

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	37
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071cbt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The access line ultra-low-power STM32L071xx microcontrollers incorporate the highperformance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L071xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L071xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), .

The STM32L071xx also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

3.14 Timers and watchdogs

The ultra-low-power STM32L071xx devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 9 compares the features of the general-purpose and basic timers.

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table	9.	Timer	feature	comparison
IUDIC	۷.	111101	icutui c	companison

3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)

There are four synchronizable general-purpose timers embedded in the STM32L071xx device (see *Table 9* for differences).

TIM2, TIM3

TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2/TIM3 have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM21 and TIM22

TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3, full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

3.15 Communication interfaces

3.15.1 I²C bus

Up to three I²C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes.

Each I²C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os.

7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters.

	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 10. Comparison of I2C analog and digital filters

In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match.

Each I2C interface can be served by the DMA controller.

Refer to Table 11 for an overview of I2C interface features.

Table 11.	. STM32L071xx	I ² C implementation
-----------	---------------	---------------------------------

I2C features ⁽¹⁾	I2C1	I2C2	I2C3
7-bit addressing mode	Х	Х	Х
10-bit addressing mode	Х	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х	Х
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)	х	X ⁽²⁾	х
Independent clock	Х	-	Х
SMBus	Х	-	Х
Wakeup from STOP	Х	-	Х

1. X = supported.

2. See Table 15: STM32L071xxx pin definition on page 39 for the list of I/Os that feature Fast Mode Plus capability

1 2 3	5 6 7	8 9 10	11 12	
A (PE3) (PE1) (PB8) BO	DT0(PD7)(PD5)(PB4) (PB3) (PA15) (PA14)	(PA13) (PA1	12)
в (РЕ4) (РЕ2) (РВ9) (Р	B7) I PB6) I PD6) I PD4) (PD3) (PD1) (PC12)	(PA1	11)
c PC13) (PE5) (PE0) (VI	DD) (PB5)	(PD2) (PD0) (PC11)	(VDD) (PA1	10)
D QSC32 (PE6) (VSS)		I PA9	(PA8) (PC9	9)
E OSC32 (VDD) (VSS)		(PC8)) (PC7) (PC	;6)
F OSC_IN (PH9)			(vss) (vss	s)
			(VDD) (VDD	$\tilde{\mathbf{b}}$
		(PD15)	(PD14) (PD1	13)
J (VSSA) (PC1) (PC2)		(PD12)	(PD11) (PD1	10)
K (PC3) (PA2) (PA2) (PA2)	(PC4)	(PD9) (PD8) (PB15)) (PB14) (PB1	13)
	6) (PC5) (PB2) (PE8) (PE10) (PE12) (PB10)	(PB11) PB12	2)
M (VDDA) (PA1) (PA4) (F	A7) (PB0) (PB1) (PE7) (PE9) (PE11) (PE13)	IPE14) IPE1	\ 15) ~
L				

Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

DocID027101 Rev 3

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

1. The above figure shows the package top view.

- 1. The above figure shows the package top view.
- 2. I/O supplied by VDDIO2.

Nar	ne	Abbreviation	Definition				
Pin name Unless otherwise specified in brackets below the pin name, the pin function durin and after reset is the same as the actual pin name			ed in brackets below the pin name, the pin function during ne as the actual pin name				
		S	Supply pin				
Pin t	уре	I	Input only pin				
		I/O	Input / output pin				
		FT	5 V tolerant I/O				
		FTf	5 V tolerant I/O, FM+ capable				
I/O structure		тс	Standard 3.3V I/O				
		В	Dedicated BOOT0 pin				
		RST	Bidirectional reset pin with embedded weak pull-up resistor				
Not	es	Unless otherwise specifie after reset.	ed by a note, all I/Os are set as floating inputs during and				
Alternate functions Functions selected through GPIOx_AFR registers							
	Additional functions	Functions directly selecte	ed/enabled through peripheral registers				

Table 14.	Legend/abbreviations	s used in	the pinout	table
-----------	----------------------	-----------	------------	-------

Symbol	Parameter	Conditions	Min	Max	Unit
		Maximum power dissipation (range 6)	-40	85	
Та	Temperature range	Maximum power dissipation (range 7)	-40	105	
		Maximum power dissipation (range 3)	-40	125	°C
	Junction temperature range (range 6)	-40 °C \leq T _A \leq 85 °	-40	105	
TJ	Junction temperature range (range 7)	-40 °C \leq T _A \leq 105 °C	-40	125	
	Junction temperature range (range 3)	-40 °C \leq T _A \leq 125 °C	-40	130	

 Table 25. General operating conditions (continued)

1. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and normal operation.

2. To sustain a voltage higher than $V_{\text{DD}}\text{+}0.3\text{V}\text{,}$ the internal pull-up/pull-down resistors must be disabled.

3. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_J max (see *Table 24: Thermal characteristics on page 56*).

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 25*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		BOR detector enabled	0	-	∞	
	V _{DD} rise time rate	BOR detector disabled	0	-	1000	
tvdd(''		BOR detector enabled	20	-	x	µs/v
	V _{DD} fail time rate	BOR detector disabled	0	-	1000	
T (1)	Deast temperinetien	V _{DD} rising, BOR enabled	-	2	3.3	
^I RSTTEMPO ⁽¹⁾	Reset temporization	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms
N	Power on/power down reset	Falling edge	1	1.5	1.65	
VPOR/PDR	threshold	Rising edge	1.3	1.5	1.65	
		Falling edge	1.67	1.7	1.74	
VBOR0	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8	
N		Falling edge	1.87	1.93	1.97	
VBOR1	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07	
V	Drawn out react threaded 2	Falling edge	2.22	2.30	2.35	
V _{BOR2}	Brown-out reset threshold 2	Rising edge	2.31	2.41	2.44	
V	Drawn out react threaded 2	Falling edge	2.45	2.55	2.6	
VBOR3	Brown-out reset threshold 3	Rising edge	2.54	2.66	2.7	
N/	Drawn out react threaded 4	Falling edge	2.68	2.8	2.85	
VBOR4	Brown-out reset threshold 4	Rising edge	2.78	2.9	2.95	
V	Programmable voltage detector	Falling edge	1.8	1.85	1.88	v
VPVD0	threshold 0	Rising edge	1.88	1.94	1.99	
V	D\/D threehold 1	Falling edge	1.98	2.04	2.09	
VPVD1	PVD threshold 1	Rising edge	2.08	2.14	2.18	
M	D\/D threehold 2	Falling edge	2.20	2.24	2.28	
VPVD2		Rising edge	2.28	2.34	2.38	
N	D\/D threehold 2	Falling edge	2.39	2.44	2.48	
VPVD3		Rising edge	2.47	2.54	2.58	
M	D\/D threehold 4	Falling edge	2.57	2.64	2.69	
VPVD4		Rising edge	2.68	2.74	2.79	
V	DVD throohold 5	Falling edge	2.77	2.83	2.88	
VPVD5	FVD Infestiona 5	Rising edge	2.87	2.94	2.99	

Table 26. Embedded reset and power control block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{LPBUF} ⁽⁴⁾	Consumption of reference voltage buffer for VREF_OUT and COMP	-	-	730	1200	nA
V _{REFINT_DIV1} ⁽⁴⁾	1/4 reference voltage	-	24	25	26	
V _{REFINT_DIV2} ⁽⁴⁾	1/2 reference voltage	-	49	50	51	% Vrefinit
V _{REFINT_DIV3} ⁽⁴⁾	3/4 reference voltage	-	74	75	76	

Table 28. Embedded internal reference voltage⁽¹⁾ (continued)

1. Refer to *Table 40: Peripheral current consumption in Stop and Standby mode* for the value of the internal reference current consumption (I_{REFINT}).

2. Guaranteed by test in production.

3. The internal V_{REF} value is individually measured in production and stored in dedicated EEPROM bytes.

4. Guaranteed by design.

5. Shortest sampling time can be determined in the application by multiple iterations.

6. To guarantee less than 1% VREF_OUT deviation.

6.3.4 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in *Figure 15: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise.

The current consumption values are derived from the tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 25: General operating conditions* unless otherwise specified.

The MCU is placed under the following conditions:

- All I/O pins are configured in analog input mode
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified.
- When the peripherals are enabled $f_{APB1} = f_{APB2} = f_{APB}$
- When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used)
- The HSE user clock applied to OSCI_IN input follows the characteristic specified in *Table 42: High-speed external user clock characteristics*
- For maximum current consumption $V_{DD} = V_{DDA} = 3.6$ V is applied to all supply pins
- For typical current consumption $V_{DD} = V_{DDA} = 3.0$ V is applied to all supply pins if not specified otherwise

The parameters given in *Table 49*, *Table 25* and *Table 26* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 25*.

Symbol	Parameter	Conditio	n	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Denge2	1	175	230	
			Vcore=1.2 V	2	315	360	μA
			VOS[1:0]=11	4	570	630	
		f _{HSE} = f _{HCLK} up to	Range2	4	0,71	0,78	
l (Bup		16 MHz included, fuer = fuer/2 above	Vcore=1.5 V	8	1,35	1,6	
		HSE HCL(2 above VOS[1:0]=1 16 MHz (PLL ON) ⁽²⁾ Range1, Vcore=1.8 VOS[1:0]=0	VOS[1:0]=10	16	2,7	3	μA
	Supply current in Run mode code executed from RAM, Flash memory switched off		Range1, Vcore=1.8 V VOS[1:0]=01	8	1,7	1,9	
				16	3,2	3,7	
from RAM)				32	6,65	7,1	
			Range3, Vcore=1.2 V	0,065	38	98	
		MSI clock		0,524	105	160	
			VOS[1:0]=11	4,2	615	710	
		HSI clock source (16 MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	2,85	3	٣٨
			Range1, Vcore=1.8 V VOS[1:0]=01	32	6,85	7,3	ША

Table 31. Current consumption in Run mode, code with data processing running from RAM

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Table 32. Current consumption in Run mode vs code type,code with data processing running from RAM⁽¹⁾

Symbol	Parameter	Conditions			f _{HCLK}	Тур	Unit
				Dhrystone		570	
I _{DD} (Run from RAM)		f _{HSE} = f _{HCLK} up to 16 MHz included, f _{HSE} = f _{HCLK} /2 above 16 MHz (PLL on) ⁽²⁾	Range 3,	CoreMark	4 M⊔→	670	
	Supply current in Run mode, code executed from RAM, Flash		V _{CORE} =1.2 V, VOS[1:0]=11	Fibonacci		410	μΑ
				while(1)		375	
				Dhrystone		6,65	
	off		Range 1,	CoreMark	22 M⊔ -	6,95	m۸
			V _{CORE} -1.6 V, VOS[1:0]=01	Fibonacci		5,9	ШA
				while(1)		5,2	

1. Guaranteed by characterization results, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
I _{DD} (Stop)	Supply current in Stop mode	$T_A = -40$ to 25°C	0,43	1,00	
		T _A = 55°C	0,735	2,50	
		T _A = 85°C	2,25	4,90	μA
		T _A = 105°C	5,3	13,00	
		T _A = 125°C	12,5	28,00	

Table 36. Typical and maximum current consumptions in Stop mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

Figure 20. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

Table 37. T	vpical and	maximum	current	consum	otions i	n Standb	v mode
	ypical alla	maximum	current	consum	puons n	1 Otaniab	y mouc

Symbol	Parameter	Conditions		Тур	Max ⁽¹⁾	Unit
I _{DD}			$T_{A} = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
			T _A = 55 °C	-	2,90	
		Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30	
	Supply current in Standby mode		T _A = 105 °C	-	4,10	1
			T _A = 125 °C	-	8,50	
(Standby)			T _A = − 40 to 25°C	0,29	0,60	μΑ
			T _A = 55 °C	0,32	1,20	-
		Independent watchdog and LSI off	T _A = 85 °C	0,5	2,30	
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

Low-speed external user clock generated from an external source

The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 25*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle	-	45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1	μA

Table 43. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design, not tested in production

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 45*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter Conditions ⁽²⁾		Min ⁽²⁾	Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
G _m		LSEDRV[1:0]=00 lower driving capability	-	-	0.5	
	Maximum critical crystal transconductance	LSEDRV[1:0]= 01 medium low driving capability	-	-	0.75	
		LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	μΑνν
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S

	Table 4	5. LSE	oscillator	characteristics ⁽¹⁾
--	---------	--------	------------	--------------------------------

1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

DocID027101 Rev 3

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

 Table 51. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Cumhal	Devenedar	Conditions	Value	11
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T. – -40°C to 105 °C	10	
	Cycling (erase / write) EEPROM data memory		100	kovoles
	Cycling (erase / write) Program memory	T. – -40°C to 125 °C	0.2	Reycies
	Cycling (erase / write) EEPROM data memory		2	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T = +85 °C	30	
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	TRET - 100 C	30	
t(2)	Data retention (program memory) after 10 kcycles at T _A = 105 °C	T = +105 °C		veare
t _{RET} ⁽²⁾	Data retention (EEPROM data memory) after 100 kcycles at T _A = 105 °C	1 RET = 1100 0	- 10	ycars
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T = +125 °C		
	Data retention (EEPROM data memory) after 2 kcycles at $T_A = 125 \degree C$	1 RET - 123 C		

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 53*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 3.3$ V, LQFP100, $T_A = +25$ °C, f _{HCLK} = 32 MHz conforms to IEC 61000-4-4	4A

Table 53. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence oscillator frequency deviation).

The test results are given in the Table 57.

Symbol		Functional susceptibility			
	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on BOOT0	-0	NA	mA	
	Injected current on PA0, PA4, PA5, PC15, PH0 and PH1	-5	0		
	Injected current on any other FT, FTf pins	-5 ⁽¹⁾	NA		
	Injected current on any other pins	-5 ⁽¹⁾	+5		

Table 57. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

I2S characteristics

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
f _{CK}	I2S clock frequency	Master data: 32 bits	-	64xFs	MHz
		Slave data: 32 bits	-	64xFs	
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	15	
t _{h(WS)}	WS hold time	Master mode	11	-	
t _{su(WS)}	WS setup time	Slave mode	6	-	
t _{h(WS)}	WS hold time	Slave mode	2	-	
$t_{su(SD_MR)}$	Data input actua timo	Master receiver	0	-	
$t_{su(SD_SR)}$		Slave receiver	6.5	-	ne
t _{h(SD_MR)}	Data input hold time	Master receiver	18	-	115
t _{h(SD_SR)}	Data input noid time	Slave receiver	15.5	-	
$t_{v(SD_ST)}$	Data output valid timo	Slave transmitter (after enable edge)	-	77	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	8	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	18	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	1.5	-	

Table 75. I2S characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. 256xFs maximum value is equal to the maximum clock frequency.

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

Figure 55. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID027101 Rev 3

Device marking for UFQFPN32

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

