

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	51
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20К х 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071rbt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	. 1
Table 2.	Ultra-low-power STM32L071xx device features and peripheral counts	11
Table 3.	Functionalities depending on the operating power supply range	15
Table 4.	CPU frequency range depending on dynamic voltage scaling	16
Table 5.	Functionalities depending on the working mode	
	(from Run/active down to standby)	16
Table 6.	STM32L0xx peripherals interconnect matrix	18
Table 7.	Temperature sensor calibration values	27
Table 8.	Internal voltage reference measured values.	27
Table 9.	Timer feature comparison	28
Table 10.	Comparison of I2C analog and digital filters	30
Table 11	STM32I 071xx I ² C implementation	30
Table 12	USART implementation	31
Table 13	SPI/I2S implementation	32
Table 14	Legend/abbreviations used in the ninout table	38
Table 15	STM32L071xxx nin definition	30
Table 16	Alternate functions port A	46
Table 10.	Alternate functions port R	40 17
Table 17.	Alternate functions port C	10
Table 10.	Alternate functions port D	40
Table 19.	Alternate functions port E	49 50
Table 20.		50
Table 21.		51
		55
Table 23.		50
Table 24.		50
Table 25.		5/
Table 26.		59
		60
Table 28.		60
Table 29.	Current consumption in Run mode, code with data processing running from	
	Flash memory	62
l able 30.	Current consumption in Run mode vs code type,	
	code with data processing running from Flash memory	62
Table 31.	Current consumption in Run mode, code with data processing running from RAM	64
Table 32.	Current consumption in Run mode vs code type,	
	code with data processing running from RAM	64
Table 33.	Current consumption in Sleep mode	65
Table 34.	Current consumption in Low-power run mode	66
Table 35.	Current consumption in Low-power sleep mode	67
Table 36.	Typical and maximum current consumptions in Stop mode	68
Table 37.	Typical and maximum current consumptions in Standby mode	69
Table 38.	Average current consumption during Wakeup	70
Table 39.	Peripheral current consumption in Run or Sleep mode	71
Table 40.	Peripheral current consumption in Stop and Standby mode	73
Table 41.	Low-power mode wakeup timings	73
Table 42.	High-speed external user clock characteristics.	75
Table 43.	Low-speed external user clock characteristics	76
Table 44.	HSE oscillator characteristics	77

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L071xx embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels.

The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- includes a Non-Maskable Interrupt (NMI)
- provides zero jitter interrupt option
- provides four interrupt priority levels

The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode.

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.4 Reset and supply management

3.4.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the

- 32.768 kHz low-speed external crystal (LSE)
- 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision.

• RTC clock source

The LSI, LSE or HSE sources can be chosen to clock the RTC, whatever the system clock.

• Startup clock

After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.

• Clock security system (CSS)

This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled.

• Clock-out capability (MCO: microcontroller clock output)

It outputs one of the internal clocks for external use by the application.

Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See *Figure 2* for details on the clock tree.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TSENSE_CAL1	TS ADC raw data acquired at temperature of 30 °C, V _{DDA} = 3 V	0x1FF8 007A - 0x1FF8 007B
TSENSE_CAL2	TS ADC raw data acquired at temperature of 130 °C V _{DDA} = 3 V	0x1FF8 007E - 0x1FF8 007F

 Table 7. Temperature sensor calibration values

3.12.1 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the V_{DD} value (when no external voltage, V_{REF+} , is available for ADC). The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 25 °C V _{DDA} = 3 V	0x1FF8 0078 - 0x1FF8 0079

Table 8. Internal voltage reference measured values

3.13 Ultra-low-power comparators and reference voltage

The STM32L071xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O).

- One comparator with ultra low consumption
- One comparator with rail-to-rail inputs, fast or slow mode.
- The threshold can be one of the following:
 - External I/O pins
 - Internal reference voltage (V_{REFINT})
 - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator.

Both comparators can wake up the devices from Stop mode, and be combined into a window comparator.

The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 μ A typical).

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on T_A = 25 °C, V_{DD} = 3.6 V (for the 1.65 V \leq V_{DD} \leq 3.6 V voltage range). They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 12*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 13*.

6.3 Operating conditions

6.3.1 General operating conditions

Table 25.	General	operating	conditions
-----------	---------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
		BOR detector disabled, after power on	1.65	3.6		
V _{DDA}	Analog operating voltage (all features)	Must be the same voltage as $V_{DD}^{(1)}$	1.65	3.6	V	
V _{DDIO2}	Standard operating voltage	-	1.65	3.6	V	
	Input voltage on ET ETf and PST pipe ⁽²⁾	$2.0~V \leq V_{DD} \leq 3.6~V$	-0.3	5.5		
V _{IN} Input vol		$1.65~V \leq V_{DD} \leq 2.0~V$	-0.3	5.2	V	
	Input voltage on BOOT0 pin	-	0	5.5	v	
	Input voltage on TC pin	-	-0.3	V _{DD} +0.3		
		UFBGA100 package	-	351		
	Power dissipation at T _A = 85 °C (range 6) or T _A =105 °C (rage 7) $^{(3)}$	LQFP100 package	-	488	-	
		TFBGA64 package	-	313		
		LQFP64 package	-	435		
		WLCSP49 package	-	417		
		LQFP48 package	-	370		
		UFQFPN32 package	-	556		
P		LQFP32 package	-	333	m\\/	
' D		UFBGA100 package	-	88	11100	
		LQFP100 package	-	122		
		TFBGA64 package	-	78		
	Power dissipation at T _A = 125 °C (range	LQFP64 package	-	109		
	3) ⁽³⁾	WLCSP49 package	-	104		
		LQFP48 package	-	93		
		UFQFPN32 package	-	139		
		LQFP32 package	-	83		

Symbol	Parameter	Condition		f _{HCLK} (MHz)	Тур	Max ⁽¹⁾	Unit
			Range3	1	43,5	110	
			Vcore=1.2 V	2	72	140	
			VOS[1:0]=11	4	130	200	
		f _{HSE} = f _{HCLK} up to	Range2	4	160	220	
		16 MHz included,	Vcore=1.5 V	8	305	380	
		16 MHz (PLL ON) ⁽²⁾	VOS[1:0]=10	16	590	690	
			Range1.	8	370	460	
	Supply current in		Vcore=1.8 V	16	715	840	
	memory switched		VOS[1:0]=01	32	1650	2000	
	OFF		Range3	0,065	18	93	
		MSI clock	Vcore=1.2 V	0,524	31,5	110	
			VOS[1:0]=11	4,2	140	230	
		HSI clock source (16 MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	665	850	
			Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2100	
(Sleep)		f _{HSE} = f _{HCLK} up to 16MHz included, fuer = fuery/2 above	Range3, Vcore=1.2 V VOS[1:0]=11	1	57,5	130	- μΑ -
				2	84	160	
				4	150	220	
			Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V	4	170	240	
				8	315	400	
		16 MHz (PLL ON) ⁽²⁾		16	605	710	
				8	380	470	
	Supply current in			16	730	860	
	memory switched		VOS[1:0]=01	32	1650	2000	
	ON		Range3.	0,065	29,5	110	
		MSI clock	Vcore=1.2 V	0,524	44,5	120	
			VOS[1:0]=11	4,2	150	240	
		HSI clock source (16MHz)	Range2, Vcore=1.5 V VOS[1:0]=10	16	680	930	
			(16MHz) Range1, Vcore=1.8 V VOS[1:0]=01	32	1750	2200	

1. Guaranteed by characterization results at 125 °C, unless otherwise specified.

2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).

Low-speed internal (LSI) RC oscillator

Table 47.	LSI	oscillator	characteristics
	_		

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI} ⁽¹⁾	LSI frequency	26	38	56	kHz
$D_{LSI}^{(2)}$	LSI oscillator frequency drift $0^{\circ}C \leq T_A \leq 85^{\circ}C$	-10	-	4	%
t _{su(LSI)} ⁽³⁾	LSI oscillator startup time	-	-	200	μs
I _{DD(LSI)} ⁽³⁾	LSI oscillator power consumption	-	400	510	nA

1. Guaranteed by test in production.

2. This is a deviation for an individual part, once the initial frequency has been measured.

3. Guaranteed by design.

Multi-speed internal (MSI) RC oscillator

Symbol	Parameter	Condition	Тур	Max	Unit
		MSI range 0	65.5	-	
		MSI range 1	131	-	k∏-
		MSI range 2	262	-	KI IZ
f _{MSI}	Frequency after factory calibration, done at V_{DD} = 3.3 V and T _A = 25 °C	MSI range 3	524	-	
		MSI range 4	1.05	-	
		MSI range 5	2.1	-	MHz
		MSI range 6	4.2	-	
ACC _{MSI}	Frequency error after factory calibration	-	±0.5	-	%
	MSI oscillator frequency drift 0 $^\circ\text{C} \leq T_A \leq 85 \ ^\circ\text{C}$	-	±3	-	
		MSI range 0	- 8.9	+7.0	
		MSI range 1	- 7.1	+5.0	
D _{TEMP(MSI)} ⁽¹⁾		MSI range 2	- 6.4	+4.0	%
~ ,	MSI oscillator frequency drift V _{DD} = 3.3 V. – 40 °C \leq T _A \leq 110 °C	MSI range 3	- 6.2	+3.0	
		MSI range 4	- 5.2	+3.0	
		MSI range 5	- 4.8	+2.0	
		MSI range 6	- 4.7	+2.0	
D _{VOLT(MSI)} ⁽¹⁾	MSI oscillator frequency drift 1.65 V \leq V_{DD} \leq 3.6 V, T_A = 25 $^{\circ}\text{C}$	-	-	2.5	%/V

Table 48. MSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
	Average current during the whole programming / erase operation	T _A = 25 °C, V _{DD} = 3.6 V	-	500	700	μA
I _{DD}	Maximum current (peak) during the whole programming / erase operation		-	1.5	2.5	mA

 Table 51. Flash memory and data EEPROM characteristics

1. Guaranteed by design.

Cumhal	Deveneder	Conditions	Value	11
Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit
	Cycling (erase / write) Program memory	T. – -40°C to 105 °C	10	
Novo ⁽²⁾	Cycling (erase / write) EEPROM data memory		100	kovoles
N _{CYC}	Cycling (erase / write) Program memory	T. – -40°C to 125 °C	0.2	kcycles
	Cycling (erase / write) EEPROM data memory		2	
	Data retention (program memory) after 10 kcycles at T _A = 85 °C	T = +85 °C	30	
	Data retention (EEPROM data memory) after 100 kcycles at T _A = 85 °C	TRET - 100 O	30	
t(2)	Data retention (program memory) after 10 kcycles at T _A = 105 °C	T = +105 °C	- 10	years
^I RET ^C	Data retention (EEPROM data memory) after 100 kcycles at T_A = 105 °C	TRET - 100 0		
	Data retention (program memory) after 200 cycles at T _A = 125 °C	T = +125 °C		
	Data retention (EEPROM data memory) after 2 kcycles at T _A = 125 °C	REI - 123 0		

1. Guaranteed by characterization results.

2. Characterization is done according to JEDEC JESD22-A117.

6.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored frequency band	Max vs. frequency range at 32 MHz	Unit
	V36V		0.1 to 30 MHz	-7	
S _{EMI} Peak level	$V_{DD} = 3.0 \text{ v},$ $T_{\Delta} = 25 \text{ °C},$	30 to 130 MHz	14	dBµV	
	Peak level	LQFP100 package	130 MHz to 1 GHz	9	
			EMI Level	2	-

Table	54.	EMI	characteristics

Output voltage levels

Unless otherwise specified, the parameters given in *Table 59* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 25*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽¹⁾	Output low level voltage for an I/O pin	CMOS port ⁽²⁾ ,	-	0.4	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	$1_{\text{IO}} = +6 \text{ IIA}$ 2.7 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.4	-	
V _{OL} ⁽¹⁾	$ \begin{array}{c} \mbox{Output low level voltage for an I/O} \\ \mbox{pin} \end{array} \begin{array}{c} \mbox{TTL port}^{(2)}, \\ \mbox{I}_{IO} = + \mbox{ 8 mA} \\ \mbox{2.7 V} \leq V_{DD} \leq \mbox{ 3.6} \end{array} $		-	0.4	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{TTL port}^{(2)},\\ \text{I}_{\text{IO}} \texttt{=} -6 \text{ mA}\\ 2.7 \text{ V} \leq \text{V}_{DD} \leq \ 3.6 \text{ V} \end{array}$	2.4	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +15 mA 2.7 V \leq V _{DD} \leq 3.6 V	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	$\begin{array}{l} \text{I}_{\text{IO}} \text{ = -15 mA} \\ \text{2.7 V} \leq \text{V}_{DD} \leq \ \text{3.6 V} \end{array}$	V _{DD} -1.3	-	
V _{OL} ⁽¹⁾⁽⁴⁾	Output low level voltage for an I/O pin	I_{IO} = +4 mA 1.65 V \leq V _{DD} < 3.6 V	-	0.45	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin	I_{IO} = -4 mA 1.65 V \leq V _{DD} \leq 3.6 V	V _{DD} -0.45	-	
V _{OLFM+} ⁽¹⁾⁽⁴⁾	Output low level voltage for an FTf	$I_{IO} = 20 \text{ mA}$ 2.7 V \leq V _{DD} \leq 3.6 V	-	0.4	
	I/O pin in Fm+ mode	$\begin{array}{c} {\sf I}_{IO} = 10 \mbox{ mA} \\ 1.65 \mbox{ V} \leq {\sf V}_{DD} \leq \ 3.6 \mbox{ V} \end{array}$	-	0.4	

Table 59. Output voltage characteristics

 The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in *Table 23*. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed ΣI_{IO(PIN)}.

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 23. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed $\Sigma I_{IO(PIN)}$.

4. Guaranteed by characterization results.

Electrical characteristics

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Symbol	Farameter	Conditions	IVIIII	чур	WIGA	Unit
ET	Total unadjusted error		-	2	5	
EO	Offset error		-	1	2.5	
EG	Gain error		-	1	2	LSB
EL	Integral linearity error		-	1.5	3	
ED	Differential linearity error	1.65 V < V _{REF+} <v<sub>DDA < 3.6 V, range 1/2/3</v<sub>	-	1	2	
ENOB	Effective number of bits		10.0	11.0	-	bits
SINAD	Signal-to-noise distortion		62	69	-	
SNR	Signal-to-noise ratio		61	69	-	dB
THD	Total harmonic distortion		-	-85	-65	

Table 64. ADC accuracy⁽¹⁾⁽²⁾⁽³⁾ (continued)

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.12 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.

4. This number is obtained by the test board without additional noise, resulting in non-optimized value for oversampling mode.

Figure 30. ADC accuracy characteristics

6.3.17 Comparators

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65		3.6	V
R _{400K}	R _{400K} value	-	-	400	-	kO
R _{10K}	R _{10K} value	-	-	10	-	K22
V _{IN}	Comparator 1 input voltage range	-	0.6	-	V _{DDA}	V
t _{START}	Comparator startup time	-	-	7	10	110
td	Propagation delay ⁽²⁾	-	-	3	10	μο
Voffset	Comparator offset	-	-	±3	±10	mV
d _{Voffset} /dt	Comparator offset variation in worst voltage stress conditions	$V_{DDA} = 3.6 V, V_{IN+} = 0 V,$ $V_{IN-} = V_{REFINT}, T_A = 25 °C$	0	1.5	10	mV/1000 h
I _{COMP1}	Current consumption ⁽³⁾	-	-	160	260	nA

Table 67. Comparator 1 characteristics

1. Guaranteed by characterization.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage not included.

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	1.65	-	3.6	V
V _{IN}	Comparator 2 input voltage range	-	0	-	V _{DDA}	V
t	Comparator startup time	Fast mode	-	15	20	
START		Slow mode	-	20	25	
t	Propagation delay $^{(2)}$ in slow mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	1.8	3.5	116
^L d slow	Tropagation delay with slow mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	2.5	6	μ5
+	Propagation dolay $^{(2)}$ in fast mode	$1.65~V \leq V_{DDA} \leq 2.7~V$	-	0.8	2	
^L d fast	riopagation delay in fast mode	$2.7~V \leq V_{DDA} \leq 3.6~V$	-	1.2	4	
V _{offset}	Comparator offset error		-	±4	±20	mV
dThreshold/ dt	Threshold voltage temperature coefficient	$\label{eq:VDDA} \begin{split} &V_{DDA} = 3.3 \text{V}, \ T_{A} = 0 \ \text{to} \ 50 \ ^{\circ}\text{C}, \\ &V_{-} = V_{\text{REFINT}}, \\ &3/4 \ V_{\text{REFINT}}, \\ &1/2 \ V_{\text{REFINT}}, \\ &1/4 \ V_{\text{REFINT}}. \end{split}$	-	15	30	ppm /°C
	Current consumption ⁽³⁾	Fast mode	-	3.5	5	
I _{COMP2}		Slow mode	-	0.5	2	μΑ

Table 68. Comparator 2 characteristics

1. Guaranteed by characterization results.

2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-inverting input set to the reference.

3. Comparator consumption only. Internal reference voltage (required for comparator operation) is not included.

I2S characteristics

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{MCK}	I2S Main clock output	-	256 x 8K	256xFs ⁽²⁾	MHz
£	12S clock frequency	Master data: 32 bits	-	64xFs	MU-7
'CK	125 Clock nequency	Slave data: 32 bits	-	64xFs	IVITIZ
D _{CK}	I2S clock frequency duty cycle	Slave receiver	30	70	%
t _{v(WS)}	WS valid time	Master mode	-	15	
t _{h(WS)}	WS hold time	Master mode	11	-	
t _{su(WS)}	WS setup time	Slave mode	6	-	
t _{h(WS)}	WS hold time	Slave mode	2	-	
$t_{su(SD_MR)}$	Data input setup time	Master receiver	0	-	
t _{su(SD_SR)}		Slave receiver	6.5	-	ne
t _{h(SD_MR)}	Data input hold time	Master receiver	18	-	115
t _{h(SD_SR)}	Data input noid time	Slave receiver	15.5	-	
t _{v(SD_ST)}	Data output valid time	Slave transmitter (after enable edge)	-	77	
t _{v(SD_MT)}		Master transmitter (after enable edge)	-	8	
t _{h(SD_ST)}	Data output hold time	Slave transmitter (after enable edge)	18	-	
t _{h(SD_MT)}		Master transmitter (after enable edge)	1.5	-	

Table 75. I2S characteristics⁽¹⁾

1. Guaranteed by characterization results.

2. 256xFs maximum value is equal to the maximum clock frequency.

Note: Refer to the I2S section of the product reference manual for more details about the sampling frequency (Fs), f_{MCK} , f_{CK} and D_{CK} values. These values reflect only the digital peripheral behavior, source clock precision might slightly change them. DCK depends mainly on the ODD bit value, digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max of (I2SDIV+ODD)/(2*I2SDIV+ODD). Fs max is supported for each mode/condition.

Table 77. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data (continued)

Symbol	millimeters				inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 43. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 78. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Device marking for TFBGA64

The following figure gives an example of topside marking versus ball A 1 position identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

······································			
Dimension	Recommended values		
Pitch	0.4		
Doad	260 µm max. (circular)		
Dpau	220 µm recommended		
Dsm	300 μm min. (for 260 μm diameter pad)		
PCB pad design	Non-solder mask defined via underbump allowed.		

 Table 83. WLCSP49 recommended PCB design rules (0.4 mm pitch)

Device marking for WLCSP49

The following figure gives an example of topside marking versus ball A 1 position identifier location.

Figure 52. WLCSP49 marking example (package top view)

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 54. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking for LQFP48

The following figure gives an example of topside marking versus pin 1 position identifier location.

Figure 55. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID027101 Rev 3

7.7 LQFP32 package information

Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

^{1.} Drawing is not to scale.

7.9 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	36	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60	
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	54	°C/W
.	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	48	
JA	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	64	
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	41	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm / 0.5 mm pitch	57	

Table of . Thermal characteristic	Table 8	37. Thei	rmal chai	racteristic
-----------------------------------	---------	----------	-----------	-------------

