

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I²C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071rbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction	
2	Desc	ription	
	2.1	Device overview	
	2.2	Ultra-low-power device continuum	
3	Func	tional overview	
	3.1	Low-power modes	
	3.2	Interconnect matrix	
	3.3	ARM® Cortex®-M0+ core with MPU 19	
	3.4	Reset and supply management	
		3.4.1 Power supply schemes	
		3.4.2 Power supply supervisor	
		3.4.3 Voltage regulator	
	3.5	Clock management 21	
	3.6	Low-power real-time clock and backup registers 24	
	3.7	General-purpose inputs/outputs (GPIOs)	
	3.8	Memories	
	3.9	Boot modes	
	3.10	Direct memory access (DMA)	
	3.11	Analog-to-digital converter (ADC)	
	3.12	Temperature sensor	
		3.12.1 Internal voltage reference (V _{REFINT})	
	3.13	Ultra-low-power comparators and reference voltage	
	3.14	Timers and watchdogs	
		3.14.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22)	
		3.14.2 Low-power Timer (LPTIM)	
		3.14.3 Basic timer (TIM6, TIM7)	
		3.14.4 SysTick timer	
		3.14.5 Independent watchdog (IWDG) 29	
		3.14.6 Window watchdog (WWDG) 29	
	3.15	Communication interfaces 30	

	grid array package outline
Figure 43.	UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
	grid array package recommended footprint
Figure 44.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
Figure 45.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint
Figure 46.	LQFP64 marking example (package top view)115
Figure 47.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball
	grid array package outline
Figure 48.	TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball
	,grid array recommended footprint
Figure 49.	TFBGA64 marking example (package top view) 118
Figure 50.	WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
	package outline
Figure 51.	WLCSP49 - 49-pin, 3.294 x 3.258 mm, 0.4 mm pitch wafer level chip scale
	recommended footprint
Figure 52.	WLCSP49 marking example (package top view) 121
Figure 53.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Figure 54.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint
Figure 55.	LQFP48 marking example (package top view)124
Figure 56.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
Figure 57.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint
Figure 58.	LQFP32 marking example (package top view) 127
Figure 59.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
	package outline
Figure 60.	UFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch ultra thin fine pitch quad flat
	recommended footprint
Figure 61.	UFQFPN32 marking example (package top view)130
Figure 62.	Thermal resistance

2 Description

The access line ultra-low-power STM32L071xx microcontrollers incorporate the highperformance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L071xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L071xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), .

The STM32L071xx also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

			Low-	Low-		Stop	5	Standby
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
High Speed External (HSE)	0	0	0	0				
Low Speed Internal (LSI)	0	0	0	0	0		0	
Low Speed External (LSE)	0	0	0	0	0		0	
Multi-Speed Internal (MSI)	0	0	Y	Y				
Inter-Connect Controller	Y	Y	Y	Y	Y			
RTC	0	0	0	0	0	0	0	
RTC Tamper	0	0	0	0	0	0	0	0
Auto WakeUp (AWU)	0	0	0	0	0	0	0	0
USART	0	0	0	0	O ⁽⁴⁾	0		
LPUART	0	0	0	0	O ⁽⁴⁾	0		
SPI	0	0	0	0				
12C	0	0	0	0	O ⁽⁵⁾	0		
ADC	0	0						
Temperature sensor	0	0	0	0	0			
Comparators	0	0	0	0	0	0		
16-bit timers	0	0	0	0				
LPTIMER	0	0	0	0	0	0		
IWDG	0	0	0	0	0	0	0	0
WWDG	0	0	0	0				
SysTick Timer	0	0	0	0				
GPIOs	0	0	0	0	0	0	0	
Wakeup time to Run mode	0 µs	0.36 µs	3 µs	32 µs		3.5 µs		50 µs

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾⁽²⁾

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC clock source

The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USARTs, I2C, LPUART, LPTIMER or comparator events.

DocID027101 Rev 3

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TSENSE_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2	TS ADC raw data acquired at temperature of 130 °C V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

 Table 7. Temperature sensor calibration values

3.12.1 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, V_{REF+} , is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address		
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079		

Table 8. Internal voltage reference measured values

3.13 Ultra-low-power comparators and reference voltage

The STM32L071xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with ultra low consumption
- One comparator with rail-to-rail inputs, fast or slow mode.
- The threshold can be one of the following:
 - External I/O pins
 - Internal reference voltage (V_{REFINT})
 - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates.

LPUART interface can be served by the DMA controller.

3.15.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S)

Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The USARTs with synchronous capability can also be used as SPI master.

One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency.

The SPIs can be served by the DMA controller.

Refer to *Table 13* for the differences between SPI1 and SPI2.

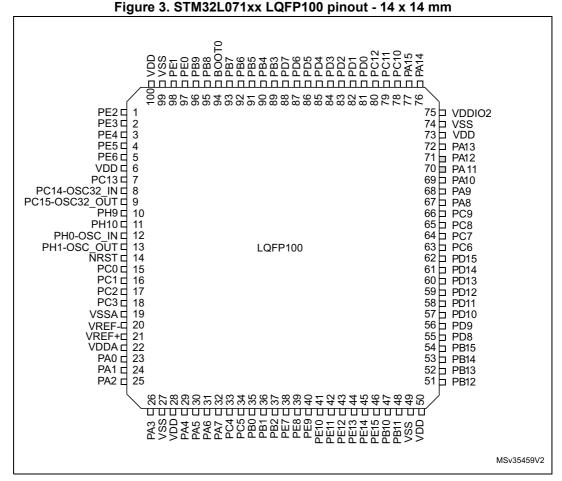
SPI1	SPI2
X	Х
-	Х
X	Х
	SPI1 X - X

Table 13. SPI/I2S implementation

1. X = supported.

3.16 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.


Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.17 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

4 Pin descriptions

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

			Pin n	umb	er										
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions		
12	12	16	22	G4	G5	31	L4	PA6	I/O	FT	_	SPI1_MISO, TIM3_CH1, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT	ADC_IN6		
13	13	17	23	H4	F4	32	M4	PA7	I/O	FT	-	SPI1_MOSI, TIM3_CH2, TIM22_CH2, EVENTOUT, COMP2_OUT	ADC_IN7		
-	-	-	24	H5	-	33	K5	PC4	I/O	FT	-	EVENTOUT, LPUART1_TX	ADC_IN14		
-	-	-	25	H6	-	34	L5	PC5	I/O	FT	-	LPUART1_RX	ADC_IN15		
14	14	18	26	F5	G4	35	M5	PB0	I/O	FT	-	EVENTOUT, TIM3_CH3	ADC_IN8, VREF_OUT		
15	15	19	27	G5	D3	36	M6	PB1	I/O	FT	-	TIM3_CH4, LPUART1_RTS_DE	ADC_IN9, VREF_OUT		
-	-	20	28	G6	E3	37	L6	PB2	I/O	FT	-	LPTIM1_OUT, I2C3_SMBA	-		
-	-	I	-	-	-	38	M7	PE7	I/O	FT	I	USART5_CK/USART5_ RTS_DE	-		
-	-	-	-	-	-	39	L7	PE8	I/O	FT	-	USART4_TX	-		
-	-	-	-	-	-	40	M8	PE9	I/O	FT	-	TIM2_CH1, TIM2_ETR, USART4_RX	-		
-	-	-	-	-	-	41	L8	PE10	I/O	FT	-	TIM2_CH2, USART5_TX	-		
-	-	-	-	-	-	42	М9	PE11	I/O	FT	-	TIM2_CH3, USART5_RX	-		
-	-	-	-	-	-	43	L9	PE12	I/O	FT	-	TIM2_CH4, SPI1_NSS	-		
-	-	-	-	-	-	44	M10	PE13	I/O	FT	-	SPI1_SCK	-		
-	-	-	-	-	-	45	M11	PE14	I/O	FT	-	SPI1_MISO	-		
-	-	-	-	-	-	46	M12	PE15	I/O	FT	-	SPI1_MOSI	-		

Table 15. STM32L071xxx pin definition (continued)

Pin descriptions

DocID027101 Rev 3

5

46/136

г

	Table 16. Alternate functions port A										
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7		
		SPI1/SPI2/I2S2/U SART1/2/ LPUART1/LPTIM 1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2 C1/TIM2/21	SPI1/SPI2/I2S2/L PUART1/ USART5/LPTIM1 /TIM2/3/EVENTO UT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/U SART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/C OMP1/2/ TIM3		
	PA0	-	-	TIM2_CH1		USART2_CTS	TIM2_ETR	USART4_TX	COMP1_OUT		
	PA1	EVENTOUT		TIM2_CH2		USART2_RTS_D E	TIM21_ETR	USART4_RX	-		
	PA2	TIM21_CH1		TIM2_CH3		USART2_TX	-	LPUART1_TX	COMP2_OUT		
	PA3	TIM21_CH2		TIM2_CH4		USART2_RX	-	LPUART1_RX	-		
	PA4	SPI1_NSS	-	-		USART2_CK	TIM22_ETR	-	-		
	PA5	SPI1_SCK	-	TIM2_ETR			TIM2_CH1	-	-		
	PA6	SPI1_MISO		TIM3_CH1		LPUART1_CTS	TIM22_CH1	EVENTOUT	COMP1_OUT		
A	PA7	SPI1_MOSI		TIM3_CH2		-	TIM22_CH2	EVENTOUT	COMP2_OUT		
Port A	PA8	MCO			EVENTOUT	USART1_CK	-	-	I2C3_SCL		
	PA9	MCO		-		USART1_TX	-	I2C1_SCL	I2C3_SMBA		
	PA10	-		-		USART1_RX	-	I2C1_SDA	-		
	PA11	SPI1_MISO	-	EVENTOUT		USART1_CTS	-	-	COMP1_OUT		
	PA12	SPI1_MOSI	-	EVENTOUT		USART1_RTS_ DE	-	-	COMP2_OUT		
	PA13	SWDIO	-		-	-	-	LPUART1_RX	-		
	PA14	SWCLK	-	-	-	USART2_TX	-	LPUART1_TX	-		
	PA15	SPI1_NSS		TIM2_ETR	EVENTOUT	USART2_RX	TIM2_CH1	USART4_RTS_D E	-		

STM32L071xx

6.3 Operating conditions

6.3.1 General operating conditions

Table 25	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit		
f _{HCLK}	Internal AHB clock frequency	-	0	32			
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz		
f _{PCLK2}	Internal APB2 clock frequency	-	0	32			
POLKZ		BOR detector disabled	1.65	3.6			
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	v		
		BOR detector disabled, after power on	1.65	3.6			
V _{DDA}	Analog operating voltage (all features)	Must be the same voltage as $V_{DD}^{(1)}$	1.65	3.6	V		
V _{DDIO2}	Standard operating voltage	-	1.65	3.6	V		
	Input voltage on FT, FTf and RST pins ⁽²⁾	$2.0~V \leq V_{DD} \leq 3.6~V$	-0.3	5.5			
V		$1.65~V \leq V_{DD} \leq 2.0~V$	-0.3	5.2	v		
V _{IN}	Input voltage on BOOT0 pin	-	0	5.5	- v		
	Input voltage on TC pin	-	-0.3	V _{DD} +0.3			
		UFBGA100 package	-	351			
		LQFP100 package	-	488			
		TFBGA64 package	-	313	-		
	Power dissipation at T _A = 85 °C (range 6) or T _A =105 °C (rage 7) $^{(3)}$	LQFP64 package	-	435			
		WLCSP49 package	-	417			
		LQFP48 package	-	370			
		UFQFPN32 package	- 556				
р		LQFP32 package	-	333	mW		
P _D		UFBGA100 package	-	88	mvv		
		LQFP100 package	-	122			
		TFBGA64 package	-	78			
	Power dissipation at T _A = 125 °C (range	LQFP64 package	-	109			
	3) ⁽³⁾	WLCSP49 package	-	104			
		LQFP48 package	-	93			
		UFQFPN32 package	-	139			
		LQFP32 package	-	83			

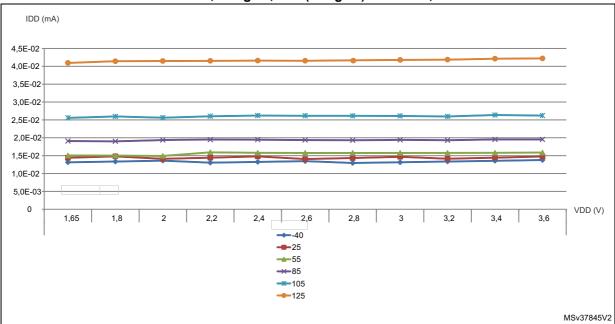


Figure 18. I_{DD} vs V_{DD}, at T_A= 25 °C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS

Symbol	Parameter		Тур	Max (1)	Unit		
			MSI clock = 65 kHz, f _{HCLK} = 32 kHz, Flash memory OFF	$T_{A} = -40$ to 25°C	4,7	-	
				$T_A = -40$ to $25^{\circ}C$	17	24	
			MSI clock = 65 kHz,	T _A = 85°C	19,5	30	
		All peripherals OFF, code executed from Flash memory, V _{DD} from 1.65 to 3.6 V	f _{HCLK} = 32 kHz	T _A = 105°C	23	47	-
				T _A = 125°C	32,5	70	
	Supply current in		MSI clock = 65 kHz, f _{HCLK} = 65 kHz	T_A = - 40 to 25°C	17	24	
I _{DD} (LP Sleep)	Low-power sleep mode			T _A = 85°C	20	31	μA
				T _A = 105°C	23,5	47	
				T _A = 125°C	32,5	70	
				T_A = - 40 to 25°C	19,5	27	
				T _A = 55°C	20,5	28	-
			MSI clock = 131kHz, f _{HCLK} = 131 kHz	T _A = 85°C	22,5	33	
			HOLIX	T _A = 105°C	26	50	
				T _A = 125°C	35	73	

Table 35. Current consumption in Low-power sleep mode

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

		Typical consumption, V _{DD} = 3.0 V, T _A = 25 °C					
Peripheral		Range 1, V _{CORE} =1.8 V VOS[1:0] = 01		Range 3, V _{CORE} =1.2 V VOS[1:0] = 11	Low-power sleep and run	Unit	
Cortex- M0+ core I/O port	GPIOA	3.5	3	2.5	2.5		
	GPIOB	3.5	2.5	2	2.5	µA/MHz (f _{HCLK})	
	GPIOC	8.5	6.5	5.5	7		
	GPIOD	1	0.5	0.5	0.5		
	GPIOE	8	6	5	6		
	GPIOH	1.5	1	1	0.5		
AHB	CRC	1.5	1	1	1		
	FLASH	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	0 ⁽³⁾	µA/MHz (f _{HCLK})	
	DMA1	10	8	6.5	8.5		
All enabled		204	162	130	202	µA/MHz (f _{HCLK})	
PWR		2.5	2	2	1	µA/MHz (f _{HCLK})	

Table 39. Periphe	eral current consum	ption in Run or	Sleep mode ⁽¹⁾	(continued)

 Data based on differential I_{DD} measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: f_{HCLK} = 32 MHz (range 1), f_{HCLK} = 16 MHz (range 2), f_{HCLK} = 4 MHz (range 3), f_{HCLK} = 64kHz (Low-power run/sleep), f_{APB1} = f_{HCLK}, f_{APB2} = f_{HCLK}, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.

2. HSI oscillator is off for this measure.

3. Current consumption is negligible and close to 0 μ A.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	SDI alaak fraguanay	Master mode		-	2	- MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-		2 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input actus time	Master mode	1.5	-	-	
t _{su(SI)}	Data input setup time	Slave mode	6	-	-	
t _{h(MI)}	Data input hold time	Master mode	13.5	-	-	
t _{h(SI)}		Slave mode	16	-	-	ns
t _{a(SO}	Data output access time	Slave mode	30	-	70	
t _{dis(SO)}	Data output disable time	Slave mode	40	-	80	
t _{v(SO)}	Data output valid time	Slave mode	-	30	70	
t _{v(MO)}		Master mode	-	7	9	
t _{h(SO)}	Data output hold time	Slave mode	25	-	-	
t _{h(MO)}	Data output hold time	Master mode	8	-	-	

Table 74. SPI characteristics in	voltage Range 3 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

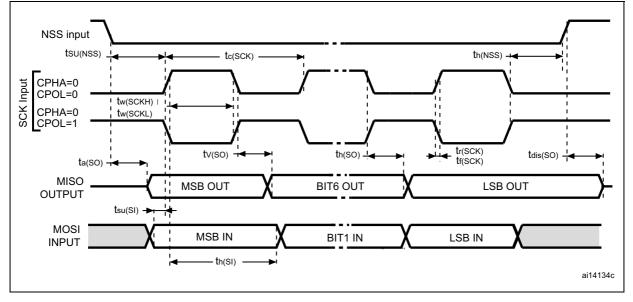


Figure 34. SPI timing diagram - slave mode and CPHA = 0

104/136

DocID027101 Rev 3

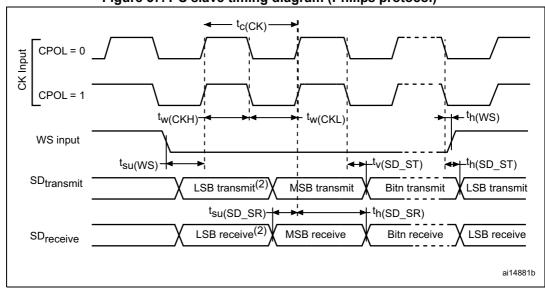
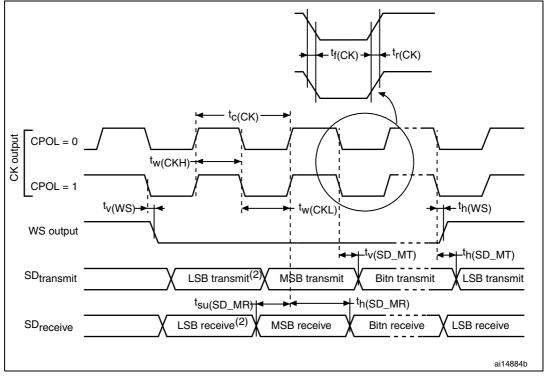
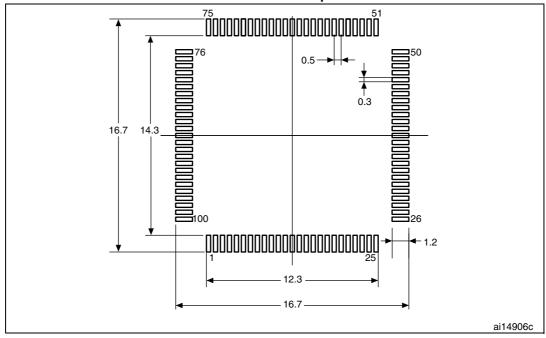



Figure 37. I²S slave timing diagram (Philips protocol)⁽¹⁾


- 1. Measurement points are done at CMOS levels: $0.3 \times V_{DD}$ and $0.7 \times V_{DD}$.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

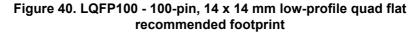


Figure 38. I²S master timing diagram (Philips protocol)⁽¹⁾

- 1. Guaranteed by characterization results.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

1. Dimensions are expressed in millimeters.

Device marking for LQFP100

The following figure gives an example of topside marking versus pin 1 position identifier location.

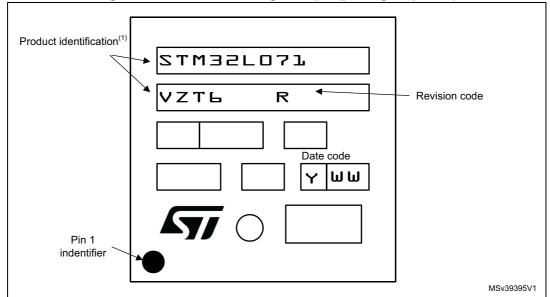


Figure 41. LQFP100 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID027101 Rev 3

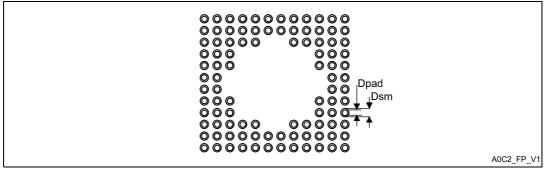
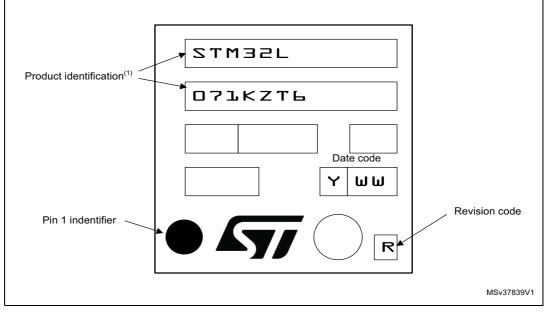


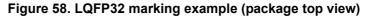
Table 77. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data (continued)

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

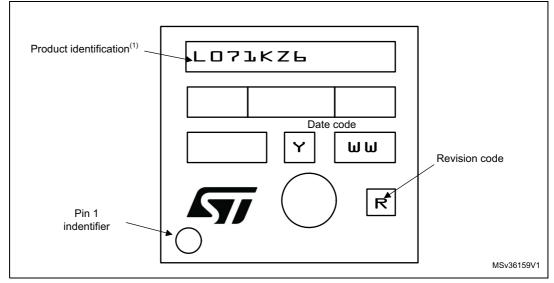
Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

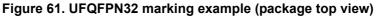

Table 78. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)


Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Device marking for LQFP32

The following figure gives an example of topside marking versus pin 1 position identifier location.




 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking for UFQFPN32

The following figure gives an example of topside marking versus pin 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

