

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071cbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USARTs, I2C, LPUART, LPTIMER or comparator events.

DocID027101 Rev 3

3.14 Timers and watchdogs

The ultra-low-power STM32L071xx devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 9 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type Prescaler lactor request		Capture/compare channels	Complementary outputs			
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No		
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No		
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No		

Table	9.	Timer	feature	com	parison
	•••				Pail 0 0 11

3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)

There are four synchronizable general-purpose timers embedded in the STM32L071xx device (see *Table 9* for differences).

TIM2, TIM3

TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2/TIM3 have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM21 and TIM22

TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3, full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.15 Communication interfaces

3.15.1 I²C bus

Up to three I²C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.

Each I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 10. Comparison of I2C analog and digital filters

In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match.

Each I2C interface can be served by the DMA controller.

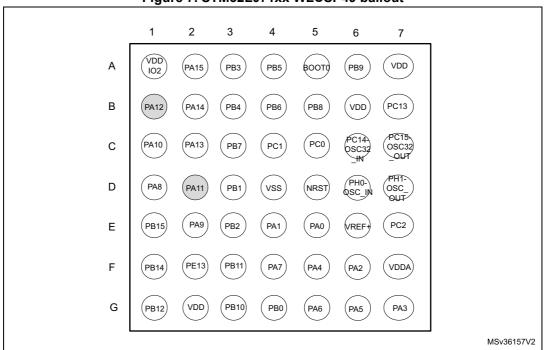
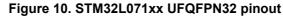
Refer to Table 11 for an overview of I2C interface features.

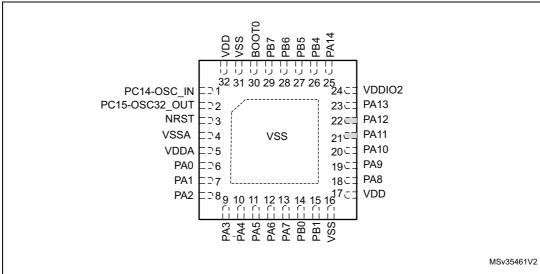
Table 11	STM32L	071xx l ² C	implementation
----------	--------	------------------------	----------------

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
7-bit addressing mode	Х	Х	Х
10-bit addressing mode	Х	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	x	X ⁽²⁾	Х
Independent clock	Х	-	Х
SMBus	Х	-	Х
Wakeup from STOP	Х	-	Х

1. X = supported.

2. See Table 15: STM32L071xxx pin definition on page 39 for the list of I/Os that feature Fast Mode Plus capability


Figure 7. STM32L071xx WLCSP49 ballout

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

- 1. The above figure shows the package top view.
- 2. I/O supplied by VDDIO2.

Nar	ne	Abbreviation Definition				
Pin name Unless otherwise specified in brackets below the pin name, the pin function durin and after reset is the same as the actual pin name						
		S	Supply pin			
Pin t	уре	I	Input only pin			
		I/O	Input / output pin			
		FT	5 V tolerant I/O			
		FTf	5 V tolerant I/O, FM+ capable			
I/O stru	ucture	тс	Standard 3.3V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
NOTES		Unless otherwise specified by a note, all I/Os are set as floating inputs during after reset.				
Alternate functions		Functions selected through GPIOx_AFR registers				
Pin functions	Additional functions	Functions directly selected	ed/enabled through peripheral registers			

Symbol	Parameter	Conditio	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit	
			Range3,	1	175	230	
			Vcore=1.2 V	2	315	360	μA
			VOS[1:0]=11	4	570	630	
		f _{HSE} = f _{HCLK} up to	Range2,	4	0,71	0,78	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Vcore=1.5 V	8	1,35	1,6	mΑ μΑ
	Supply current in Run mode code executed from RAM, Flash memory switched off	16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	2,7	3	
			Range1, Vcore=1.8 V VOS[1:0]=01	8	1,7	1,9	
I (Dup				16	3,2	3,7	
I _{DD} (Run from RAM)				32	6,65	7,1	
		MSI clock	Range3, Vcore=1.2 V	0,065	38	98	
				0,524	105	160	
			VOS[1:0]=11	4,2	615	710	
		HSI clock source (16 MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,85	3	~^^
			Range1, Vcore=1.8 V VOS[1:0]=01	32	6,85	7,3	mA

Table 31. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 32. Current consumption in Run mode vs code type,code with data processing running from RAM⁽¹⁾

Symbol	Parameter			f _{HCLK}	Тур	Unit	
				Dhrystone		570	
Supply current in	<i>c c c c c c c c c c</i>	Range 3,	CoreMark	4 MHz	670		
		V _{CORE} =1.2 V, VOS[1:0]=11	Fibonacci	4 IVI⊓Z	410	μA	
I _{DD} (Run	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16 MHz included,	f _{HSE} = f _{HCLK} up to 16 MHz included,	while(1)		375	
RAM)		f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL on) ⁽²⁾	e	Dhrystone		6,65	
off		Range 1,	CoreMark	32 MHz	6,95	mA	
		V _{CORE} =1.8 V, VOS[1:0]=01	Fibonacci	52 1011 12	5,9	ШA	
				while(1)		5,2	

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

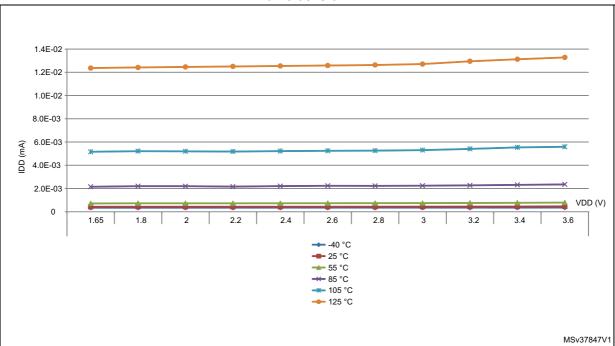


Figure 20. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

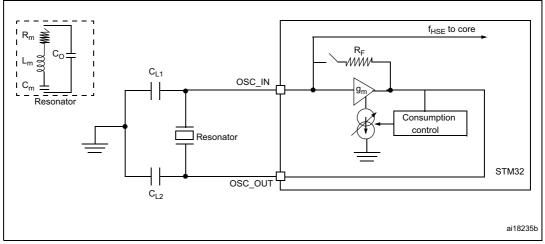
Symbol	Parameter	Conditi	Тур	Max ⁽¹⁾	Unit	
			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
		T _A = 55 °C	-	2,90		
	Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30		
		T _A = 105 °C	-	4,10		
I _{DD}	Supply current in Standby		T _A = 125 °C	-	8,50	
(Standby)	mode		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,29	0,60	μA
		Independent watchdog and LSL off	T _A = 55 °C	0,32	1,20	
			Independent watchdog and LSI off	T _A = 85 °C	0,5	2,30
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
$f_{OSC_{IN}}$	Oscillator frequency	-	1		25	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V	
t _{SU(HSE)} (2)	Startup time	V_{DD} is stabilized	-	2	-	ms	


Table 44. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 23*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

 Table 51. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Symbol	Parameter	Conditions	Value	Unit	
Symbol	Parameter	Conditions	Min ⁽¹⁾	onn	
	Cycling (erase / write) Program memory	T₄ = -40°C to 105 °C	10		
N _{CYC} ⁽²⁾	Cycling (erase / write) EEPROM data memory		100	kcycles	
INCYC [®]	Cycling (erase / write) Program memory	T _A = -40°C to 125 °C	0.2	REYCIES	
	Cycling (erase / write) EEPROM data memory	TA = -40 C to 125 C	2]	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C T _{BET} = +85 °C		30		
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	TRET - 105 C	30		
+ (2)	Data retention (program memory) after 10 kcycles at T _A = 105 °C	-T _{RFT} = +105 °C	- 10	years	
t _{RET} ⁽²⁾	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105 \degree C$	TRET - +105 C			
	Data retention (program memory) after 200 cycles at T _A = 125 °C	-T _{RET} = +125 °C			
	Data retention (EEPROM data memory) after 2 kcycles at T_A = 125 °C	RET - TIZS C			

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

Sym	nbol	Parameter	Conditions	Level/ Class
V _{FES}	SD	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFT}	ТВ	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP100, $T_A = +25$ °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 53. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 25*.

Refer to Section 6.3.12: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input actur time	Master mode	0	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}		Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
+		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
t _{v(SO)}	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25	
t _{v(MO)}]	Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 72. SPI characteristics in	voltage Range 1 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			8	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.65 <v<sub>DD<3.6V</v<sub>	-		8	MHz
-C(SCR)		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>			8 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}	Data input setup time	Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	11	-	-	
t _{h(SI)}		Slave mode	4.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	18	-	52	
t _{dis(SO)}	Data output disable time	Slave mode	12	-	42	
t _{v(SO)}	Data output valid time	Slave mode	-	20	56.5	
t _{v(MO)}		Master mode	-	5	9	
t _{h(SO)}	Data output hold time	Slave mode	13	-	-]
t _{h(MO)}		Master mode	3	-	-	

Table 73. SPI characteristics in	n voltage	Range 2 ⁽¹⁾
----------------------------------	-----------	------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

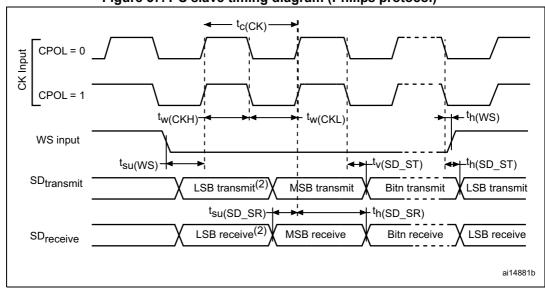
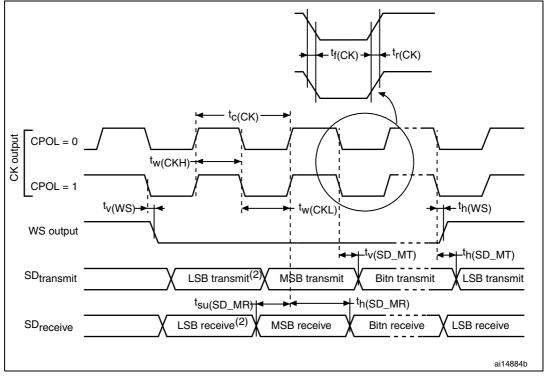



Figure 37. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 38. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status *are available at www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

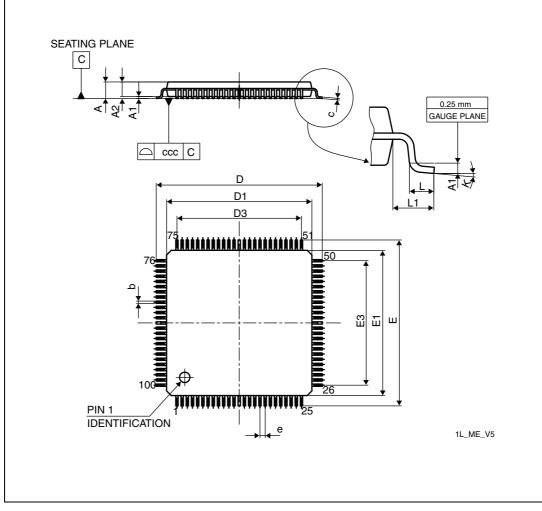
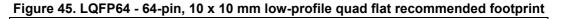
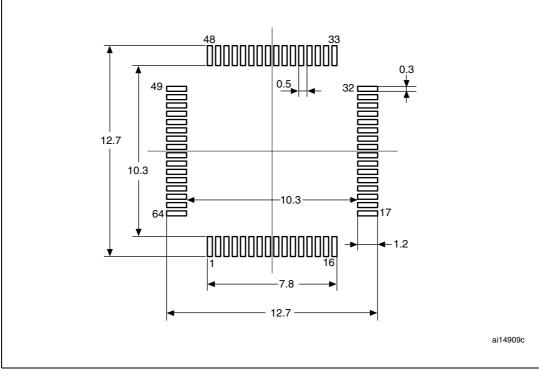


Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline


1. Drawing is not to scale. Dimensions are in millimeters.



Ocuration I	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 79. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

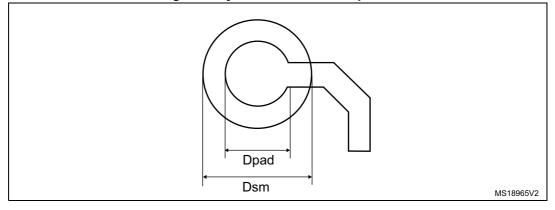


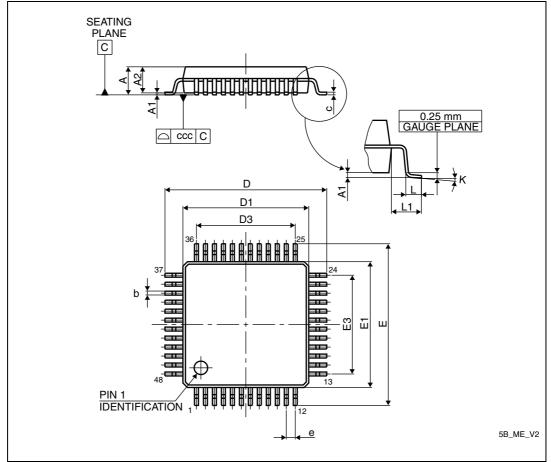
Table 80. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 81. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)


Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

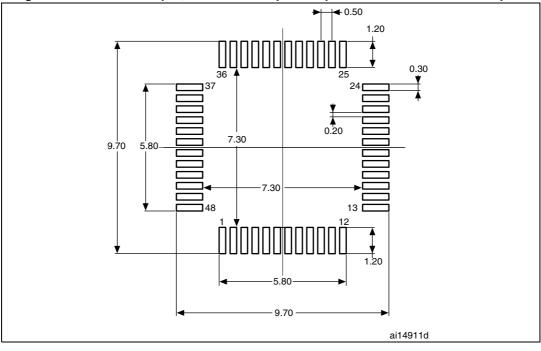

7.6 LQFP48 package information

Figure 53. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

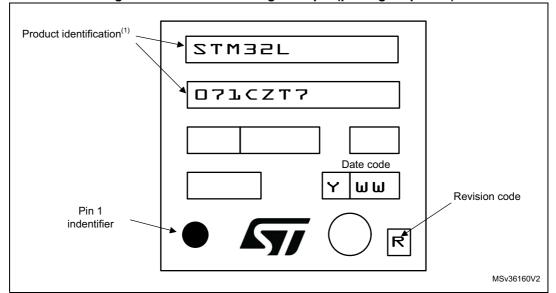
1. Drawing is not to scale.

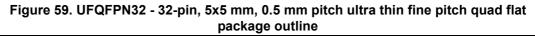
Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

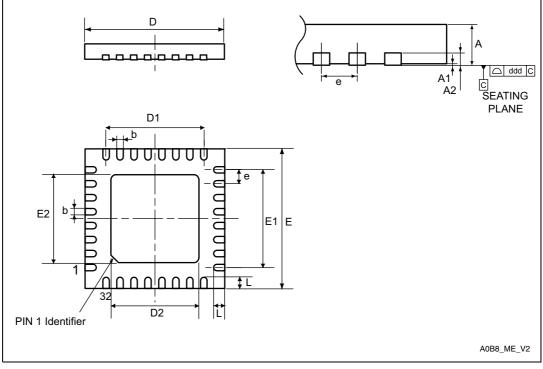
1. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

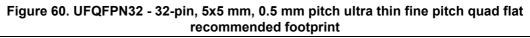


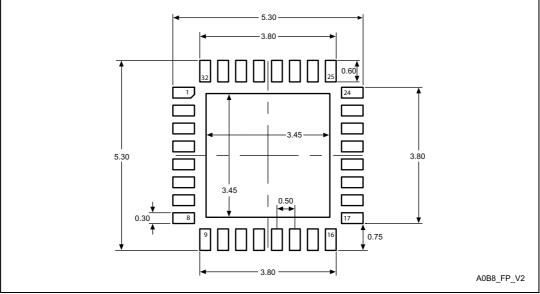

Figure 55. LQFP48 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID027101 Rev 3

7.8 UFQFPN32 package information


^{1.} Drawing is not to scale.



package mechanical data						
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
Е	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

Table 86. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

