

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	50
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 15x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TFBGA
Supplier Device Package	64-TFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071rbh6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction	
2	Desc	ription	
	2.1	Device overview	
	2.2	Ultra-low-power device continuum	
3	Func	tional overview	
	3.1	Low-power modes	
	3.2	Interconnect matrix	
	3.3	ARM® Cortex®-M0+ core with MPU 19	
	3.4	Reset and supply management	
		3.4.1 Power supply schemes	
		3.4.2 Power supply supervisor	
		3.4.3 Voltage regulator	
	3.5	Clock management 21	
	3.6	Low-power real-time clock and backup registers 24	
	3.7	General-purpose inputs/outputs (GPIOs)	
	3.8	Memories	
	3.9	Boot modes	
	3.10	Direct memory access (DMA)	
	3.11	Analog-to-digital converter (ADC)	
	3.12	Temperature sensor	
		3.12.1 Internal voltage reference (V _{REFINT})	
	3.13	Ultra-low-power comparators and reference voltage	
	3.14	Timers and watchdogs	
		3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)	
		3.14.2 Low-power Timer (LPTIM)	
		3.14.3 Basic timer (TIM6, TIM7)	
		3.14.4 SysTick timer	
		3.14.5 Independent watchdog (IWDG) 29	
		3.14.6 Window watchdog (WWDG) 29	
	3.15	Communication interfaces 30	

2 Description

The access line ultra-low-power STM32L071xx microcontrollers incorporate the highperformance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L071xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L071xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), .

The STM32L071xx also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾⁽²⁾

			Low-	Low-	Stop	Standby
IPs	Run/Active	Sleep	power run	power sleep	Wakeup capability	Wakeup capability
					0.4 μA (No RTC) V _{DD} =1.8 \	0.28 μA (No RTC) V _{DD} =1.8 V
Consumption	Down to 140 µA/MHz	Down to 37 μA/MHz (from Flash memory)	Down to 8 µA	Down to 4.5 μA	0.8 µA (with RTC) V _{DD} =1.8 \	0.65 μA (with RTC) V _{DD} =1.8 V
V _{DD} =1.8 to 3.6 V (Typ)	(from Flash memory)				0.4 μA (No RTC) V _{DD} =3.0 \	0.29 μA (No RTC) V _{DD} =3.0 V
					1 μA (with RTC) V _{DD} =3.0 V	0.85 µA (with RTC) V _{DD} =3.0 V

1. Legend:

"Y" = Yes (enable). "O" = Optional can be enabled/disabled by software) "-" = Not available

2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.

- 3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
- 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
- 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop
COMPx	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-
COMPX	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y Y	Y	Y
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-

Table 6. STM32L0xx peripherals	interconnect matrix
--------------------------------	---------------------

3.14 Timers and watchdogs

The ultra-low-power STM32L071xx devices include three general-purpose timers, one low-power timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer.

Table 9 compares the features of the general-purpose and basic timers.

				e eempanee		
Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TIM2, TIM3	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TIM21, TIM22	16-bit	Up, down, up/down	Any integer between 1 and 65536	No	2	No
TIM6, TIM7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

Table	9.	Timer	feature	com	parison
	•••				Pail 0 0 11

3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)

There are four synchronizable general-purpose timers embedded in the STM32L071xx device (see *Table 9* for differences).

TIM2, TIM3

TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output.

The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs.

TIM2/TIM3 have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

TIM21 and TIM22

TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3, full-featured general-purpose timers.

They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock.

Pin number													
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	21	29	G7	G3	47	L10	PB10	I/O	FT	-	TIM2_CH3, LPUART1_TX, SPI2_SCK, I2C2_SCL, LPUART1_RX	-
-	-	22	30	H7	F3	48	L11	PB11	I/O	FT	-	EVENTOUT, TIM2_CH4, LPUART1_RX, I2C2_SDA, LPUART1_TX	-
16	16	23	31	D6	D4	49	F12	VSS	S		-	-	-
17	17	24	32	E6	G2	50	G12	VDD	S		-	-	-
-	-	25	33	H8	G1	51	L12	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, LPUART1_RTS_DE, I2C2_SMBA, EVENTOUT	-
-	-	26	34	G8	F2	52	K12	PB13	I/O	FTf	-	SPI2_SCK/I2S2_CK, MCO, LPUART1_CTS, I2C2_SCL, TIM21_CH1	-
-	-	27	35	F8	F1	53	K11	PB14	I/O	FTf	-	SPI2_MISO/I2S2_MCK, RTC_OUT, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2	-
-	-	28	36	F7	E1	54	K10	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, RTC_REFIN	-
-	-	-	-	-	-	55	K9	PD8	I/O	FT	-	LPUART1_TX	-
-	-	-	-	-	-	56	K8	PD9	I/O	FT	-	LPUART1_RX	-
-	-	-	-	-	-	57	J12	PD10	I/O	FT	-		-
-	-	-	-	-	-	58	J11	PD11	I/O	FT	-	LPUART1_CTS	-
-	-	-	-	-	-	59	J10	PD12	I/O	FT	-	LPUART1_RTS_DE	-
-	-	-	-	-	-	60	H12	PD13	I/O	FT	-		-
-	-	-	-	-	-	61	H11	PD14	I/O	FT	-		-
-	-	-	-	-	-	62	H10	PD15	I/O	FT	-		-
-	-	-	37	F6	-	63	E12	PC6	I/O	FT	-	TIM22_CH1, TIM3_CH1	-
-	-	-	38	E7	-	64	E11	PC7	I/O	FT	-	TIM22_CH2, TIM3_CH2	-

Table 15. STM32L071xxx pin definition (continued)

STM32L071xx

DocID027101 Rev 3

5

47/136

				Table 1	7. Alternate	functions port B			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I 2C1/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/LPTIM 1/TIM2/3/EVENT OUT/ SYS_AF	i2C1/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3
	PB0	EVENTOUT		TIM3_CH3		-	-	-	-
	PB1	-		TIM3_CH4		LPUART1_RTS_DE	-	-	-
	PB2	-	-	LPTIM1_OUT		-	-	-	I2C3_SMBA
	PB3	SPI1_SCK		TIM2_CH2		EVENTOUT	USART1_RTS_DE	USART5_TX	-
	PB4	SPI1_MISO		TIM3_CH1		TIM22_CH1	USART1_CTS	USART5_RX	I2C3_SDA
	PB5	SPI1_MOSI		LPTIM1_IN1	I2C1_SMBA	TIM3_CH2/ TIM22_CH2	USART1_CK	USART5_CK/ USART5_RTS_D E	-
	PB6	USART1_TX	I2C1_SCL	LPTIM1_ETR		-	-	-	-
	PB7	USART1_RX	I2C1_SDA	LPTIM1_IN2		-	-	USART4_CTS	-
Port B	PB8	-		-		I2C1_SCL	-	-	-
٩	PB9	-		EVENTOUT	-	I2C1_SDA	SPI2_NSS/ I2S2_WS	-	-
	PB10	-		TIM2_CH3		LPUART1_TX	SPI2_SCK	I2C2_SCL	LPUART1_RX
	PB11	EVENTOUT		TIM2_CH4		LPUART1_RX	-	I2C2_SDA	LPUART1_TX
	PB12	SPI2_NSS/I2S2_WS		LPUART1_RTS_ DE			I2C2_SMBA	EVENTOUT	-
	PB13	SPI2_SCK/I2S2_CK		MCO		LPUART1_CTS	I2C2_SCL	TIM21_CH1	-
	PB14	SPI2_MISO/ I2S2_MCK		RTC_OUT		LPUART1_RTS_DE	I2C2_SDA	TIM21_CH2	-
	PB15	SPI2_MOSI/ I2S2_SD		RTC_REFIN	-	-	-	-	-

Pin descriptions

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port	SPI1/SPI2/ I2S2/USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2 /I2C1/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3/ EVENTOUT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/ LPUART1, COMP1/2/ TIM3
	PH0		-	-	-	-	-	-	-
Ŧ		-	-	-	-	-	-	-	-
Port	PH9	-	-	-	-	-	-	-	-
	PH10	-	-	_	_	_	-	_	-

Symbol	Ratings	Max.	Unit
$\Sigma I_{VDD}^{(2)}$	Total current into sum of all V _{DD} power lines (source) ⁽¹⁾	105	
$\Sigma I_{VSS}^{(2)}$	Total current out of sum of all V_{SS} ground lines (sink) ⁽¹⁾	105	
ΣI_{VDDIO2}	Total current into V _{DDIO2} power line (source)	25	
I _{VDD(PIN)}	Maximum current into each V _{DD} power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each V_{SS} ground pin (sink) ⁽¹⁾	100	
	Output current sunk by any I/O and control pin except FTf pins	16	
Ι _{ΙΟ}	Output current sunk by FTf pins	22	
	Output current sourced by any I/O and control pin	-16	mA
	Total output current sunk by sum of all IOs and control pins except PA11 and $PA12^{(2)}$	90	
ΣI _{IO(PIN)}	Total output current sunk by PA11 and PA12	25	
	Total output current sourced by sum of all IOs and control $pins^{(2)}$	-90	
1	Injected current on FT, FFf, RST and B pins	-5/+0 ⁽³⁾	
I _{INJ(PIN)}	Injected current on TC pin	± 5 ⁽⁴⁾	
ΣΙ _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁵⁾	± 25	

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

 This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

 Positive current injection is not possible on these I/Os. A negative injection is induced by V_{IN}<V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 22* for maximum allowed input voltage values.

A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 22: Voltage characteristics* for the maximum allowed input voltage values.

5. When several inputs are submitted to a current injection, the maximum $\Sigma I_{INJ(PIN)}$ is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Symbol Ratings		Unit					
T _{STG}	Storage temperature range	-65 to +150	°C					
TJ	Maximum junction temperature	150	°C					

Table 24. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 6	Falling edge	2.97	3.05	3.09	V
V _{PVD6}		Rising edge	3.08	3.15	3.20	v
		BOR0 threshold	-	40	-	
V _{hyst}	Hysteresis voltage	All BOR and PVD thresholds excepting BOR0	-	100	-	mV

Table 26. Embedded reset and power control block characteristics (continued)

1. Guaranteed by characterization results.

2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.

6.3.3 Embedded internal reference voltage

The parameters given in *Table 28* are based on characterization results, unless otherwise specified.

Table 27. Embedde	ed internal re	ference vol	tage cal	libration va	ues

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT out} ⁽²⁾	Internal reference voltage	– 40 °C < T _J < +125 °C	1.202	1.224	1.242	V
T _{VREFINT}	Internal reference startup time	-	-	2	3	ms
V _{VREF_MEAS}	V _{DDA} and V _{REF+} voltage during V _{REFINT} factory measure	-	2.99	3	3.01	V
A _{VREF_MEAS}	Accuracy of factory-measured V_{REFINT} value ⁽³⁾	Including uncertainties due to ADC and V _{DDA} /V _{REF+} values	-	-	±5	mV
T _{Coeff} ⁽⁴⁾	Temperature coefficient	–40 °C < T _J < +125 °C	-	25	100	ppm/°C
A _{Coeff} ⁽⁴⁾	Long-term stability	1000 hours, T= 25 °C	-	-	1000	ppm
V _{DDCoeff} ⁽⁴⁾	Voltage coefficient	3.0 V < V _{DDA} < 3.6 V	-	-	2000	ppm/V
T _{S_vrefint} ⁽⁴⁾⁽⁵⁾	ADC sampling time when reading the internal reference voltage	-	5	10	-	μs
T _{ADC_BUF} ⁽⁴⁾	Startup time of reference voltage buffer for ADC	-	-	-	10	μs
I _{BUF_ADC} ⁽⁴⁾	Consumption of reference voltage buffer for ADC	-	-	13.5	25	μA
I _{VREF_OUT} ⁽⁴⁾	VREF_OUT output current ⁽⁶⁾	-	-	-	1	μA
C _{VREF_OUT} ⁽⁴⁾	VREF_OUT output load	-	-	-	50	pF

Table 28. Embedded internal reference voltage⁽¹⁾

Symbol	Parameter	Condition	-	f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Range3,	1	43,5	110	
			Vcore=1.2 V	2	72	140	
			VOS[1:0]=11	4	130	200	
		f _{HSE} = f _{HCLK} up to	Range2,	4	160	220	
		16 MHz included, f _{HSE} = f _{HCLK} /2 above	Vcore=1.5 V	8	305	380	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	590	690	
			Range1,	8	370	460	
	Supply current in Sleep mode, Flash		Vcore=1.8 V	16	715	840	
	memory switched		VOS[1:0]=01	32	1650	2000 93 110 230 850	
	OFF		Range3,	0,065	18	93	
		MSI clock	Vcore=1.2 V	0,524	31,5	110	
			VOS[1:0]=11	4,2	140	230	
		HSI clock source (16 MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	665	850	
I _{DD}			Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2100	
(Sleep)		f _{HSE} = f _{HCLK} up to 16MHz included, f _{HSE} = f _{HCLK} /2 above	Range3, Vcore=1.2 V VOS[1:0]=11	1	57,5	130	μA
				2	84	160	
				4	150	220	
			Range2, Vcore=1.5 V VOS[1:0]=10	4	170	240	
				8	315	400	-
		16 MHz (PLL ON) ⁽²⁾		16	605	710	
			Range1,	8	380	470	
	Supply current in		Vcore=1.8 V	16	730	860	
	Sleep mode, Flash memory switched		VOS[1:0]=01	32	1650	2000	
	ON		Range3,	0,065	29,5	110	
		MSI clock	Vcore=1.2 V	0,524	44,5	120	
			VOS[1:0]=11	4,2	150	240	
		HSI clock source	Range2, Vcore=1.5 V VOS[1:0]=10	16	680	930	
		(16MHz)	Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2200	

Table 33. Current consumption in Sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

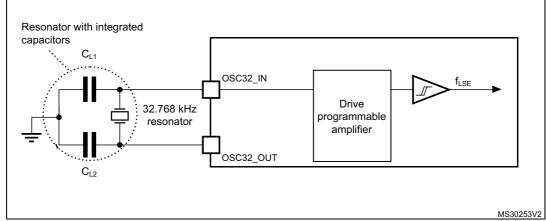
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Low-speed external clock generated from a crystal/ceramic resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 45*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽²⁾	Min ⁽²⁾	Тур	Max	Unit
f _{LSE}	LSE oscillator frequency		-	32.768	-	kHz
		LSEDRV[1:0]=00 lower driving capability	-	-	0.5	
G _m	Maximum critical crystal	LSEDRV[1:0]= 01 medium low driving capability	-	-	0.75	μΑ/V
	transconductance	LSEDRV[1:0] = 10 medium high driving capability	-	-	1.7	
		LSEDRV[1:0]=11 higher driving capability	-	-	2.7	
t _{SU(LSE)} ⁽³⁾	Startup time	V _{DD} is stabilized	-	2	-	S

Table 45.	LSE	oscillator	characteristics ⁽¹⁾


1. Guaranteed by design.

2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

3. Guaranteed by characterization results. t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
	Average current during the whole programming / erase operation		-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	1.5	2.5	mA

 Table 51. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Symbol	Parameter	Conditions		Unit
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
N _{CYC} ⁽²⁾	Cycling (erase / write) Program memory	T₄ = -40°C to 105 °C	10	
	Cycling (erase / write) EEPROM data memory		100	kcycles
	Cycling (erase / write) Program memory	T _A = -40°C to 125 °C	0.2	REYCIES
	Cycling (erase / write) EEPROM data memory	TA = -40 C to 125 C	2	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	-Т _{вет} = +85 °С	30	-
	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 85 \text{ °C}$	TRET - 105 C	30	
t _{RET} ⁽²⁾	Data retention (program memory) after 10 kcycles at T _A = 105 °C	T	- 10	voars
^I RET ⁽⁻⁾	Data retention (EEPROM data memory) after 100 kcycles at $T_A = 105 \degree C$	T _{RET} = +105 °C		years
	Data retention (program memory) after 200 cycles at T _A = 125 °C	-T _{RET} = +125 °C		
	Data retention (EEPROM data memory) after 2 kcycles at T_A = 125 °C	RET - TIZS C		

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

6.3.13 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 58* are derived from tests performed under the conditions summarized in *Table 25*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
V _{IL}	Input low level voltage	TC, FT, FTf, RST I/Os	-	-	0.3V _{DD}		
		BOOT0 pin	-	-	0.14V _{DD} ⁽¹⁾		
V _{IH}	Input high level voltage	All I/Os	0.7 V _{DD}	-	-	V	
V	I/O Schmitt trigger voltage hysteresis	Standard I/Os	-	10% V _{DD} ⁽³⁾	-		
V _{hys}	(2)	BOOT0 pin	-	0.01	-		
		$\label{eq:VSS} \begin{array}{l} V_{SS} \leq V_{IN} \leq V_{DD} \\ \mbox{All I/Os except for} \\ \mbox{PA11, PA12, BOOT0} \\ \mbox{and FTf I/Os} \end{array}$	-	-	±50		
	I _{lkg} Input leakage current ⁽⁴⁾	$V_{SS} \le V_{IN} \le V_{DD}$, PA11 and PA12 I/Os	-	-	-50/+250	nA	
		V _{SS} ≤ V _{IN} ≤ V _{DD} FTf I/Os	-	-	±100		
I _{lkg}		$\label{eq:VDD} \begin{array}{c} V_{DD}{}^{\leq}V_{IN}{}^{\leq}5V\\ \mbox{All I/Os except for}\\ \mbox{PA11, PA12, BOOT0}\\ \mbox{and FTf I/Os} \end{array}$	-	-	200	nA	
		$V_{DD} \le V_{IN} \le 5 V$ FTf I/Os	-	-	500		
		$V_{DD} \le V_{IN} \le 5 V$ PA11, PA12 and BOOT0	-	-	10	μA	
R _{PU}	Weak pull-up equivalent resistor ⁽⁵⁾	V _{IN} = V _{SS}	30	45	60	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁵⁾	$V_{IN} = V_{DD}$	30	45	60	kΩ	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

1. Guaranteed by characterization.

2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

3. With a minimum of 200 mV. Guaranteed by characterization results.

4. The max. value may be exceeded if negative current is injected on adjacent pins.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order).

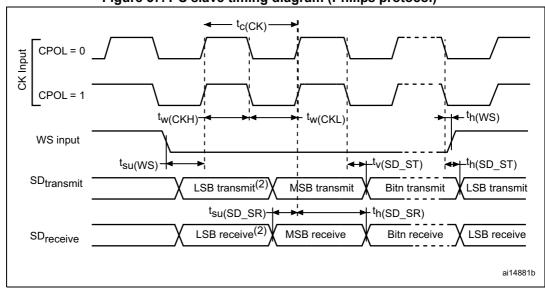
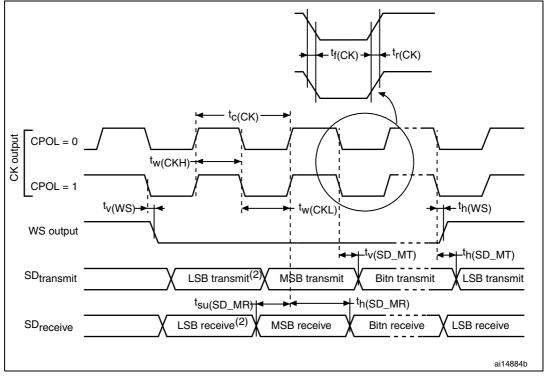



Figure 37. I²S slave timing diagram (Philips protocol)⁽¹⁾

- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Figure 38. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

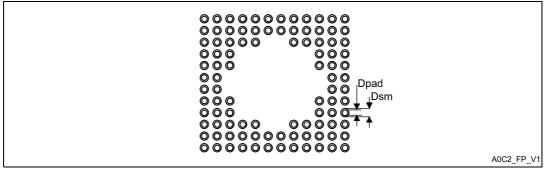


Table 77. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data (continued)

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 78. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Dimension	Recommended values	
Pitch	0.4	
Dpad	260 µm max. (circular)	
	220 µm recommended	
Dsm	300 µm min. (for 260 µm diameter pad)	
PCB pad design	Non-solder mask defined via underbump allowed.	

 Table 83. WLCSP49 recommended PCB design rules (0.4 mm pitch)

Device marking for WLCSP49

The following figure gives an example of topside marking versus ball A 1 position identifier location.

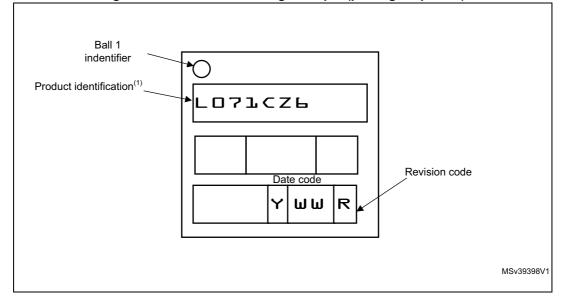
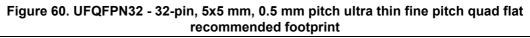
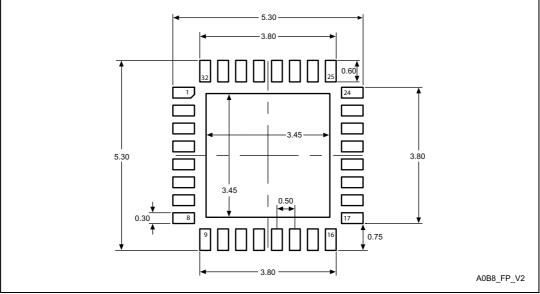


Figure 52. WLCSP49 marking example (package top view)

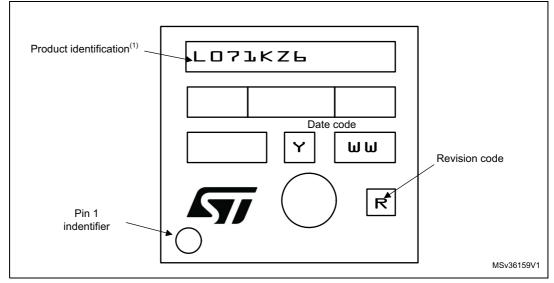

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

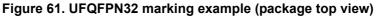


package mechanical data						
Symphol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
E	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

Table 86. UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flatpackage mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.




1. Dimensions are expressed in millimeters.

Device marking for UFQFPN32

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.9 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	36	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60	
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	54	
Θ_{JA}	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	48	°C/W
JA	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	64	0,11
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	41	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm / 0.5 mm pitch	57	

Table 87.	Thermal	characteristics

Date	Revision	Changes
22-Mar-2016	3	Updated number of SPIs on cover page and in <i>Table 2: Ultra-low-power STM32L071xx device features and peripheral counts.</i> Changed minimum comparator supply voltage to 1.65 V on cover page. Added number of fast and standard channels in <i>Section 3.11:</i> <i>Analog-to-digital converter (ADC).</i> Updated <i>Section 3.15.2: Universal synchronous/asynchronous</i> <i>receiver transmitter (USART)</i> and <i>Section 3.15.4: Serial</i> <i>peripheral interface (SPI)/Inter-integrated sound (I2S)</i> to mention the fact that USARTs with synchronous mode feature can be used as SPI master interfaces. Added baudrate allowing to wake up the MCU from Stop mode in <i>Section 3.15.2: Universal synchronous/asynchronous receiver</i> <i>transmitter (USART)</i> and <i>Section 3.15.3: Low-power universal</i> <i>asynchronous receiver transmitter (LPUART).</i> Changed V _{DDA} minimum value to 1.65 V in <i>Table 25: General</i> <i>operating conditions.</i> <i>Section 6.3.15: 12-bit ADC characteristics:</i> – <i>Table 62: ADC characteristics:</i> Distinction made between V _{DDA} for fast and standard channels; added note 1. Added note 4. related to R _{ADC} . Updated f _{TRIG} and V _{AIN} maximum value. Updated f _S and t _{CONV} . Added V _{REF+} . – Updated equation 1 description. – Updated <i>Table 63: RAIN max for fADC = 16 MHz</i> for f _{ADC} = 16 MHz and distinction made between fast and standard channels. Added <i>Table 71: USART/LPUART characteristics.</i>

Table 89. Document revision history

