC8113 Package, Bottom View

ssignments

Des.	Signal Name	Des.	Signal Name
E12	GND	G6	HA17
E13	V _{DD}	G7	PWE0/PSDDQM0/PBS0
E14	GND	G8	V _{DD}
E15	GND	G9	V _{DD}
E16	V _{DD}	G10	IRQ3/BADDR31
E17	GND	G11	BM0/TC0/BNKSEL0
E18	GND	G12	ABB/IRQ4
E19	GPIO9/TDM2TSYN/IRQ7/ETHMDIO	G13	V _{DD}
E20	GPIO13/TDM2RCLK/IRQ11/ETHMDC	G14	IRQ7/INT_OUT
E21	GPIO10/TDM2TCLK/IRQ8/ETHRX_DV/ETHCRS_DV/NC	G15	ETHCRS/ETHRXD
E22	GPIO12/TDM2RSYN/IRQ10/ETHRXD1/ETHSYNC	G16	V _{DD}
F2	PORESET	G17	CS1
F3	RSTCONF	G18	BCTL0
F4	NMI	G19	GPIO15/TDM1TSYN/DREQ1
F5	HA29	G20	GND
F6	HA22	G21	GPIO17/TDM1TDAT/DACK1
F7	GND	G22	GPIO22/TDM0TCLK/DONE2/DRACK2
F8	V _{DD}	H2	HA20
F9	V _{DD}	H3	HA28
F10	V _{DD}	H4	V _{DD}
F11	GND	H5	HA19
F12	V _{DD}	H6	TEST
F13	GND	H7	PSDCAS/PGPL3
F14	V _{DD}	H8	PGTA/PUPMWAIT/PGPL4/PPBS
F15	ETHRX_CLK/ETHSYNC_IN	H9	V _{DD}
F16	ETHTX_CLK/ETHREF_CLK/ETHCLOCK	H10	BM1/TC1/BNKSEL1
F17	GPIO20/TDM1RDAT	H11	ARTRY
F18	GPIO18/TDM1RSYN/DREQ2	H12	AACK
F19	GPIO16/TDM1TCLK/DONE1/DRACK1	H13	DBB/IRQ5
F20	GPIO11/TDM2TDAT/IRQ9/ETHRX_ER/ETHTXD	H14	HTA
F21	GPIO14/TDM2RDAT/IRQ12/ETHRXD0/NC	H15	V _{DD}
F22	GPIO19/TDM1RCLK/DACK2	H16	TT4/CS7
G2	HA24	H17	CS4
G3	HA27	H18	GPIO24/TDM0RSYN/IRQ14
G4	HA25	H19	GPIO21/TDM0TSYN
G5	HA23	H20	V _{DD}

Table 1. MSC8113 Signal Listing by Ball Designator (continued)

Des.	Signal Name	Des.	Signal Name
T6	HWBS7/HDBS7/HWBE7/HDBE7/PWE7/PSDDQM7/PBS7	U21	A12
T7	HWBS5/HDBS5/HWBE5/HDBE5/PWE5/PSDDQM5/PBS5	U22	A13
Т8	TSZ0	V2	HD3/MODCK1
Т9	TSZ2	V3	V _{DDH}
T10	TBST	V4	GND
T11	V _{DD}	V5	D0
T12	D16	V6	D1
T13	TT1	V7	D4
T14	D21	V8	D5
T15	D23	V9	D7
T16	IRQ5/DP5/DACK4/EXT_BG3	V10	D10
T17	IRQ4/DP4/DACK3/EXT_DBG3	V11	D12
T18	IRQ1/DP1/DACK1/EXT_BG2	V12	D13
T19	D30	V13	D18
T20	GND	V14	D20
T21	A15	V15	GND
T22	A14	V16	D24
U2	HD16	V17	D27
U3	HD19	V18	D29
U4	HD2/DSI64	V19	A8
U5	D2	V20	A9
U6	D3	V21	A10
U7	D6	V22	A11
U8	D8	W2	HD6
U9	D9	W3	HD5/CNFGS
U10	D11	W4	HD4/MODCK2
U11	D14	W5	GND
U12	D15	W6	GND
U13	D17	W7	V _{DDH}
U14	D19	W8	V _{DDH}
U15	D22	W9	GND
U16	D25	W10	HDST1/HA10
U17	D26	W11	HDST0/HA9
U18	D28	W12	V _{DDH}
U19	D31	W13	GND
U20	V _{DDH}	W14	HD40/D40/ETHRXD0

Table 1. MSC8113 Signal Listing by Ball Designator (continued)

rical Characteristics

Table 7.	Maximum	Frequencies
----------	---------	-------------

Characteristic	Maximum in MHz
Internal bus frequency (BLCK)	100/133
 DSI clock frequency (HCLKIN) Core frequency = 300 MHz Core frequency = 400 MHz 	HCLKIN ≤ (min{70 MHz, CLKOUT}) HCLKIN ≤ (min{100 MHz, CLKOUT})
External clock frequency (CLKIN or CLKOUT)	100/133

Table 8. Clock Frequencies

	Symbol	300 MF	Iz Device	400 MHz Device	
Characteristics		Min	Мах	Min	Max
CLKIN frequency	F _{CLKIN}	20	100	20	133.3
BCLK frequency	F _{BCLK}	40	100	40	133.3
Reference clock (REFCLK) frequency	F _{REFCLK}	40	100	40	133.3
Output clock (CLKOUT) frequency	F _{CLKOUT}	40	100	40	133.3
SC140 core clock frequency	F _{CORE}	200	300	200	400
Note: The rise and fall time of external clocks should be 3 ns maximum					

Table 9. System Clock Parameters

Characteristic	Min	Max	Unit
Phase jitter between BCLK and CLKIN	—	0.3	ns
CLKIN frequency	20	see Table 8	MHz
CLKIN slope	—	3	ns
PLL input clock (after predivider)	20	100	MHz
PLL output frequency (VCO output)	800		MHz
300 MHz core		1200	MHz
400 MHz core		1600	MHz
CLKOUT frequency jitter ¹	—	200	ps
CLKOUT phase jitter ¹ with CLKIN phase jitter of ±100 ps.	—	500	ps
Notes:1.Peak-to-peak.2.Not tested. Guaranteed by design.			

2.5.4 Reset Timing

The MSC8113 has several inputs to the reset logic:

- Power-on reset (PORESET)
- External hard reset (HRESET)
- External soft reset (SRESET)
- Software watchdog reset
- Bus monitor reset
- Host reset command through JTAG

All MSC8113 reset sources are fed into the reset controller, which takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause a reset. **Table 10** describes the reset sources.

Table 10. Reset Sources

Name	Direction	Description
Power-on reset (PORESET)	Input	Initiates the power-on reset flow that resets the MSC8113 and configures various attributes of the MSC8113. On PORESET, the entire MSC8113 device is reset. SPLL states is reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The clock mode (MODCK bits), reset configuration mode, boot mode, Chip ID, and use of either a DSI 64 bits port or a System Bus 64 bits port are configured only when PORESET is asserted.
Extern <u>al hard</u> reset (HRESET)	Input/ Output	Initiates the hard reset flow that configures various attributes of the MSC8113. While HRESET is asserted, SRESET is also asserted. HRESET is an open-drain pin. Upon hard reset, HRESET and SRESET are driven, the SC140 extended cores are reset, and system configuration is sampled. The most configurable features are reconfigured. These features are defined in the 32-bit hard reset configuration word described in <i>Hard Reset Configuration Word</i> section of the <i>Reset</i> chapter in the <i>MSC8113 Reference Manual</i> .
External soft reset (SRESET)	Input/ Output	Initiates the soft reset flow. The MSC8113 detects an external assertion of SRESET only if it occurs while the MSC8113 is not asserting reset. SRESET is an open-drain pin. Upon soft reset, SRESET is driven, the SC140 extended cores are reset, and system configuration is maintained.
Software watchdog reset	Internal	When the MSC8113 watchdog count reaches zero, a software watchdog reset is signalled. The enabled software watchdog event then generates an internal hard reset sequence.
Bus monitor reset	Internal	When the MSC8113 bus monitor count reaches zero, a bus monitor hard reset is asserted. The enabled bus monitor event then generates an internal hard reset sequence.
Host reset command through the TAP	Internal	When a host reset command is written through the Test Access Port (TAP), the TAP logic asserts the soft reset signal and an internal soft reset sequence is generated.

Table 11 summarizes the reset actions that occur as a result of the different reset sources.

Table 11. R	Reset Actions	for Each	Reset Source	;
-------------	---------------	----------	---------------------	---

Poset Action/Poset Source	Power-On <u>Reset</u> (PORESET)	Hard Reset (HRESET)	Soft	Reset (SRESET)
	External only	External or Internal (Software Watchdog or Bus Monitor)	External	JTAG Command: EXTEST, CLAMP, or HIGHZ
Configuration pins sampled (Refer to Section 2.5.4.1 for details).	Yes	No	No	No
SPLL state reset	Yes	No	No	No
System reset configuration write through the DSI	Yes	No	No	No
System reset configuration write though the system bus	Yes	Yes	No	No
HRESET driven	Yes	Yes	No	No
SIU registers reset	Yes	Yes	No	No
IPBus modules reset (TDM, UART, Timers, DSI, IPBus master, GIC, HS, and GPIO)	Yes	Yes	Yes	Yes
SRESET driven	Yes	Yes	Yes	Depends on command
SC140 extended cores reset	Yes	Yes	Yes	Yes
MQBS reset	Yes	Yes	Yes	Yes

2.5.4.1 Power-On Reset (PORESET) Pin

Asserting $\overline{\text{PORESET}}$ initiates the power-on reset flow. $\overline{\text{PORESET}}$ must be asserted externally for at least 16 CLKIN cycles after V_{DD} and V_{DDH} are both at their nominal levels.

rical Characteristics

2.5.4.2 Reset Configuration

The MSC8113 has two mechanisms for writing the reset configuration:

- Through the direct slave interface (DSI)
- Through the system bus. When the reset configuration is written through the system bus, the MSC8113 acts as a configuration master or a configuration slave. If configuration slave is selected, but no special configuration word is written, a default configuration word is applied.

Fourteen signal levels (see **Chapter 1** for signal description details) are sampled on **PORESET** deassertion to define the Reset Configuration Mode and boot and operating conditions:

- RSTCONF
- CNFGS
- DSISYNC
- DSI64
- CHIP_ID[0-3]
- BM[0-2]
- SWTE
- MODCK[1-2]

2.5.4.3 Reset Timing Tables

Table 12 and Figure 9 describe the reset timing for a reset configuration write through the direct slave interface (DSI) or through the system bus.

No.	Characteristics	Expression	Min	Max	Unit
1	Required external PORESET duration minimum • CLKIN = 20 MHz • CLKIN = 100 MHz (300 MHz core) • CLKIN = 133 MHz (400 MHz core)	16/CLKIN	800 160 120		ns ns ns
2	Delay from deassertion of external PORESET to deassertion of internal PORESET • CLKIN = 20 MHz to 133 MHz	1024/CLKIN	6.17	51.2	μs
3	 Delay from de-assertion of internal PORESET to SPLL lock CLKIN = 20 MHz (RDF = 1) CLKIN = 100 MHz (RDF = 1) (300 MHz core) CLKIN = 133 MHz (RDF = 2) (400 MHz core) 	6400/(CLKIN/RDF) (PLL reference clock-division factor)	320 64 96	320 64 96	μs μs
5	Delay from SPLL to HRESET deassertion • REFCLK = 40 MHz to 133 MHz	512/REFCLK	3.08	12.8	μs
6	Delay from SPLL lock to SRESET deassertion • REFCLK = 40 MHz to 133 MHz	515/REFCLK	3.10	12.88	μs
7	Setup time from assertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2] before deassertion of PORESET		3		ns
8	Hold time from deassertion of PORESET to deassertion of RSTCONF, CNFGS, DSISYNC, DSI64, CHIP_ID[0–3], BM[0–2], SWTE, and MODCK[1–2]		5		ns
Note:	Timings are not tested, but are guaranteed by design.				

Table 12. Timing for a Reset Configuration Write through the DSI or System Bus

rical Characteristics

The UPM machine and GPCM machine outputs change on the internal tick selected by the memory controller configuration. The AC timing specifications are relative to the internal tick. SDRAM machine outputs change only on the REFCLK rising edge.

No.	Characteristic	Ref = CLKIN at 1.1 V and 100/133 MHz	Units
10	Hold time for all signals after the 50% level of the REFCLK rising edge	0.5	ns
11a	ARTRY/ABB set-up time before the 50% level of the REFCLK rising edge	3.1	ns
11b	DBG/DBB/BG/BR/TC set-up time before the 50% level of the REFCLK rising edge	3.6	ns
11c	AACK set-up time before the 50% level of the REFCLK rising edge	3.0	ns
11d	 TA/TEA/PSDVAL set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	3.5 4.4	ns ns
12	Data bus set-up time before REFCLK rising edge in Normal mode Data-pipeline mode Non-pipeline mode 	1.9 4.2	ns ns
13 ¹	Data bus set-up time before the 50% level of the REFCLK rising edge in ECC and PARITY modes • Data-pipeline mode • Non-pipeline mode	2.0 8.2	ns ns
14 ¹	DP set-up time before the 50% level of the REFCLK rising edge Data-pipeline mode Non-pipeline mode 	2.0 7.9	ns ns
15a	 TS and Address bus set-up time before the 50% level of the REFCLK rising edge Extra cycle mode (SIUBCR[EXDD] = 0) No extra cycle mode (SIUBCR[EXDD] = 1) 	4.2 5.5	ns ns
15b	Address attributes: TT/TBST/TSZ/GBL set-up time before the 50% level of the REFCLK rising edge • Extra cycle mode (SIUBCR[EXDD] = 0) • No extra cycle mode (SIUBCR[EXDD] = 1)	3.7 4.8	ns ns
16	PUPMWAIT signal set-up time before the 50% level of the REFCLK rising edge	3.7	ns
17	$\overline{\text{IRQx}}$ setup time before the 50% level; of the REFCLK rising edge ³	4.0	ns
18	IRQx minimum pulse width ³	6.0 + T _{REFCLK}	ns
Notes:	 Timings specifications 13 and 14 in non-pipeline mode are more restrictive tha Values are measured from the 50% TTL transition level relative to the 50% level Guaranteed by design. 	n MSC8102 timings. el of the REFCLK rising edge.	

Table 14. AC Timing for SIU Inputs

Figure 11. SIU Timing Diagram

2.5.5.2 CLKIN to CLKOUT Skew

Table 17 describes the CLKOUT-to-CLKIN skew timing.

No.	Characteristic	Min ¹	Max ¹	Units
20	Rise-to-rise skew	0.0	0.95	ns
21	Fall-to-fall skew	-1.5	1.0	ns
23	CLKOUT phase (1.1 V, 133 MHz) • Phase high • Phase low	2.2 2.2		ns ns
24	CLKOUT phase (1.1 V, 100 MHz) Phase high Phase low 	3.3 3.3		ns ns
Notes:	 A positive number indicates that CLKOUT precedes CLKIN, A negative num Skews are measured in clock mode 29, with a CLKIN:CLKOUT ratio of 1:1. CLKOUT skews are measured using a load of 10 pF. CLKOUT skews and phase are not measured for 500/166 Mbz parts becautive for	nber indicates that C The same skew is v	LKOUT follows CLK valid for all clock mod	.IN. Jes.

Table 16. CLKOUT Skew

For designs that use the CLKOUT synchronization mode, use the skew values listed in **Table 16** to adjust the rise-to-fall timing values specified for CLKIN synchronization. **Figure 12** shows the relationship between the CLKOUT and CLKIN timings.

Figure 12. CLKOUT and CLKIN Signals.

2.5.5.3 DMA Data Transfers

 Table 17 describes the DMA signal timing.

Table 17. DMA Signals

No	Characteristic	Ref =	CLKIN	Unito
110.	Characteristic	Min	Max	Units
37	DREQ set-up time before the 50% level of the falling edge of REFCLK	5.0	_	ns
38	DREQ hold time after the 50% level of the falling edge of REFCLK	0.5	—	ns
39	DONE set-up time before the 50% level of the rising edge of REFCLK	5.0	—	ns
40	DONE hold time after the 50% level of the rising edge of REFCLK	0.5	_	ns
41	DACK/DRACK/DONE delay after the 50% level of the REFCLK rising edge	0.5	7.5	ns

The DREQ signal is synchronized with REFCLK. To achieve fast response, a synchronized peripheral should assert DREQ according to the timings in **Table 17**. Figure 13 shows synchronous peripheral interaction.

2.5.6.2 DSI Synchronous Mode

Table 19. DSI Inputs in Synchronous Mo
--

No	Characteristic	Expression	1.1 V	Unite	
NO.	Characteristic	Expression	Min	Max	Units
120	HCLKIN cycle time ^{1,2}	HTC	10.0	55.6	ns
121	HCLKIN high pulse width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	ns
122	HCLKIN low pulse width	$(0.5\pm0.1) imes$ HTC	4.0	33.3	ns
123	HA[11–29] inputs set-up time	—	1.2	_	ns
124	HD[0–63] inputs set-up time	—	0.6	_	ns
125	HCID[0-4] inputs set-up time	—	1.3	_	ns
126	All other inputs set-up time	—	1.2	_	ns
127	All inputs hold time	—	1.5	_	ns
Notes:	 Values are based on a frequency range of 18–100 MHz. Refer to Table 7 for HCLKIN frequency limits. 				

Table 20. DSI Outputs in Synchronous Mode

No	Characteristic		1.1 V Core		
NO.	Characteristic	Min	Max	Units	
128	HCLKIN high to HD[0–63] output active	2.0	—	ns	
129	HCLKIN high to HD[0–63] output valid	—	7.6	ns	
130	HD[0–63] output hold time	1.7	—	ns	
131	HCLKIN high to HD[0–63] output high impedance	—	8.3	ns	
132	HCLKIN high to HTA output active	2.2	—	ns	
133	HCLKIN high to HTA output valid	—	7.4	ns	
134	HTA output hold time	1.7	—	ns	
135	HCLKIN high to HTA high impedance	_	7.5	ns	

Figure 17. DSI Synchronous Mode Signals Timing Diagram

2.5.7 TDM Timing

Table 21. TDM Timing

No	Characteristic	Expression	1.1 V Core		Unite
NO.	Characteristic	Expression	Min	Max	Units
300	TDMxRCLK/TDMxTCLK	TC ¹	16	_	ns
301	TDMxRCLK/TDMxTCLK high pulse width	$(0.5\pm0.1) imes TC$	7	_	ns
302	TDMxRCLK/TDMxTCLK low pulse width	$(0.5\pm0.1) imes TC$	7	—	ns
303	TDM receive all input set-up time		1.3	—	ns
304	TDM receive all input hold time		1.0	—	ns
305	TDMxTCLK high to TDMxTDAT/TDMxRCLK output active ^{2,3}		2.8	—	ns
306	TDMxTCLK high to TDMxTDAT/TDMxRCLK output		_	10.0	ns
307	All output hold time ⁴		2.5	_	ns
308	TDMxTCLK high to TDmXTDAT/TDMxRCLK output high impedance ^{2,3}		—	10.7	ns
309	TDMxTCLK high to TDMXTSYN output valid ²		_	9.7	ns
310	TDMxTSYN output hold time ⁴		2.5	_	ns
 Notes: 1. Values are based on a a maximum frequency of 62.5 MHz. The TDM interface supports any frequency below 62.5 MHz. Devices operating at 300 MHz are limited to a maximum TDMxRCLK/TDMxTCLK frequency of 50 MHz. 2. Values are based on 20 pF capacitive load. 3. When configured as an output, TDMxRCLK acts as a second data link. See the MSC8113 Reference Manual for details. 					

4. Values are based on 10 pF capacitive load.

Electrical Characteristics

2.5.10.2 MII Mode Timing

No.	Characteristics	Min	Max	Unit
803	ETHRX_DV, ETHRXD[0–3], ETHRX_ER to ETHRX_CLK rising edge set-up time	3.5	—	ns
804	ETHRX_CLK rising edge to ETHRX_DV, ETHRXD[0–3], ETHRX_ER hold time	3.5	—	ns
805	ETHTX_CLK to ETHTX_EN, ETHTXD[0–3], ETHTX_ER output delay	1	14.6	ns

2.5.10.3 RMII Mode

Table	26.	RMII	Mode	Signal	Timing
-------	-----	------	------	--------	--------

No	No. Characteristics —		Core	Unit
NO.			Max	Onic
806	ETHTX_EN,ETHRXD[0–1], ETHCRS_DV, ETHRX_ER to ETHREF_CLK rising edge set-up time	1.6	—	ns
807	ETHREF_CLK rising edge to ETHRXD[0–1], ETHCRS_DV, ETHRX_ER hold time	1.6	—	ns
811	ETHREF_CLK rising edge to ETHTXD[0–1], ETHTX_EN output delay.	3	12.5	ns

Figure 25. RMII Mode Signal Timing

2.5.10.4 SMII Mode

No.	Characteristics	Min	Max	Unit
808	ETHSYNC_IN, ETHRXD to ETHCLOCK rising edge set-up time	1.0	—	ns
809	ETHCLOCK rising edge to ETHSYNC_IN, ETHRXD hold time		_	ns
810	ETHCLOCK rising edge to ETHSYNC, ETHTXD output delay		6.0 ²	ns
Notes:	 Measured using a 5 pF load. Measured using a 15 pF load. 			

Figure 26. SMII Mode Signal Timing

2.5.11 GPIO Timing

Table 28. GPIO Timing

No.	Characteristics	Ref = CLKIN		Unit
		Min	Max	Unit
601	REFCLK edge to GPIO out valid (GPIO out delay time)	—	6.1	ns
602	REFCLK edge to GPIO out not valid (GPIO out hold time)	1.1	_	ns
603	REFCLK edge to high impedance on GPIO out	—	5.4	ns
604	GPIO in valid to REFCLK edge (GPIO in set-up time)	3.5	_	ns
605	REFCLK edge to GPIO in not valid (GPIO in hold time)	0.5	_	ns

Figure 27. GPIO Timing

Hardware Design Considerations

Each V_{CC} and V_{DD} pin on the MSC8113 device should have a low-impedance path to the board power supply. Similarly, each GND pin should have a low-impedance path to the ground plane. The power supply pins drive distinct groups of logic on the chip. The V_{CC} power supply should have at least four 0.1 µF by-pass capacitors to ground located as closely as possible to the four sides of the package. The capacitor leads and associated printed circuit traces connecting to chip V_{CC} , V_{DD} , and GND should be kept to less than half an inch per capacitor lead. A four-layer board is recommended, employing two inner layers as V_{CC} and GND planes.

All output pins on the MSC8113 have fast rise and fall times. PCB trace interconnection length should be minimized to minimize undershoot and reflections caused by these fast output switching times. This recommendation particularly applies to the address and data buses. Maximum PCB trace lengths of six inches are recommended. For the DSI control signals in synchronous mode, ensure that the layout supports the DSI AC timing requirements and minimizes any signal crosstalk. Capacitance calculations should consider all device loads as well as parasitic capacitances due to the PCB traces. Attention to proper PCB layout and bypassing becomes especially critical in systems with higher capacitive loads because these loads create higher transient currents in the V_{CC}, V_{DD}, and GND circuits. Pull up all unused inputs or signals that will be inputs during reset.

Special care should be taken to minimize the noise levels on the PLL supply pins. There is one pair of PLL supply pins: V_{CCSYN} -GND_{SYN}. To ensure internal clock stability, filter the power to the V_{CCSYN} input with a circuit similar to the one in **Figure 34**. For optimal noise filtering, place the circuit as close as possible to V_{CCSYN} . The 0.01- μ F capacitor should be closest to V_{CCSYN} , followed by the 10- μ F capacitor, the 10-nH inductor, and finally the 10- Ω resistor to V_{DD} . These traces should be kept short and direct. Provide an extremely low impedance path to the ground plane for GND_{SYN}. Bypass GND_{SYN} to V_{CCSYN} by a 0.01- μ F capacitor located as close as possible to the chip package. For best results, place this capacitor on the backside of the PCB aligned with the depopulated void on the MSC8113 located in the square defined by positions, L11, L12, L13, M11, M12, M13, N11, N12, and N13.

Figure 34. V_{CCSYN} Bypass

3.3 Connectivity Guidelines

Unused output pins can be disconnected, and unused input pins should be connected to the non-active value, via resistors to V_{DDH} or GND, except for the following:

- If the DSI is unused (DDR[DSIDIS] is set), HCS and HBCS must pulled up and all the rest of the DSI signals can be disconnected.
- When the DSI uses synchronous mode, HTA must be pulled up. In asynchronous mode, HTA should be pulled either up or down, depending on design requirements.
- HDST can be disconnected if the DSI is in big-endian mode, or if the DSI is in little-endian mode and the DCR[DSRFA] bit is set.
- When the DSI is in 64-bit data bus mode and DCR[BEM] is cleared, pull up HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3]/HDBE[1-3] and HWBS[4-7]/HDBS[4-7]/HWBE[4-7]/HDBE[4-7]/PWE[4-7]/PWE[4-7]/PSDDQM[4-7]/PBS[4-7].
- When the DSI is in 32-bit data bus mode and DCR[BEM] is cleared, HWBS[1-3]/HDBS[1-3]/HWBE[1-3]/HDBE[1-3] must be pulled up.
- When the DSI is in asynchronous mode, HBRST and HCLKIN should either be disconnected or pulled up.
- The following signals must be pulled up: HRESET, SRESET, ARTRY, TA, TEA, PSDVAL, and AACK.
- In single-master mode (BCR[EBM] = 0) with internal arbitration (PPC_ACR[EARB] = 0):
 - BG, DBG, and TS can be left unconnected.
 - EXT_BG[2-3], EXT_DBG[2-3], and GBL can be left unconnected if they are multiplexed to the system bus functionality. For any other functionality, connect the signal lines based on the multiplexed functionality.
 - **BR** must be pulled up.
 - EXT_BR[2–3] must be pulled up if multiplexed to the system bus functionality.

3.5 Thermal Considerations

An estimation of the chip-junction temperature, T_J, in °C can be obtained from the following:

$$T_J = T_A + (R_{\bigcup JA} \times P_D)$$
 Eqn. 1

where

$$\begin{split} T_A &= \text{ambient temperature near the package (°C)} \\ R_{\Theta JA} &= \text{junction-to-ambient thermal resistance (°C/W)} \\ P_D &= P_{INT} + P_{I/O} = \text{power dissipation in the package (W)} \\ P_{INT} &= I_{DD} \times V_{DD} = \text{internal power dissipation (W)} \\ P_{I/O} &= \text{power dissipated from device on output pins (W)} \end{split}$$

The power dissipation values for the MSC8113 are listed in **Table 4**. The ambient temperature for the device is the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. The value that more closely approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm² with natural convection) and well separated components. Based on an estimation of junction temperature using this technique, determine whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device thermal junction temperature below its maximum. If T_J appears to be too high, either lower the ambient temperature or the power dissipation of the chip. You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is recommended) or an infrared temperature sensor on a spot on the device case that is painted black. The MSC8113 device case surface is too shiny (low emissivity) to yield an accurate infrared temperature measurement. Use the following equation to determine T_J:

$$T_J = T_T + (\theta_{JA} \times P_D)$$
 Eqn. 2

where

 T_T = thermocouple (or infrared) temperature on top of the package (°C)

 θ_{JA} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

Note: See MSC8102, MSC8122, and MSC8126 Thermal Management Design Guidelines (AN2601/D).

4 Ordering Information

Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.

Part	Package Type	Core Voltage	Operating Temperature	Core Frequency (MHz)	Order Number		
					Lead-Free	Lead-Bearing	
MSC8113	Flip Chip Plastic Ball Grid Array (FC-PBGA)	1.1 V	-40° to 105°C	300	MSC8113TVT3600V	MSC8113TMP3600V	
				400	MSC8113TVT4800V	MSC8113TMP4800V	

5 Package Information

Notes: 1. All dimensions in millimeters.

- 2. Dimonsioning and tolorancing
- 2. Dimensioning and tolerancing per ASME Y14.5M-1994.
- 3. Features are symmetrical about the package center lines unless dimensioned otherwise.
- Maximum solder ball diameter measured parallel to Datum A.

Datum A, the seating plane, is determined by the spherical crowns of the solder balls.

Parallelism measurement shall exclude any effect of mark on top surface of package.

Capacitors may not be present on all devices.

Caution must be taken not to short capacitors or exposed metal capacitor pads on package top.

FC CBGA (Ceramic) package code: 5238. FC PBGA (Plastic) package code: 5263.

10.Pin 1 indicator can be in the form of number 1 marking or an "L" shape marking.

Figure 35. MSC8113 Mechanical Information, 431-pin FC-PBGA Package

6 **Product Documentation**

- *MSC8113 Technical Data Sheet* (MSC8113). Details the signals, AC/DC characteristics, clock signal characteristics, package and pinout, and electrical design considerations of the MSC8113 device.
- *MSC8113 Reference Manual* (MSC8113RM). Includes functional descriptions of the extended cores and all the internal subsystems including configuration and programming information.
- Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC8113 device.
- *SC140 DSP Core Reference Manual*. Covers the SC140 core architecture, control registers, clock registers, program control, and instruction set.