

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	40
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 13x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	49-UFBGA, WLCSP
Supplier Device Package	49-WLCSP (3.29x3.26)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071czy6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.1 Device overview

Table 2. Ultra-low-	power STM32L071xx	device features ar	d peripheral counts

Perip	heral								STM32L 071VZ	STM32L 071RZ		
Flash (Kbytes) 64 Kbytes 128 Kbytes 192 Kbytes							oytes					
Data EEPRO	OM (Kbytes)	Kbytes) 3 Kbytes 6 Kbytes										
RAM (Kbyte	s)						20 Kbytes					
	General- purpose						4					
Timers	Basic						2					
	LPTIMER						1					
RTC/SYST /WW							1/1/1/1					
	SPI/I2S	4(3) ⁽¹⁾ /0	6(4)	⁽²⁾ /1	4(3) ⁽¹⁾ /0		6(4) ⁽²⁾ /1		4(3) ⁽¹⁾ /0	3) ⁽¹⁾ /0 6(4) ⁽²⁾ /1		
Com. interfaces	l ² C	2	2 3			3			2	3		
	USART	3	3 4				4			4		
	LPUART	1										
GPIOs		23	37	84	25 ⁽³⁾	40 ⁽⁴⁾	84	51 ⁽⁵⁾	25 ⁽³⁾	40 ⁽⁴⁾	84	51 ⁽⁵⁾
Clocks: HSE/LSE/H	SI/MSI/LSI						1/1/1/1/1					
12-bit synch ADC Number of o		1 10	1 13	1 16						1 16	1 16 ⁽⁵⁾	
Comparator	s		2									
Max. CPU fr	equency	32 MHz										
Operating v	oltage		1.8 V to	o 3.6 V (dov	vn to 1.65 V	at power-do	wn) with B0	OR option 1	1.65 to 3.6 V	/ without BOF	R option	
Operating temperatures						Ambient temperature: -40 to +125 °C Junction temperature: -40 to +130 °C						
Packages		UFQFPN 32	LQFP48	LQFP/ UFBGA 100	UFQFPN/ LQFP32	LQFP48, WLCSP49	LQFP/ UFBGA 100	LQFP/ TFBGA 64	UFQFPN/ LQFP32	LQFP48, WLCSP49	LQFP/ UFBGA 100	LQFP/ TFBGA 64

1. 3 SPI interfaces are USARTs operating in SPI master mode.

2. 4 SPI interfaces are USARTs operating in SPI master mode.

3. UFQFPN32 has 2 GPIOs less than LQFP32.

4. LQFP48 has three GPIOs less than WLCSP49.

5. TFBGA64 has one GPIO, one ADC input less than LQFP64.

Table 3. Functionalities de	pending on the or	perating power sup	ply range (continued)

Operating power supply	Functionalities de	pending on the opera	ting power supply range
range	ADC operation	Dynamic voltage scaling range	I/O operation
V _{DD} = 2.0 to 2.4 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation
V _{DD} = 2.4 to 3.6 V	Conversion time up to 1.14 Msps	Range 1, range 2 or range 3	Full speed operation

CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5
µs delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2
MHz to 16 MHz, wait 5 μs, then switch from 16 MHz to 32 MHz.

Table 4. CPU frequency range	depending on d	ynamic voltage scaling

CPU frequency range	Dynamic voltage scaling range
16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws)	Range 1
8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws)	Range 2
32 kHz to 4.2 MHz (0ws)	Range 3

Table 5. Functionalities depending on the working mode(from Run/active down to standby) (1)(2)

			Low-	Low-		Stop	S	Standby
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
CPU	Y		Y					
Flash memory	0	0	0	0				
RAM	Y	Y	Y	Y	Y			
Backup registers	Y	Y	Y	Y	Y		Y	
EEPROM	0	0	0	0				
Brown-out reset (BOR)	0	0	0	0	0	0	0	0
DMA	0	0	0	0				
Programmable Voltage Detector (PVD)	0	0	0	Ο	0	0	-	
Power-on/down reset (POR/PDR)	Y	Y	Y	Y	Y	Y	Y	Y
High Speed Internal (HSI)	0	0			(3)			

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop			
RTC	TIM21	Timer triggered by Auto wake-up	Y	Y	Y	Y	-			
RIC	LPTIM	Timer triggered by RTC event	Y	Y	Y	Y	Y			
All clock source	TIMx	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-			
	TIMx	Mx Timer input channel and trigger		Y	Y	Y	-			
GPIO	LPTIM	Timer input channel and trigger	Y	Y	Y	Y	Y			
	ADC	Conversion trigger	Y	Y	Y	Y	-			

Table 6. STM32L0xx peripherals interconnect matrix (continued)

3.3 ARM[®] Cortex[®]-M0+ core with MPU

The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- a simple architecture that is easy to learn and program
- ultra-low power, energy-efficient operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with Cortex-M processor family
- platform security robustness, with integrated Memory Protection Unit (MPU).

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

Owing to its embedded ARM core, the STM32L071xx are compatible with all ARM tools and software.

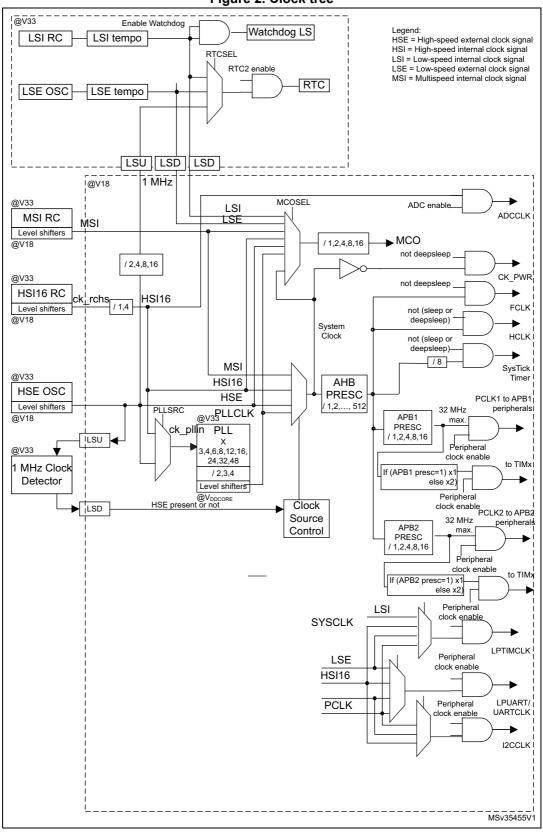


Figure 2. Clock tree

DocID027101 Rev 3


1 2 3 4 5 6 7 8 9 10 11 12	12
A (PE3) (PE1) (PB8) BOOTD (PD7) (PD5) (PB4) (PB3) (PA15) (PA14) (PA13) (PA	PA12)
● _ ヽ_ノ`ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ	PA11)
c (PD2) (PD0) (PC11) (VDD) (PB5) (PD2) (PD0) (PC11) (VDD) (PA	PA10)
	PC9)
_our _/ _/ _/	PC6)
	vss)
	VDD)
н (PC0) (NRSţ (VDD) (PD15) (PD14) (PD	PD13
J (VSSA) (PC1) (PC2) (PD12 (PD11) (PD	PD10)
K (VREF) (PC3) (PA2) (PA5) (PC4) (PD9) (PD8) (PB15) (PB14) (PB	рв13)
	у- рв12)
M (VDDA) (PA1) (PA4) (PA7) (PB0) (PB1) (PE7) (PE9) (PE11) (PE13) (PE14) (PE	PE15)

Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

DocID027101 Rev 3

	i igure o							-	
	1	2	3	4	5	6	7	8	
А	PC14 OSC32 `_4₩	(PC13)	(PB9)	(PB4)	(PB3)	(PA15)	(PA14)	(PA13)	
В	PC75 OSC32 _OUT		(PB8)		(PD2)	(PC11)	(PC10)	(PA12)	
С	/PHO-1 OSC_IN	(vss)	(PB7)	(PB5)	(PC12)	(PA10)	(PA9)	(PA11)	
D	, ₽Пѣ (osc) ∖QUI		(PB6)	(vss)	(vss)	(vss)	(PA8)	(PC9)	
E		(PC1)	(PC0)				(PC7)	(PC8)	
F	(VSSA)	(PC2)	(PA2)	(PA5)	(PB0)	(PC6)	(PB15)	(PB14)	
G		(PA0)	(PA3)	(PA6)	(PB1)	(PB2)	(PB10)	(PB13)	
Н	(VDDA)	(PA1)	(PA4)	(PA7)	(PC4)	(PC5)	(PB11)	(PB12)	

Figure 6. STM32L071xx TFBGA64 ballout - 5x 5 mm

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

		l	Pin n	umb	er			JIE 13. 311032					
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	-	-	1	B2	PE2	I/O	FT	-	TIM3_ETR	-
-	-	-	-	-	-	2	A1	PE3	I/O	FT	-	TIM22_CH1, TIM3_CH1	-
-	-	-	-	-	-	3	B1	PE4	I/O	FT	-	TIM22_CH2, TIM3_CH2	-
-	-	-	-	-	-	4	C2	PE5	I/O	FT	-	TIM21_CH1, TIM3_CH3	-
-	-	-	-	-	-	5	D2	PE6	I/O	FT	-	TIM21_CH2, TIM3_CH4	RTC_TAMP3/WKUP3
1	-	1	1	B2	B6	6	E2	VDD	S		-	-	-
-	-	2	2	A2	В7	7	C1	PC13	I/O	FT	-	-	RTC_TAMP1/ RTC_TS/ RTC_OUT/WKUP2
2	1	3	3	A1	C6	8	D1	PC14- OSC32_IN (PC14)	I/O	FT	-	-	OSC32_IN
3	2	4	4	B1	C7	ся	E1	PC15- OSC32_OUT (PC15)	I/O	тс	-	-	OSC32_OUT
-	-	1	-	-	-	10	F2	PH9	I/O	FT	I	-	-
-	-	-	-	-	-	11	G2	PH10	I/O	FT	-	-	-
-	-	5	5	C1	D6	12	F1	PH0-OSC_IN (PH0)	I/O	тс	-	-	OSC_IN
-	-	6	6	D1	D7	13	G1	PH1- OSC_OUT (PH1)	I/O	тс	-	-	OSC_OUT
4	3	7	7	E1	D5	14	H2	NRST	I/O	-	-	-	-
-	-	-	8	E3	C5	15	H1	PC0	I/O	FTf	-	LPTIM1_IN1, EVENTOUT, LPUART1_RX, I2C3_SCL	ADC_IN10
-	-	-	9	E2	C4	16	J2	PC1	I/O	FTf	-	LPTIM1_OUT, EVENTOUT, LPUART1_TX, I2C3_SDA	ADC_IN11
-	-	-	10	F2	E7	17	J3	PC2	I/O	FTf	-	LPTIM1_IN2, SPI2_MISO/I2S2_MCK	ADC_IN12

Table 15. STM32L071xxx pin definition

Pin number													
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	-	-	-	81	C9	PD0	I/O	FT	-	TIM21_CH1, SPI2_NSS/I2S2_WS	-
-	-	-	-	-	-	82	B9	PD1	I/O	FT	-	SPI2_SCK/I2S2_CK	-
-	-	-	54	В5	-	83	C8	PD2	I/O	FT	-	LPUART1_RTS_DE, TIM3_ETR, USART5_RX	-
-	-	-	-	-	-	84	B8	PD3	I/O	FT	-	USART2_CTS, SPI2_MISO/I2S2_MCK	-
-	-	-	-	-	-	85	B7	PD4	I/O	FT	-	USART2_RTS_DE, SPI2_MOSI/I2S2_SD	-
-	-	-	-	-	-	86	A6	PD5	I/O	FT	-	USART2_TX	-
-	-	-	-	-	-	87	B6	PD6	I/O	FT	-	USART2_RX	-
-	-	-	-	-	-	88	A5	PD7	I/O	FT	-	USART2_CK, TIM21_CH2	-
26	-	39	55	A5	A3	89	A8	PB3	I/O	FT	-	SPI1_SCK, TIM2_CH2, EVENTOUT, USART1_RTS_DE, USART5_TX	COMP2_INM
27	26	40	56	A4	В3	90	A7	PB4	I/O	FTf	-	SPI1_MISO, TIM3_CH1, TIM22_CH1, USART1_CTS, USART5_RX, I2C3_SDA	COMP2_INP
28	27	41	57	C4	A4	91	C5	PB5	I/O	FT	-	SPI1_MOSI, LPTIM1_IN1, I2C1_SMBA, TIM3_CH2/TIM22_CH2, USART1_CK, USART5_CK/USART5_ RTS_DE	COMP2_INP
29	28	42	58	D3	В4	92	B5	PB6	I/O	FTf	-	USART1_TX, I2C1_SCL, LPTIM1_ETR,	COMP2_INP

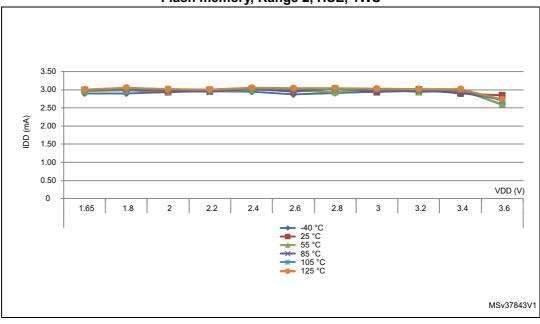
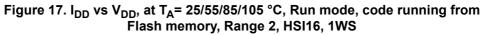
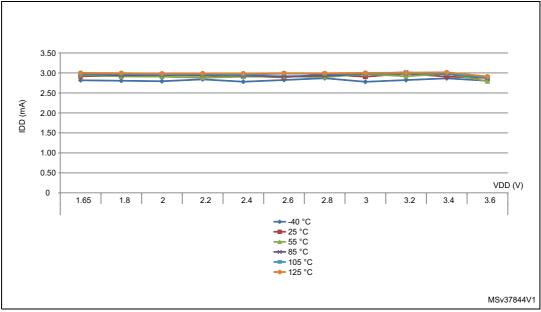




Figure 16. I_{DD} vs V_{DD} , at T_A= 25/55/85/105 °C, Run mode, code running from Flash memory, Range 2, HSE, 1WS

		Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C					
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01		Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit	
	GPIOA	3.5	3	2.5	2.5		
	GPIOB	3.5	2.5	2	2.5		
Cortex- M0+ core	GPIOC	8.5	6.5	5.5	7	µA/MHz	
I/O port	GPIOD	1	0.5	0.5	0.5	(f _{HCLK})	
	GPIOE	8	6	5	6		
	GPIOH	1.5	1	1	0.5		
	CRC	1.5	1	1	1		
AHB	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	µA/MHz (f _{HCLK})	
	DMA1	10	8	6.5	8.5	(Inclk)	
All enabled		204	162	130	202	µА/МНz (f _{HCLK})	
PWR		2.5	2	2	1	µA/MHz (f _{HCLK})	

Table 39. Periph	neral current consum	ption in Run or S	Sleep mode ⁽¹⁾	(continued)

 Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 μ A.

Symbol	Parameter	Conditions	Тур	Мах	Unit
		f _{HCLK} = f _{MSI} = 4.2 MHz	5.0	8	
	Wakeup from Stop mode, regulator in Run mode	f _{HCLK} = f _{HSI} = 16 MHz	4.9	7	
		f _{HCLK} = f _{HSI} /4 = 4 MHz	8.0	11	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 1	5.0	8	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 2	5.0	8	
		f _{HCLK} = f _{MSI} = 4.2 MHz Voltage range 3	5.0	8	
		f _{HCLK} = f _{MSI} = 2.1 MHz	7.3	13	μs
t _{WUSTOP}	Wakeup from Stop mode, regulator in low- power mode	f _{HCLK} = f _{MSI} = 1.05 MHz	13	23	
		f _{HCLK} = f _{MSI} = 524 kHz	28	38	
		f _{HCLK} = f _{MSI} = 262 kHz	51	65	
		f _{HCLK} = f _{MSI} = 131 kHz	100	120	
		f _{HCLK} = MSI = 65 kHz	190	260	
		f _{HCLK} = f _{HSI} = 16 MHz	4.9	7	
		f _{HCLK} = f _{HSI} /4 = 4 MHz	8.0	11	
		f _{HCLK} = f _{HSI} = 16 MHz	4.9	7	
	Wakeup from Stop mode, regulator in low- power mode, code running from RAM	f _{HCLK} = f _{HSI} /4 = 4 MHz	7.9	10	
		f _{HCLK} = f _{MSI} = 4.2 MHz	4.7	8	
tumorpris	Wakeup from Standby mode FWU bit = 1	f _{HCLK} = MSI = 2.1 MHz	65	130	
^t wustdby	Wakeup from Standby mode FWU bit = 0	f _{HCLK} = MSI = 2.1 MHz	2.2	8 7 11 8 8 8 8 13 23 38 65 120 260 7 11 7 10 8	ms

Table 41. Low-power mode wakeup timings (continued)

Symbol	Parameter	Condition	Тур	Мах	Unit	
		MSI range 0	0.75	-		
		MSI range 1	1	-		
		MSI range 2	1.5	-		
I _{DD(MSI)} ⁽²⁾	MSI oscillator power consumption	MSI range 3	2.5	-	μA	
		MSI range 4	4.5	-		
		MSI range 5	8	-		
		MSI range 6	15	-		
		MSI range 0	30	-		
		MSI range 1	20	-		
		MSI range 2	15	-		
		MSI range 3	10	-	μs	
tournon	MSI oscillator startup time	MSI range 4	6	-		
t _{SU(MSI)}		MSI range 5	5	-		
		MSI range 6, Voltage range 1 and 2	3.5	-		
		MSI range 6, Voltage range 3	5	-		
		MSI range 0	-	40	-	
		MSI range 1	-	20		
		MSI range 2	-	10		
		MSI range 3	-	4		
t _{STAB(MSI)} ⁽²⁾	MSI oscillator stabilization time	MSI range 4	-	2.5	μs	
•STAB(MSI)		MSI range 5	-	2	μο	
		MSI range 6, Voltage range 1 and 2	-	2		
		MSI range 3, Voltage range 3	-	3		
former	MSI oscillator frequency overshoot	Any range to range 5	-	4		
f _{OVER(MSI)}		Any range to range 6	-	6	MHz	

Table 48. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. frequency range at 32 MHz	Unit	
e		$V_{DD} = 3.6 V,$	0.1 to 30 MHz	-7		
	Peak level		30 to 130 MHz	14	dBµV	
S _{EMI}	reak level		130 MHz to 1 GHz	9		
			EMI Level	2	-	

Table #	54. EMI	characteristics
---------	---------	-----------------

6.3.11 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the ANSI/JEDEC standard.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \text{ °C},$ conforming to ANSI/JEDEC JS-001	2	2000	v
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \text{ °C},$ conforming to ANSI/ESD STM5.3.1.	C4	500	

1. Guaranteed by characterization results.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 56. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +125$ °C conforming to JESD78A	II level A

SPI characteristics

Unless otherwise specified, the parameters given in the following tables are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 25*.

Refer to *Section 6.3.12: I/O current injection characteristics* for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		Master mode			16	
		Slave mode receiver	-	-	16	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode Transmitter 1.71 <v<sub>DD<3.6V</v<sub>	-	-	12 ⁽²⁾	MHz
		Slave mode Transmitter 2.7 <v<sub>DD<3.6V</v<sub>	-	-	16 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+ 2	
t _{su(MI)}	Data input setup time	Master mode	0	-	-	
t _{su(SI)}		Slave mode	3	-	-	
t _{h(MI)}	Data input hold time	Master mode	7	-	-	
t _{h(SI)}	Data input noid time	Slave mode	3.5	-	-	ns
t _{a(SO}	Data output access time	Slave mode	15	-	36	
t _{dis(SO)}	Data output disable time	Slave mode	10	-	30	
+		Slave mode 1.65 V <v<sub>DD<3.6 V</v<sub>	-	18	41	
t _{v(SO)}	Data output valid time	Slave mode 2.7 V <v<sub>DD<3.6 V</v<sub>	-	18	25	
t _{v(MO)}]	Master mode	-	4	7	
t _{h(SO)}	Data output hold time	Slave mode	10	-	-	
t _{h(MO)}		Master mode	0	-	-	

Table 72. SPI characteristics	s in voltage Range 1 ⁽¹⁾
-------------------------------	-------------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

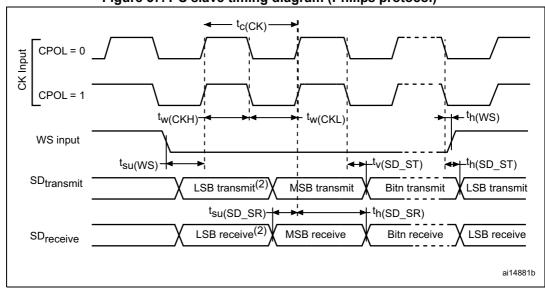
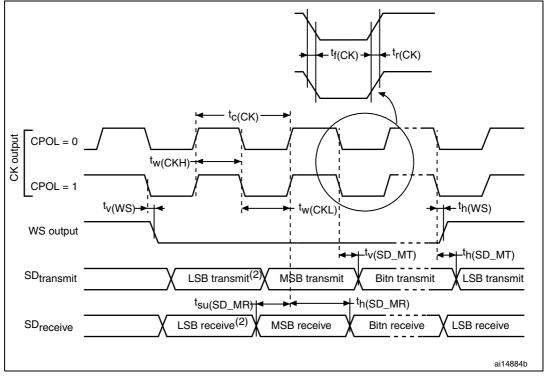



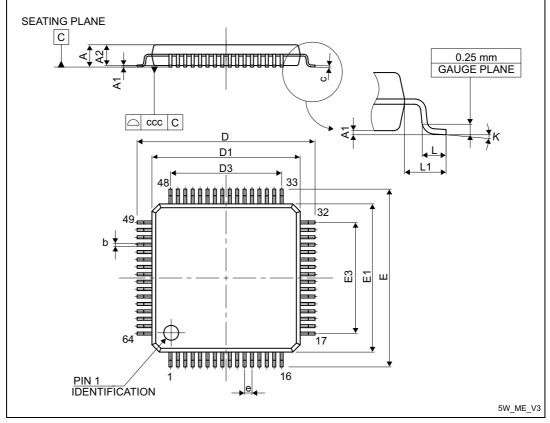
Figure 37. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 38. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

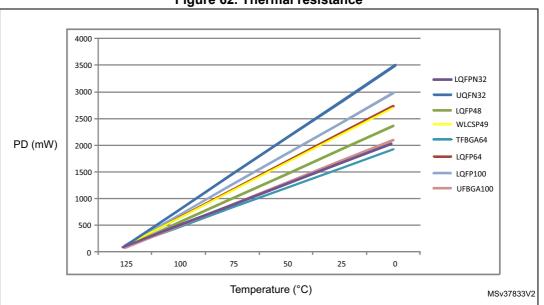
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031


Table 76. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.3 LQFP64 package information

Figure 44. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline



1. Drawing is not to scale.

Table 79. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat		
package mechanical data		

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

7.9.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org.

9 Revision history

Date	Revision	Changes	
02-Sep-2015	1	Initial release	
26-Oct-2015	2	Changed confidentiality level to public. Updated datasheet status to "production data". Modified ultra-low-power platform features on cover page. In <i>Table 15: STM32L071xxx pin definition</i> : – changed pin name to VDDIO2 for the following pins: UFQFPN32 pin 24, LQFP48 pin 36, LQFP64 pin 48, UFBGA64 pin E5, WLCSP49 pin A1, LQFP100 pin 75 and UFBGA100 pin G11. – Added note related to UFQFPN32. In <i>Section 6: Electrical characteristics</i> , updated notes related to values guaranteed by characterization. Updated ΔV _{SS} definition to include V _{REF-} in <i>Table 22: Voltage</i> <i>characteristics</i> . Updated f _{TRIG} and V _{AIN} maximum value, added V _{REF+} and V _{REF-} in <i>Table 62: ADC characteristics</i> . Added Section : Device marking for LQFP100. Updated Figure 42: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline and Table 76: LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data. Added Section : Device marking for LQFP100, Section : Device marking for LQFP64, Section : Device marking for TFBGA64 and Section : Device marking for WLCSP49. Updated Figure 55: LQFP48 marking example (package top view).	

Table 89. Document revision history

