

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6К х 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 15x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071rbh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		3.15.1	I2C bus	0							
		3.15.2	Universal synchronous/asynchronous receiver transmitter (USART) 3	1							
		3.15.3	Low-power universal asynchronous receiver transmitter (LPUART) 3	1							
		3.15.4	Serial peripheral interface (SPI)/Inter-integrated sound (I2S)	2							
	3.16	Cyclic re	edundancy check (CRC) calculation unit	2							
	3.17	Serial w	ire debug port (SW-DP) 3	2							
4	Pin de	escripti	ons	3							
5	Memo	ory map	ping	2							
6	Electr	Electrical characteristics									
	6.1	Parame	ter conditions	3							
		6.1.1	Minimum and maximum values	3							
		6.1.2	Typical values	3							
		6.1.3	Typical curves	3							
		6.1.4	Loading capacitor	3							
		6.1.5	Pin input voltage	3							
		6.1.6	Power supply scheme	4							
		6.1.7	Current consumption measurement5	4							
	6.2	Absolute	e maximum ratings	5							
	6.3	Operatir	ng conditions	7							
		6.3.1	General operating conditions	57							
		6.3.2	Embedded reset and power control block characteristics	9							
		6.3.3	Embedded internal reference voltage6	0							
		6.3.4	Supply current characteristics	;1							
		6.3.5	Wakeup time from low-power mode	3							
		6.3.6	External clock source characteristics	5							
		6.3.7	Internal clock source characteristics7	'9							
		6.3.8	PLL characteristics	2							
		6.3.9	Memory characteristics	2							
		6.3.10	EMC characteristics	3							
		6.3.11	Electrical sensitivity characteristics	6							
		6.3.12	I/O current injection characteristics	7							
		6.3.13	I/O port characteristics	8							
		6.3.14	NRST pin characteristics9	2							
		6.3.15	12-bit ADC characteristics9	3							

DocID027101 Rev 3

2.1 Device overview

Table 2. Ultra-low-	power STM32L071xx	device features ar	d peripheral counts

Peripheral		STM32L 071K8	STM32L 071C8	STM32L 071V8	STM32L 071KB	STM32L 071CB	STM32L 071VB	STM32L 071RB	STM32L 071KZ	STM32L 071CZ	STM32L 071VZ	STM32L 071RZ	
Flash (Kbyt	es)		64 Kbytes			128 Kb	ytes		192 Kbytes				
Data EEPRO	OM (Kbytes)		3 Kbytes					6 Ki	oytes				
RAM (Kbyte	s)						20 Kbytes						
	General- purpose		4										
Timers	Basic		2										
	LPTIMER		1										
RTC/SYST /WW							1/1/1/1						
	SPI/I2S	4(3) ⁽¹⁾ /0 6(4) ⁽²⁾ /1			4(3) ⁽¹⁾ /0		6(4) ⁽²⁾ /1			6(4) ⁽²⁾ /1			
Com.	l ² C	2	2 3			3			2	3			
interfaces	USART	3	3 4			4			3	4			
	LPUART						1						
GPIOs		23	37	84	25 ⁽³⁾	40 ⁽⁴⁾	84	51 ⁽⁵⁾	25 ⁽³⁾	40 ⁽⁴⁾	84	51 ⁽⁵⁾	
Clocks: HSE/LSE/H	SI/MSI/LSI	1/1/1/1/1											
12-bit synch ADC Number of o		1 10	1 13	1 16	1 10	1 13 ⁽⁴⁾	1 16	1 16 ⁽⁵⁾	1 10	1 13 ⁽⁴⁾	1 16	1 16 ⁽⁵⁾	
Comparator	s						2						
Max. CPU fr	equency						32 MHz						
Operating v	oltage		1.8 V to	o 3.6 V (dov	vn to 1.65 V	at power-do	wn) with B0	OR option 1	1.65 to 3.6 V	/ without BOF	R option		
Operating temperature	es	Ambient temperature: -40 to +125 °C Junction temperature: -40 to +130 °C											
Packages		UFQFPN 32	LQFP48	LQFP/ UFBGA 100	UFQFPN/ LQFP32	LQFP48, WLCSP49	LQFP/ UFBGA 100	LQFP/ TFBGA 64	UFQFPN/ LQFP32	LQFP48, WLCSP49	LQFP/ UFBGA 100	LQFP/ TFBGA 64	

1. 3 SPI interfaces are USARTs operating in SPI master mode.

2. 4 SPI interfaces are USARTs operating in SPI master mode.

3. UFQFPN32 has 2 GPIOs less than LQFP32.

4. LQFP48 has three GPIOs less than WLCSP49.

5. TFBGA64 has one GPIO, one ADC input less than LQFP64.

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L071xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in $3.5 \,\mu$ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USART/I2C/LPUART/LPTIMER wakeup events.

3.8 Memories

The STM32L071xx devices have the following features:

- 20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses).
- The non-volatile memory is divided into three arrays:
 - 64, 128 or 192 Kbytes of embedded Flash program memory
 - 6 Kbytes of data EEPROM
 - Information block containing 32 user and factory options bytes plus 8 Kbytes of system memory

Flash program and data EEPROM are divided into two banks. This allows writing in one bank while running code or reading data from the other bank.

The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no protection
- Level 1: memory readout protected.

The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected

 Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse)

The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the non-volatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM).

The whole non-volatile memory embeds the error correction code (ECC) feature.

3.9 Boot modes

At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options:

- Boot from Flash memory
- Boot from System memory
- Boot from embedded RAM

The boot loader is located in System memory. It is used to reprogram the Flash memory by using SPI1(PA4, PA5, PA6, PA7) or SPI2 (PB12, PB13, PB14, PB15), I2C1 (PB6, PB7) or I2C2 (PB10, PB11), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32[™] microcontroller system memory boot mode AN2606 for details.

	Pin number						-						
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	11	-	-	18	K2	PC3	I/O	FT	-	LPTIM1_ETR, SPI2_MOSI/I2S2_SD	ADC_IN13
-	4	8	12	F1	-	19	J1	VSSA	S		-	-	-
-	-	-	-	-	-	20	K1	VREF-	S		-	-	-
-	-	I	-	G1	E6	21	L1	VREF+	S		-	-	-
5	5	9	13	H1	F7	22	M1	VDDA	S		-	-	-
6	6	10	14	G2	E5	23	L2	PA0	I/O	ТТа	-	TIM2_CH1, USART2_CTS, TIM2_ETR, USART4_TX, COMP1_OUT	COMP1_INM, ADC_IN0, RTC_TAMP2/WKUP1
7	7	11	15	H2	E4	24	M2	PA1	I/O	FT	-	EVENTOUT, TIM2_CH2, USART2_RTS_DE, TIM21_ETR, USART4_RX	COMP1_INP, ADC_IN1
8	8	12	16	F3	F6	25	K3	PA2	I/O	FT	-	TIM21_CH1, TIM2_CH3, USART2_TX, LPUART1_TX, COMP2_OUT	COMP2_INM, ADC_IN2
9	9	13	17	G3	G7	26	L3	PA3	I/O	FT	-	TIM21_CH2, TIM2_CH4, USART2_RX, LPUART1_RX	COMP2_INP, ADC_IN3
-	-	I	18	C2	-	27	D3	VSS	s	-	-	-	-
-	-	I	19	D2	-	28	H3	VDD	S	-	-	-	-
10	10	14	20	H3	F5	29	М3	PA4	I/O	тс	-	SPI1_NSS, USART2_CK, TIM22_ETR	COMP1_INM, COMP2_INM, ADC_IN4
11	11	15	21	F4	G6	30	K4	PA5	I/O	тс	-	SPI1_SCK, TIM2_ETR, TIM2_CH1	COMP1_INM, COMP2_INM, ADC_IN5

Pin number													
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
12	12	16	22	G4	G5	31	L4	PA6	I/O	FT	_	SPI1_MISO, TIM3_CH1, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT	ADC_IN6
13	13	17	23	H4	F4	32	M4	PA7	I/O	FT	-	SPI1_MOSI, TIM3_CH2, TIM22_CH2, EVENTOUT, COMP2_OUT	ADC_IN7
-	-	-	24	H5	-	33	K5	PC4	I/O	FT	-	EVENTOUT, LPUART1_TX	ADC_IN14
-	-	-	25	H6	-	34	L5	PC5	I/O	FT	-	LPUART1_RX	ADC_IN15
14	14	18	26	F5	G4	35	M5	PB0	I/O	FT	-	EVENTOUT, TIM3_CH3	ADC_IN8, VREF_OUT
15	15	19	27	G5	D3	36	M6	PB1	I/O	FT	-	TIM3_CH4, LPUART1_RTS_DE	ADC_IN9, VREF_OUT
-	-	20	28	G6	E3	37	L6	PB2	I/O	FT	-	LPTIM1_OUT, I2C3_SMBA	-
-	-	I	-	-	-	38	M7	PE7	I/O	FT	I	USART5_CK/USART5_ RTS_DE	-
-	-	-	-	-	-	39	L7	PE8	I/O	FT	-	USART4_TX	-
-	-	-	-	-	-	40	M8	PE9	I/O	FT	-	TIM2_CH1, TIM2_ETR, USART4_RX	-
-	-	-	-	-	-	41	L8	PE10	I/O	FT	-	TIM2_CH2, USART5_TX	-
-	-	-	-	-	-	42	М9	PE11	I/O	FT	-	TIM2_CH3, USART5_RX	-
-	-	-	-	-	-	43	L9	PE12	I/O	FT	-	TIM2_CH4, SPI1_NSS	-
-	-	-	-	-	-	44	M10	PE13	I/O	FT	-	SPI1_SCK	-
-	-	-	-	-	-	45	M11	PE14	I/O	FT	-	SPI1_MISO	-
-	-	-	-	-	-	46	M12	PE15	I/O	FT	-	SPI1_MOSI	-

Table 15. STM32L071xxx pin definition (continued)

			Pin n	umb	er									
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	Pin type I/O structure Note		Alternate functions	Additional functions	
30	29	43	59	C3	C3	93	B4	PB7	I/O	FTf	-	USART1_RX, I2C1_SDA, LPTIM1_IN2, USART4_CTS	COMP2_INP, VREF_PVD_IN	
31	30	44	60	B4	A5	94	A4	BOOT0	Ι		-	-	-	
-	-	45	61	B3	B5	95	A3	PB8	I/O	FTf	-	I2C1_SCL	-	
-	-	46	62	A3	A6	96	В3	PB9	I/O	FTf	-	EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS	-	
-	-	-	-	-	-	97	C3	PE0	I/O	FT	-	EVENTOUT	-	
-	-	-	-	-	-	98	A2	PE1	I/O	FT	I	EVENTOUT	-	
32	31	47	63	D4	-	99	D3	VSS	S		-	-	-	
-	32	48	64	E4	A7	100	C4	VDD	S		-	-	-	

Table 15. STM32L071xxx	pin definition (continued)
------------------------	------------------	------------

1. UFQFPN32 pinout differs from other STM32 devices except STM32L07xxx and STM32L8xxx.

6.3.2 Embedded reset and power control block characteristics

The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in *Table 25*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		BOR detector enabled	0	-	∞		
↓ (1)	V _{DD} rise time rate	BOR detector disabled	0	-	1000		
t _{VDD} ⁽¹⁾		20	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	µs/V		
	V _{DD} fall time rate	BOR detector disabled	0	-	1000		
T (1)	Deast temperization	V _{DD} rising, BOR enabled	-	2	3.3		
RSTTEMPO ⁽¹⁾	Reset temporization	V _{DD} rising, BOR disabled ⁽²⁾	0.4	0.7	1.6	ms	
	Power on/power down reset	Falling edge	1	1.5	1.65		
V _{POR/PDR}	threshold	Rising edge	1.3	1.5	1.65		
		Falling edge	1.67	1.7	1.74		
V _{BOR0}	Brown-out reset threshold 0	Rising edge	1.69	1.76	1.8		
		Falling edge	1.87	1.93	1.97		
V _{BOR1}	Brown-out reset threshold 1	Rising edge	1.96	2.03	2.07		
V _{BOR2}		Falling edge	2.22	2.30	2.35		
	Brown-out reset threshold 2	Rising edge	2.31	2.41	2.44		
V		Falling edge	2.45	2.55	2.6	2.6	
V _{BOR3}	Brown-out reset threshold 3	Rising edge		2.66	2.7		
		Falling edge 2.6		2.8	2.85		
V _{BOR4}	Brown-out reset threshold 4	Rising edge	2.78	2.9	2.95	.,	
	Programmable voltage detector	Falling edge	1.8	1.85	1.88	V	
V _{PVD0}	threshold 0	Rising edge	1.88	1.94	1.99		
		Falling edge	1.98	2.04	2.09		
V _{PVD1}	PVD threshold 1	Rising edge	2.08	2.14	2.18		
		Falling edge	2.20	2.24	2.28		
V _{PVD2}	PVD threshold 2	Rising edge	2.28	2.34	2.38		
		Falling edge	2.39	2.44	2.48		
V _{PVD3}	PVD threshold 3	Rising edge	2.47	2.54	2.58	-	
		Falling edge	2.57	2.64	2.69		
V _{PVD4}	PVD threshold 4	Rising edge	2.68	2.74	2.79		
		Falling edge	2.77	2.83	2.88		
V _{PVD5}	PVD threshold 5	Rising edge	2.87	2.94	2.99		

Table 26. Embedded reset and power control block characteristics

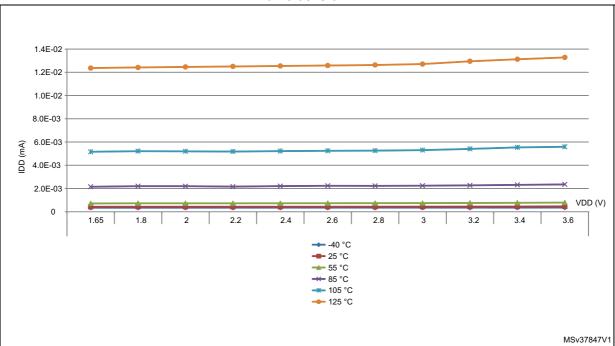


Figure 20. I_{DD} vs V_{DD} , at T_A = 25/55/85/105/125 °C, Stop mode with RTC disabled, all clocks off

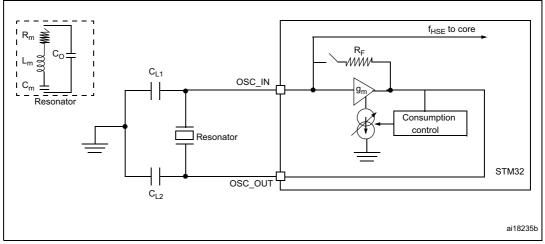
Symbol	Parameter	Conditi	Тур	Max ⁽¹⁾	Unit	
			$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,855	1,70	
			T _A = 55 °C	-	2,90	
		Independent watchdog and LSI enabled	T _A = 85 °C	-	3,30	
			T _A = 105 °C	-	4,10	- μA - μ
I _{DD}	Supply current in Standby		T _A = 125 °C	-	8,50	
(Standby)	mode		$T_A = -40 \text{ to } 25^{\circ}\text{C}$	0,29	0,60	
			T _A = 55 °C	0,32	1,20	
		Independent watchdog and LSI off	T _A = 85 °C	0,5	2,30	
			T _A = 105 °C	0,94	3,00	
			T _A = 125 °C	2,6	7,00	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz	
R _F	Feedback resistor	-	-	200	-	kΩ	
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V	
t _{SU(HSE)} (2)	Startup time	V_{DD} is stabilized	-	2	-	ms	


Table 44. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 23*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

Symbol	Parameter	Condition	Тур	Мах	Unit
		MSI range 0	0.75	-	
		MSI range 1	1	-	
		MSI range 2	1.5	-	
I _{DD(MSI)} ⁽²⁾	MSI oscillator power consumption	MSI range 3	2.5	-	μA
		MSI range 4	4.5	-	
		MSI range 5	8	-	
		MSI range 6	15	-	
t _{SU(MSI)}		MSI range 0	30	-	
		MSI range 1	20	-	
		MSI range 2	15	-	
		MSI range 3	10	-	
	MSI oscillator startup time	MSI range 4	6	6 - 5 - 3.5 - 5 -	μs
		MSI range 5	5		
		MSI range 6, Voltage range 1 and 2	3.5		
		MSI range 6, Voltage range 3	5		
		MSI range 0	-	40	-
		MSI range 1	-	20	
		MSI range 2	-	10	
		MSI range 3	-	4	
t _{STAB(MSI)} ⁽²⁾	MSI oscillator stabilization time	MSI range 4 -	2.5	μs	
•STAB(MSI)		MSI range 5	-	2	μο
		MSI range 6, Voltage range 1 - 2 and 2		2	
		MSI range 3, Voltage range 3	-	3	
former	MSI oscillator frequency overshoot	Any range to range 5	-	4	MHz
f _{OVER(MSI)}		Any range to range 6	-	6	

Table 48. MSI oscillator characteristics (continued)

1. This is a deviation for an individual part, once the initial frequency has been measured.

2. Guaranteed by characterization results.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

 Table 51. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Symbol	Parameter	Conditions	Value	Unit
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
	Cycling (erase / write) Program memory	T₄ = -40°C to 105 °C	10	
N _{CYC} ⁽²⁾	Cycling (erase / write) EEPROM data memory		100	kcycles
INCYC [®]	Cycling (erase / write) Program memory	T _A = -40°C to 125 °C	0.2	REYCIES
	Cycling (erase / write) EEPROM data memory	TA = -40 C to 125 C	2	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	-Т _{вет} = +85 °С	30	
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	TRET - 105 C	30	
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 105 °C	-T _{RFT} = +105 °C		
^I RET ¹	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105 \degree C$	TRET - FIUS C	10	years
	Data retention (program memory) after 200 cycles at T _A = 125 °C	-T _{RET} = +125 °C	10	
	Data retention (EEPROM data memory) after 2 kcycles at T_A = 125 °C	RET - TIZS C		

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	SDI alook froguonov	Master mode			2	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	-	2 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	- Slave mode		50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input setup time	Master mode	1.5	-	-	
t _{su(SI)}	Data input setup time	Slave mode	6	-	-	
t _{h(MI)}	Data input hold time	Master mode	13.5	-	-	
t _{h(SI)}	Data input noid time	Slave mode	16	-	-	ns
t _{a(SO}	Data output access time	Slave mode	30	-	70	
t _{dis(SO)}	Data output disable time	Slave mode	40	-	80	
t _{v(SO)}	Data output valid time	Slave mode	-	30	70	
t _{v(MO)}		Master mode	-	7	9	
t _{h(SO)}	Data output hold time	Slave mode	25	-	-	
t _{h(MO)}	Data output hold time	Master mode	8	-	-	

Table 74. SPI characteristics in	voltage Range 3 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

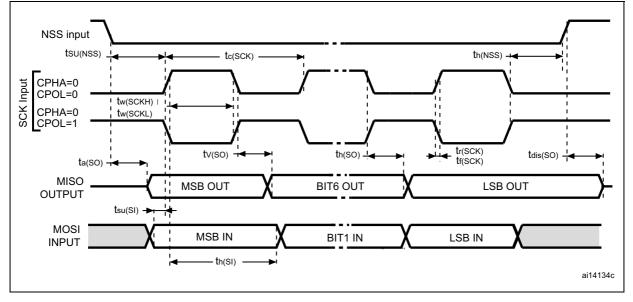


Figure 34. SPI timing diagram - slave mode and CPHA = 0

104/136

DocID027101 Rev 3

I2S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
f _{MCK}	I2S Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
4	125 alook froguopov	Master data: 32 bits	-	64xFs	MHz
f _{CK}	I2S clock frequency	Slave data: 32 bits	-	64xFs	IVITZ
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	15	
t _{h(WS)}	WS hold time	Master mode	11	-	
t _{su(WS)}	WS setup time	Slave mode	6	-	
t _{h(WS)}	WS hold time	Slave mode	2	-	
t _{su(SD_MR)}	Data input setup time	Master receiver	0	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	6.5	-	ns
t _{h(SD_MR)}	Data input hold time	Master receiver	18	-	115
t _{h(SD_SR)}	Data Input noid time	Slave receiver	15.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	77	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	8	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	18	-	
t _{h(SD_MT)}	Data output hold time	Master transmitter (after enable edge)	1.5	-	

Table 75. I2S characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. 256xFs maximum value is equal to the maximum clock frequency.

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

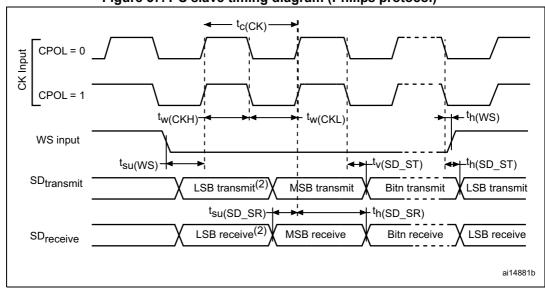
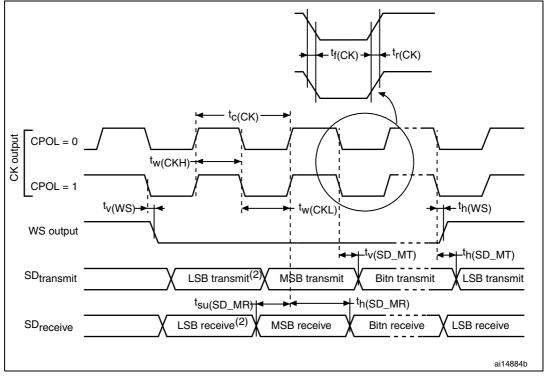



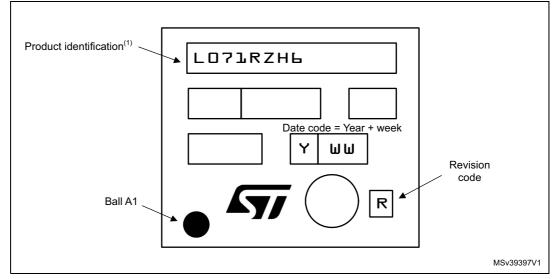
Figure 37. I²S slave timing diagram (Philips protocol)⁽¹⁾

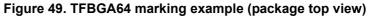
- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 38. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Cumhal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Min Typ	
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3	-	12.000	-	-	0.4724	-
Е	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3	-	12.000	-	-	0.4724	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.080	-	-	0.0031


Table 76. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
mechanical data


1. Values in inches are converted from mm and rounded to 4 decimal digits.

Device marking for TFBGA64

The following figure gives an example of topside marking versus ball A 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Dimension	Recommended values			
Pitch	0.4			
Dpad	260 μm max. (circular)			
	220 µm recommended			
Dsm	300 μm min. (for 260 μm diameter pad)			
PCB pad design	Non-solder mask defined via underbump allowed.			

 Table 83. WLCSP49 recommended PCB design rules (0.4 mm pitch)

Device marking for WLCSP49

The following figure gives an example of topside marking versus ball A 1 position identifier location.

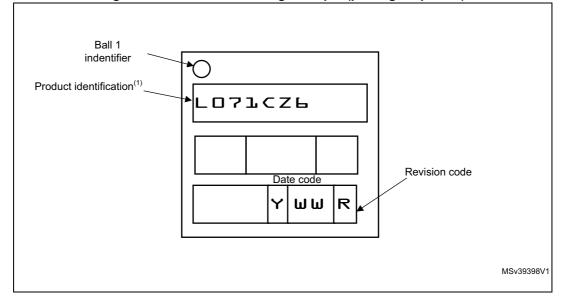


Figure 52. WLCSP49 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.9 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	36	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60	
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	54	
Θ_{JA}	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	48	°C/W
JA	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	64	0,11
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	41	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm / 0.5 mm pitch	57	

Table 87.	Thermal	characteristics

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID027101 Rev 3

