

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071rbt6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3 Functional overview

3.1 Low-power modes

The ultra-low-power STM32L071xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply.

There are three power consumption ranges:

- Range 1 (V_{DD} range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz
- Range 2 (full V_{DD} range), with a maximum CPU frequency of 16 MHz
- Range 3 (full V_{DD} range), with a maximum CPU frequency limited to 4.2 MHz

Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off.

Low-power run mode

This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited.

Low-power sleep mode

This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz.

When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on.

Stop mode with RTC

The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the V_{CORE} domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode.

Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition.

The device can be woken up from Stop mode by any of the EXTI line, in $3.5 \,\mu$ s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USART/I2C/LPUART/LPTIMER wakeup events.

			Low-	Low-		Stop	Standby	
IPs	Run/Active	Sleep	power run	power sleep		Wakeup capability		Wakeup capability
High Speed External (HSE)	0	О	0	0				
Low Speed Internal (LSI)	0	Ο	0	0	0		0	
Low Speed External (LSE)	0	Ο	0	0	0		0	
Multi-Speed Internal (MSI)	0	Ο	Y	Y				
Inter-Connect Controller	Y	Y	Y	Y	Y			
RTC	0	0	0	0	0	0	0	
RTC Tamper O		0	0	0	0	0	0	0
Auto WakeUp (AWU) O		0	0	0	0	0	0	0
USART	0	0	0	0	O ⁽⁴⁾	0		
LPUART	0	0	0	0	O ⁽⁴⁾	0		
SPI	0	0	0	0				
I2C	0	0	0	0	O ⁽⁵⁾	0		
ADC	0	0						
Temperature sensor	Ο	О	О	Ο	0			
Comparators	0	0	0	0	0	0		
16-bit timers	0	0	0	0				
LPTIMER	0	0	0	0	0	0		
IWDG	0	0	0	0	0	0	0	0
WWDG	0	0	0	0				
SysTick Timer	0	0	0	0				
GPIOs	0	0	0	0	0	0		2 pins
Wakeup time to Run mode	0 µs	0.36 µs	3 µs	32 µs		3.5 µs		50 µs

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾⁽²⁾

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾⁽²⁾

			Low-	Low-	Stop	\$	Standby	
IPs	Run/Active	Sleep	power run	power sleep	Wakeup capabilit	,	Wakeup capability	
		Down to 37 µA/MHz (from Flash memory)	Down to 8 µA		0.4 μA (No RTC) V _{DD} =1.8	0. / RTC	28 µA (No) V _{DD} =1.8 V	
Consumption $V_{-} = 1.8 \text{ to } 3.6 \text{ V}$	Down to 140 µA/MHz			Down to 4.5 μA	0.8 μA (with RTC) V _{DD} =1.8 [•]	0.6 RTC	5 μΑ (with) V _{DD} =1.8 V	
v _{DD} -1.8 Ю 3.6 V (Тур)	(from Flash memory)				0.4 μA (No RTC) V _{DD} =3.0 [•]	0. / RTC	29 µA (No) V _{DD} =3.0 V	
					1 μA (with RTC V _{DD} =3.0 V	0.8 RTC	85 μΑ (with) V _{DD} =3.0 V	

1. Legend:

"Y" = Yes (enable). "O" = Optional can be enabled/disabled by software) "-" = Not available

2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.

- 3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
- 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
- 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop
COMPy	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-
COMPX	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	Y
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-

Table 6.	STM32L0xx	peripherals	interconnect matrix
----------	-----------	-------------	---------------------

3.6 Low-power real-time clock and backup registers

The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- Automatically correction for 28, 29 (leap year), 30, and 31 day of the month
- Two programmable alarms with wake up from Stop and Standby mode capability
- Periodic wakeup from Stop and Standby with programmable resolution and period
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 37 kHz)
- The high-speed external clock

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz.

Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USARTs, I2C, LPUART, LPTIMER or comparator events.

DocID027101 Rev 3

3.15.2 Universal synchronous/asynchronous receiver transmitter (USART)

The four USART interfaces (USART1, USART2, USART4 and USART5) are able to communicate at speeds of up to 4 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode using baudrates up to 42 Kbaud.

All USART interfaces can be served by the DMA controller.

Table 12 for the supported modes and features of USART interfaces.

USART modes/features ⁽¹⁾	USART1 and USART2	USART4 and USART5
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	Х
Synchronous mode ⁽²⁾	Х	Х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection (4 modes)	Х	-
Driver Enable	Х	Х

Table 12. USART implementation

1. X = supported.

2. This mode allows using the USART as an SPI master.

3.15.3 Low-power universal asynchronous receiver transmitter (LPUART)

The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication.

The LPUART has a clock domain independent from the CPU clock. It can wake up the system from Stop mode using baudrates up to 46 Kbaud. The Wakeup events from Stop mode are programmable and can be:

- Start bit detection
- Or any received data frame
- Or a specific programmed data frame

Figure 7. STM32L071xx WLCSP49 ballout

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

			Pin n	umb	er								
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	-	39	E8	-	65	E10	PC8	I/O	FT	-	TIM22_ETR, TIM3_CH3	-
-	-	-	40	D8	-	66	D12	PC9	I/O	FTf	-	TIM21_ETR, TIM3_CH4, I2C3_SDA	-
18	18	29	41	D7	D1	67	D11	PA8	I/O	FTf	-	MCO, EVENTOUT, USART1_CK, I2C3_SCL	-
19	19	30	42	C7	E2	68	D10	PA9	I/O	FTf	-	MCO, USART1_TX, I2C1_SCL, I2C3_SMBA	-
20	20	31	43	C6	C1	69	C12	PA10	I/O	FTf	-	USART1_RX, I2C1_SDA	-
21	21	32	44	C8	D2	70	B12	PA11	I/O	FT	-	SPI1_MISO, EVENTOUT, USART1_CTS, COMP1_OUT	-
22	22	33	45	B8	B1	71	A12	PA12	I/O	FT	-	SPI1_MOSI, EVENTOUT, USART1_RTS_DE, COMP2_OUT	-
23	23	34	46	A8	C2	72	A11	PA13	I/O	FT	-	SWDIO, LPUART1_RX	-
-	-	-	-	-	-	73	C11	VDD	S		-	-	-
-	-	35	47	D5	-	74	F11	VSS	S		-	-	-
-	24	36	48	E5	A1	75	G11	VDDIO2	S		-	-	-
24	25	37	49	A7	B2	76	A10	PA14	I/O	FT	-	SWCLK, USART2_TX, LPUART1_TX	-
25	-	38	50	A6	A2	77	A9	PA15	I/O	FT	-	SPI1_NSS, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1, USART4_RTS_DE	-
-	-	-	51	B7	-	78	B11	PC10	I/O	FT	-	LPUART1_TX, USART4_TX	-
-	-	-	52	B6	-	79	C10	PC11	I/O	FT	-	LPUART1_RX, USART4_RX	-
-	-	-	53	C5	-	80	B10	PC12	I/O	FT	-	USART5_TX, USART4_CK	-

Table 15. STM32L071xxx pin definition (continued)

Pin descriptions

DocID027101 Rev 3

5

46/136

г

				Table 16.	Alternate func	tions port A			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port		SPI1/SPI2/I2S2/U SART1/2/ LPUART1/LPTIM 1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2 C1/TIM2/21	SPI1/SPI2/I2S2/L PUART1/ USART5/LPTIM1 /TIM2/3/EVENTO UT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/U SART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/C OMP1/2/ TIM3
	PA0	-	-	TIM2_CH1		USART2_CTS	TIM2_ETR	USART4_TX	COMP1_OUT
	PA1	EVENTOUT		TIM2_CH2		USART2_RTS_D E	TIM21_ETR	USART4_RX	-
	PA2	TIM21_CH1		TIM2_CH3		USART2_TX	-	LPUART1_TX	COMP2_OUT
	PA3	TIM21_CH2		TIM2_CH4		USART2_RX	-	LPUART1_RX	-
	PA4	SPI1_NSS	-	-		USART2_CK	TIM22_ETR	-	-
	PA5	SPI1_SCK	-	TIM2_ETR			TIM2_CH1	-	-
	PA6	SPI1_MISO		TIM3_CH1		LPUART1_CTS	TIM22_CH1	EVENTOUT	COMP1_OUT
∢	PA7	SPI1_MOSI		TIM3_CH2		-	TIM22_CH2	EVENTOUT	COMP2_OUT
Port	PA8	MCO			EVENTOUT	USART1_CK	-	-	I2C3_SCL
	PA9	MCO		-		USART1_TX	-	I2C1_SCL	I2C3_SMBA
	PA10	-		-		USART1_RX	-	I2C1_SDA	-
	PA11	SPI1_MISO	-	EVENTOUT		USART1_CTS	-	-	COMP1_OUT
	PA12	SPI1_MOSI	-	EVENTOUT		USART1_RTS_ DE	-	-	COMP2_OUT
	PA13	SWDIO	-		-	-	-	LPUART1_RX	-
	PA14	SWCLK	-	-	-	USART2_TX	-	LPUART1_TX	-
	PA15	SPI1_NSS		TIM2_ETR	EVENTOUT	USART2_RX	TIM2_CH1	USART4_RTS_D E	-

STM32L071xx

STM32L071xx

DocID027101 Rev 3

5

47/136

				Table 1	7. Alternate	functions port B			
		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I 2C1/TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/LPTIM I2C1/ 1/TIM2/3/EVENT EVENTOUT OUT/ SYS_AF		I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2/I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT	I2C3/LPUART1/ COMP1/2/ TIM3
	PB0	EVENTOUT		TIM3_CH3		-	-	-	-
	PB1	-		TIM3_CH4		LPUART1_RTS_DE	-	-	-
	PB2	-	-	LPTIM1_OUT		-	-	-	I2C3_SMBA
	PB3	SPI1_SCK		TIM2_CH2		EVENTOUT	USART1_RTS_DE	USART5_TX	-
	PB4	SPI1_MISO		TIM3_CH1		TIM22_CH1	USART1_CTS	USART5_RX	I2C3_SDA
	PB5	SPI1_MOSI		LPTIM1_IN1	I2C1_SMBA	TIM3_CH2/ TIM22_CH2	USART1_CK	USART5_CK/ USART5_RTS_D E	-
	PB6	USART1_TX	I2C1_SCL	LPTIM1_ETR		-	-	-	-
	PB7	USART1_RX	I2C1_SDA	LPTIM1_IN2		-	-	USART4_CTS	-
ort B	PB8	-		-		I2C1_SCL	-	-	-
đ	PB9	-		EVENTOUT	-	I2C1_SDA	SPI2_NSS/ I2S2_WS	-	-
	PB10	-		TIM2_CH3		LPUART1_TX	SPI2_SCK	I2C2_SCL	LPUART1_RX
	PB11	EVENTOUT		TIM2_CH4		LPUART1_RX	-	I2C2_SDA	LPUART1_TX
	PB12	SPI2_NSS/I2S2_WS		LPUART1_RTS_ DE			I2C2_SMBA	EVENTOUT	-
	PB13	SPI2_SCK/I2S2_CK		MCO		LPUART1_CTS	I2C2_SCL	TIM21_CH1	-
	PB14	SPI2_MISO/ I2S2_MCK		RTC_OUT		LPUART1_RTS_DE	I2C2_SDA	TIM21_CH2	-
	PB15	SPI2_MOSI/ I2S2_SD		RTC_REFIN	-	-	-	-	-

Pin descriptions

					Table 19. A	Iternate func	tions port D			
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	Port		SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1/ COMP1/2/TIM3
		PD0	TIM21_CH1	SPI2_NSS/I2S2_WS	-	-	-	-	-	-
		PD1	-	SPI2_SCK/I2S2_CK	-	-	-	-	-	-
		PD2	LPUART1_RTS_ DE		TIM3_ETR	-	-	-	USART5_RX	-
D		PD3	USART2_CTS		SPI2_MISO/ I2S2_MCK	-	-	-	-	-
ocID02		PD4	USART2_RTS_D E	SPI2_MOSI/I2S2_SD	-	-	-	-	-	-
2710		PD5	USART2_TX	-	-	-	-	-	-	-
11 R	Δ	PD6	USART2_RX	-	-	-	-	-	-	-
ev 3	Port	PD7	USART2_CK	TIM21_CH2	-	-	-	-	-	-
	_	PD8	LPUART1_TX		-	-	-	-	-	-
		PD9	LPUART1_RX		-	-	-	-	-	-
		PD10	-		-	-	-	-	-	-
		PD11	LPUART1_CTS		-	-	-	-	-	-
		PD12	LPUART1_RTS_ DE		-	-	-	-	-	-
		PD13	-		-	-	-	-	-	-
		PD14	-		-	-	-	-	-	-
		PD15			-	-	-	-	-	-

49/136

STM32L071xx

Pin descriptions

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 22: Voltage characteristics*, *Table 23: Current characteristics*, and *Table 24: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Definition	Min	Мах	Unit
$V_{DD} - V_{SS}$	External main supply voltage (including V _{DDA} , V _{DDIO2} V _{DD}) ⁽¹⁾	-0.3	4.0	
	Input voltage on FT and FTf pins	$V_{SS} - 0.3$	V _{DD} +4.0	
V _{IN} ⁽²⁾	Input voltage on TC pins	$V_{SS} - 0.3$	4.0	V
	Input voltage on BOOT0	V _{SS}	$V_{DD} + 4.0$	
	Input voltage on any other pin	$V_{SS}-0.3$	4.0	
$ \Delta V_{DD} $	Variations between different V _{DDx} power pins	-	50	
V _{DDA} -V _{DDx}	Variations between any V_{DDx} and V_{DDA} power $\mbox{pins}^{(3)}$	-	300	mV
ΔV _{SS} Variations between all different ground p including V _{REF-} pin		-	50	
$V_{REF+} - V_{DDA}$	Allowed voltage difference for $V_{REF^+} > V_{DDA}$	-	0.4	V
V _{ESD(HBM)} Electrostatic discharge voltage (human body model)		see Sect	ion 6.3.11	

Table 22	. Voltage	characteristics
----------	-----------	-----------------

1. All main power (V_{DD},, V_{DDA}) and ground (V_{SS}, V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 23* for maximum allowed injected current values.

3. It is recommended to power V_{DD} and V_{DDA} from the same source. A maximum difference of 300 mV between V_{DD} and V_{DDA} can be tolerated during power-up and device operation. V_{DDIO2} is independent from V_{DD} and V_{DDA}: its value does not need to respect this rule.

6.3 Operating conditions

6.3.1 General operating conditions

Table 25.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
POLKZ		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	v	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA}	Analog operating voltage (all features)	Must be the same voltage as $V_{DD}^{(1)}$	1.65	3.6	V	
V _{DDIO2}	Standard operating voltage	-	1.65	3.6	V	
	Input voltage on ET ETf and PST pipe ⁽²⁾	$2.0~V \leq V_{DD} \leq 3.6~V$	-0.3	5.5		
V	input voltage of FT, FTT and KST pins.	$1.65 \text{ V} \leq \text{V}_{DD} \leq 2.0 \text{ V}$	-0.3	5.2	V	
VIN	Input voltage on BOOT0 pin	-	0	5.5		
	Input voltage on TC pin	-	-0.3	V _{DD} +0.3		
		UFBGA100 package	-	351	- mW	
		LQFP100 package	-	488		
	Power dissipation at $T_A = 85 \degree$ C (range 6) or $T_A = 105 \degree$ C (rage 7) ⁽³⁾	TFBGA64 package	-	313		
		LQFP64 package	-	435		
		WLCSP49 package	-	417		
		LQFP48 package	-	370		
		UFQFPN32 package	-	556		
Р		LQFP32 package	-	333		
' D		UFBGA100 package	-	88		
		LQFP100 package	-	122		
		TFBGA64 package	-	78	-	
	Power dissipation at T _A = 125 °C (range	LQFP64 package	-	109		
	3) ⁽³⁾	WLCSP49 package	-	104		
		LQFP48 package	-	93		
		UFQFPN32 package	-	139		
		LQFP32 package	-	83		

Symbol	Deripheral	Typical consum	Unit	
Symbol	Peripheral	V _{DD} =1.8 V	V _{DD} =3.0 V	
I _{DD(PVD / BOR)}	-	0.7	1.2	
I _{REFINT}	-	-	1.7	
-	LSE Low drive ⁽²⁾	0.11	0,13	
-	LSI	0.27	0.31	
-	IWDG	0.2	0.3	
-	LPTIM1, Input 100 Hz	0.01	0,01	μΑ
-	LPTIM1, Input 1 MHz	11	12	
-	LPUART1	-	0,5	
-	RTC	0.16	0,3	

Table 40. Peripheral	current consumption in	Stop and Standby mode ⁽¹⁾
		······································

1. LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode.

2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.-

6.3.5 Wakeup time from low-power mode

The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode
- Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4.
- Standby mode: the clock source is the MSI oscillator running at 2.1 MHz

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 25*.

	•				
Symbol	Parameter	Conditions	Тур	Мах	Unit
t _{WUSLEEP}	Wakeup from Sleep mode	f _{HCLK} = 32 MHz	7	8	
t _{WUSLEEP_} LP	Wakeup from Low-power sleep mode, f _{HCLK} = 262 kHz	f _{HCLK} = 262 kHz Flash memory enabled	7	8	Number of clock
		f _{HCLK} = 262 kHz Flash memory switched OFF	9	10	cycles

Tabla	11			modo	wakoun	timinac
able	41.	LOW-	power	mode	wakeup	umings

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 44*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
f _{OSC_IN}	Oscillator frequency	-	1		25	MHz		
R _F	Feedback resistor	-	-	200	-	kΩ		
G _m	Maximum critical crystal transconductance	Startup	-	-	700	μΑ /V		
t _{SU(HSE)}	Startup time	V _{DD} is stabilized	-	2	-	ms		

Table 44. HSE oscillator characteristics⁽¹⁾

1. Guaranteed by design.

2. Guaranteed by characterization results. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 23*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} . Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website *www.st.com*.

6.3.8 PLL characteristics

The parameters given in *Table 49* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 25*.

Symbol	Baramatar		Unit		
Symbol	Falameter	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	-	24	MHz
^I PLL_IN	PLL input clock duty cycle	45	-	55	%
f _{PLL_OUT}	PLL output clock	2	-	32	MHz
t _{LOCK}	PLL input = 16 MHz PLL VCO = 96 MHz	-	115	160	μs
Jitter	Cycle-to-cycle jitter	-		± 600	ps
I _{DDA} (PLL)	Current consumption on V _{DDA}	-	220	450	
I _{DD} (PLL)	Current consumption on V _{DD}	-	120	150	μΑ

Table	49.	PLL	characteristics

1. Guaranteed by characterization results.

2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT} .

6.3.9 Memory characteristics

RAM memory

Table 50. RAM and hardware registers

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VRM	Data retention mode ⁽¹⁾	STOP mode (or RESET)	1.65	-	-	V

1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode).

Flash memory and data EEPROM

Table 51. Flash memory and data EEPROM characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V_{DD}	Operating voltage Read / Write / Erase	-	1.65	-	3.6	V
t _{prog}	Programming time for word or half-page	Erasing	-	3.28	3.94	- ms
		Programming	-	3.28	3.94	

Figure 26. V_{IH}/V_{IL} versus VDD (CMOS I/Os)

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 15 mA with the non-standard V_{OL}/V_{OH} specifications given in *Table 59*.

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

- The sum of the currents sourced by all the I/Os on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD(Σ)} (see *Table 23*).
- The sum of the currents sunk by all the I/Os on V_{SS} plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating I_{VSS(Σ)} (see *Table 23*).

Output voltage levels

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 25*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ ,	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1_{\text{IO}} = +6 \text{ IIA}$ 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	$\begin{array}{c} {\sf TTL \ port}^{(2)}, \\ {\sf I}_{IO} = + \ 8 \ mA \\ {\sf 2.7 \ V} \leq {\sf V}_{DD} \leq \ 3.6 \ {\sf V} \end{array}$	-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{TTL port}^{(2)},\\ \text{I}_{\text{IO}} \texttt{=} -6 \text{ mA}\\ 2.7 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +15 mA 2.7 V \leq V _{DD} \leq 3.6 V	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{\text{IO}} \text{ = -15 mA} \\ \text{2.7 V} \leq \text{V}_{DD} \leq \ \text{3.6 V} \end{array}$	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +4 mA 1.65 V \leq V _{DD} < 3.6 V	-	0.45	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	I_{IO} = -4 mA 1.65 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.45	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf	$I_{IO} = 20 \text{ mA}$ 2.7 V \leq V _{DD} \leq 3.6 V	-	0.4	
	I/O pin in Fm+ mode	$\begin{array}{c} {\sf I}_{IO} = 10 \mbox{ mA} \\ 1.65 \mbox{ V} \leq {\sf V}_{DD} \leq \ 3.6 \mbox{ V} \end{array}$	-	0.4	

Table 59. Output voltage characteristics

 The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 23*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI_{IO(PIN)}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 23. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed $\Sigma I_{IO(PIN)}$.

4. Guaranteed by characterization results.

7.2 UFBGA100 package information

Figure 42. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline

1. Drawing is not to scale.

Table 77. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data

Symbol	millimeters			inches ⁽¹⁾		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	0.600	-	-	0.0236
A1	-	-	0.110	-	-	0.0043
A2	-	0.450	-	-	0.0177	-
A3	-	0.130	-	-	0.0051	0.0094
A4	-	0.320	-	-	0.0126	-
b	0.240	0.290	0.340	0.0094	0.0114	0.0134
D	6.850	7.000	7.150	0.2697	0.2756	0.2815
D1	-	5.500	-	-	0.2165	-
E	6.850	7.000	7.150	0.2697	0.2756	0.2815
E1	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
Z	-	0.750	-	-	0.0295	-

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ccc	-	-	0.100	-	-	0.0039

Table 85. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

DocID027101 Rev 3

Date	Revision	Changes
22-Mar-2016	3	Updated number of SPIs on cover page and in <i>Table 2: Ultra-low-power STM32L071xx device features and peripheral counts.</i> Changed minimum comparator supply voltage to 1.65 V on cover page. Added number of fast and standard channels in <i>Section 3.11:</i> <i>Analog-to-digital converter (ADC).</i> Updated <i>Section 3.15.2: Universal synchronous/asynchronous</i> <i>receiver transmitter (USART)</i> and <i>Section 3.15.4: Serial</i> <i>peripheral interface (SPI)/Inter-integrated sound (I2S)</i> to mention the fact that USARTs with synchronous mode feature can be used as SPI master interfaces. Added baudrate allowing to wake up the MCU from Stop mode in <i>Section 3.15.2: Universal synchronous/asynchronous receiver</i> <i>transmitter (USART)</i> and <i>Section 3.15.3: Low-power universal</i> <i>asynchronous receiver transmitter (LPUART).</i> Changed V _{DDA} minimum value to 1.65 V in <i>Table 25: General</i> <i>operating conditions.</i> <i>Section 6.3.15: 12-bit ADC characteristics:</i> – <i>Table 62: ADC characteristics:</i> Distinction made between V _{DDA} for fast and standard channels; added note 1. Added note 4. related to R _{ADC} . Updated f _{TRIG} and V _{AIN} maximum value. Updated t _s and t _{CONV} . Added V _{REF+} . – Updated equation 1 description. – Updated <i>Table 63: RAIN max for fADC = 16 MHz</i> for f _{ADC} = 16 MHz and distinction made between fast and standard channels.

Table 89. Document revision history

