E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, I ² S, POR, PWM, WDT
Number of I/O	84
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	6K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.65V ~ 3.6V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32l071vzt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		6.3.16	Temperature sensor characteristics
		6.3.17	Comparators
		6.3.18	Timer characteristics
		6.3.19	Communications interfaces
7	Pack	age info	ormation
	7.1	LQFP1	00 package information 108
	7.2	UFBGA	100 package information111
	7.3	LQFP6	4 package information
	7.4	TFBGA	64 package information116
	7.5	WLCSF	P49 package information119
	7.6	LQFP4	8 package information
	7.7	LQFP3	2 package information 125
	7.8	UFQFP	N32 package information 128
	7.9	Therma	Il characteristics
		7.9.1	Reference document
8	Part	number	ing 133
9	Revis	sion his	tory

2 Description

The access line ultra-low-power STM32L071xx microcontrollers incorporate the highperformance ARM[®] Cortex[®]-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals.

The STM32L071xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes.

The STM32L071xx devices offer several analog features, one 12-bit ADC with hardware oversampling, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock.

Moreover, the STM32L071xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), .

The STM32L071xx also include a real-time clock and a set of backup registers that remain powered in Standby mode.

The ultra-low-power STM32L071xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)⁽¹⁾⁽²⁾

			Low-	Low-	Stop	Standby
IPs	Run/Active Sleep		power run	power sleep	Wakeup capability	Wakeup capability
		Down to 37 μA/MHz (from Flash memory)	Down to		0.4 μA (No RTC) V _{DD} =1.8 \	0.28 μA (No RTC) V _{DD} =1.8 V
Consumption	Down to 140 µA/MHz			Down to 4.5 μA	0.8 µA (with RTC) V _{DD} =1.8 \	0.65 μA (with RTC) V _{DD} =1.8 V
V _{DD} =1.8 to 3.6 V (Typ)	(from Flash memory)		8 µA		0.4 μA (No RTC) V _{DD} =3.0 \	0.29 µA (No RTC) V _{DD} =3.0 V
					1 μA (with RTC) V _{DD} =3.0 V	0.85 µA (with RTC) V _{DD} =3.0 V

1. Legend:

"Y" = Yes (enable). "O" = Optional can be enabled/disabled by software) "-" = Not available

2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes.

- 3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore.
- 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock.
- 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception.

3.2 Interconnect matrix

Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency.

Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes.

Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop
COMPx	TIM2,TIM21, TIM22	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	-
	LPTIM	Timer input channel, trigger from analog signals comparison	Y	Y	Y	Y	Y
TIMx	TIMx	Timer triggered by other timer	Y	Y	Y	Y	-

Table 6. STM32L0xx peripherals	interconnect matrix
--------------------------------	---------------------

					(
Interconnect source	Interconnect destination	Interconnect action	Run	Sleep	Low- power run	Low- power sleep	Stop
BTC	TIM21	Timer triggered by Auto wake-up	Y	Y	Y Y	-	
RTC	LPTIM	Timer triggered by RTC event	Y	Y	Y	Y	Y
All clock source	TIMx	Clock source used as input channel for RC measurement and trimming	Y	Y	Y	Y	-
	TIMx	Timer input channel and trigger	Y	Y	Y	Y - Y -	-
GPIO	LPTIM	Timer input channel and trigger	Y	Y	Y	Y	Y
	ADC	Conversion trigger	Y	Y	Y	Y	-

Table 6. STM32L0xx peripherals interconnect matrix (continued)

3.3 ARM[®] Cortex[®]-M0+ core with MPU

The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including:

- a simple architecture that is easy to learn and program
- ultra-low power, energy-efficient operation
- excellent code density
- deterministic, high-performance interrupt handling
- upward compatibility with Cortex-M processor family
- platform security robustness, with integrated Memory Protection Unit (MPU).

The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier.

The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers.

Owing to its embedded ARM core, the STM32L071xx are compatible with all ARM tools and software.

Nested vectored interrupt controller (NVIC)

The ultra-low-power STM32L071xx embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels.

The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC:

- includes a Non-Maskable Interrupt (NMI)
- provides zero jitter interrupt option
- provides four interrupt priority levels

The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart load-multiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode.

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.4 Reset and supply management

3.4.1 Power supply schemes

- V_{DD} = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.

3.4.2 Power supply supervisor

The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry.

Two versions are available:

- The version with BOR activated at power-on operates between 1.8 V and 3.6 V.
- The other version without BOR operates between 1.65 V and 3.6 V.

After the V_{DD} threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on V_{DD} at least 1 ms after it exits the POR area.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the

internal reference voltage (V_{REFINT}) in Stop mode. The device remains in reset mode when V_{DD} is below a specified threshold, V_{POR/PDR} or V_{BOR}, without the need for any external reset circuit.

Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up.

The devices feature an embedded programmable voltage detector (PVD) that monitors the $V_{DD/VDDA}$ power supply and compares it to the V_{PVD} threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when $V_{DD/VDDA}$ drops below the V_{PVD} threshold and/or when $V_{DD/VDDA}$ is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.4.3 Voltage regulator

The regulator has three operation modes: main (MR), low power (LPR) and power down.

- MR is used in Run mode (nominal regulation)
- LPR is used in the Low-power run, Low-power sleep and Stop modes
- Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR).

3.5 Clock management

The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features:

Clock prescaler

To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.

Safe clock switching

Clock sources can be changed safely on the fly in Run mode through a configuration register.

• Clock management

To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.

• System clock source

Three different clock sources can be used to drive the master clock SYSCLK:

- 1-25 MHz high-speed external crystal (HSE), that can supply a PLL
- 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a ±0.5% accuracy.

Auxiliary clock source

Two ultra-low-power clock sources that can be used to drive the real-time clock:


1 2 3 4 5 6 7 8 9 10 11 12	12
A (PE3) (PE1) (PB8) BOOTD (PD7) (PD5) (PB4) (PB3) (PA15) (PA14) (PA13) (PA	PA12)
● _ ヽ_ノ`ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ ヽ_ノ	PA11)
c (PD2) (PD0) (PC11) (VDD) (PB5) (PD2) (PD0) (PC11) (VDD) (PA	PA10)
	PC9)
_our _/ _/ _/	PC6)
	vss)
	VDD)
н (PC0) (NRSţ (VDD) (PD15) (PD14) (PD	PD13
J (VSSA) (PC1) (PC2) (PD12 (PD11) (PD	PD10)
K (VREF) (PC3) (PA2) (PA5) (PC4) (PD9) (PD8) (PB15) (PB14) (PB	рв13)
	у- рв12)
M (VDDA) (PA1) (PA4) (PA7) (PB0) (PB1) (PE7) (PE9) (PE11) (PE13) (PE14) (PE	PE15)

Figure 4. STM32L071xx UFBGA100 ballout - 7x 7 mm

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

1. The above figure shows the package top view.

2. I/O supplied by VDDIO2.

DocID027101 Rev 3

		I	Pin n	umb	iber								
LQFP32	UFQFPN32 ⁽¹⁾	LQFP48	LQFP64	UFBGA64	WLCSP49	LQFP100	UFBG100	Pin name (function after reset)	Pin type	I/O structure	Note	Alternate functions	Additional functions
-	-	21	29	G7	G3	47	L10	PB10	I/O	FT	-	TIM2_CH3, LPUART1_TX, SPI2_SCK, I2C2_SCL, LPUART1_RX	-
-	-	22	30	H7	F3	48	L11	PB11	I/O	FT	-	EVENTOUT, TIM2_CH4, LPUART1_RX, I2C2_SDA, LPUART1_TX	-
16	16	23	31	D6	D4	49	F12	VSS	S		-	-	-
17	17	24	32	E6	G2	50	G12	VDD	S		-	-	-
-	-	25	33	H8	G1	51	L12	PB12	I/O	FT	-	SPI2_NSS/I2S2_WS, LPUART1_RTS_DE, I2C2_SMBA, EVENTOUT	-
-	-	26	34	G8	F2	52	K12	PB13	I/O	FTf	-	SPI2_SCK/I2S2_CK, MCO, LPUART1_CTS, I2C2_SCL, TIM21_CH1	-
-	-	27	35	F8	F1	53	K11	PB14	I/O	FTf	-	SPI2_MISO/I2S2_MCK, RTC_OUT, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2	-
-	-	28	36	F7	E1	54	K10	PB15	I/O	FT	-	SPI2_MOSI/I2S2_SD, RTC_REFIN	-
-	-	-	-	-	-	55	K9	PD8	I/O	FT	-	LPUART1_TX	-
-	-	-	-	-	-	56	K8	PD9	I/O	FT	-	LPUART1_RX	-
-	-	-	-	-	-	57	J12	PD10	I/O	FT	-		-
-	-	-	-	-	-	58	J11	PD11	I/O	FT	-	LPUART1_CTS	-
-	-	-	-	-	-	59	J10	PD12	I/O	FT	-	LPUART1_RTS_DE	-
-	-	-	-	-	-	60	H12	PD13	I/O	FT	-		-
-	-	-	-	-	-	61	H11	PD14	I/O	FT	-		-
-	-	-	-	-	-	62	H10	PD15	I/O	FT	-		-
-	-	-	37	F6	-	63	E12	PC6	I/O	FT	-	TIM22_CH1, TIM3_CH1	-
-	-	-	38	E7	-	64	E11	PC7	I/O	FT	-	TIM22_CH2, TIM3_CH2	-

Table 15. STM32L071xxx pin definition (continued)

ו ה						Iternate func	-			
			AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7
	I	Port	SPI1/SPI2/I2S2/ USART1/2/ LPUART1/ LPTIM1/ TIM2/21/22/ EVENTOUT/ SYS_AF	SPI1/SPI2/I2S2/I2C1/ TIM2/21	SPI1/SPI2/I2S2/ LPUART1/ USART5/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF	I2C1/ EVENTOUT	I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT	SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22	I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT	I2C3/LPUART1 COMP1/2/TIM3
		PD0	TIM21_CH1	SPI2_NSS/I2S2_WS	-	-	-	-	-	-
		PD1	-	SPI2_SCK/I2S2_CK	-	-	-	-	-	-
		PD2	LPUART1_RTS_ DE		TIM3_ETR	-	-	-	USART5_RX	-
		PD3	USART2_CTS		SPI2_MISO/ I2S2_MCK	-	-	-	-	-
		PD4	USART2_RTS_D E	SPI2_MOSI/I2S2_SD	-	-	-	-	-	-
		PD5	USART2_TX	-	-	-	-	-	-	-
		PD6	USART2_RX	-	-	-	-	-	-	-
	Port D	PD7	USART2_CK	TIM21_CH2	-	-	-	-	-	-
	-	PD8	LPUART1_TX		-	-	-	-	-	-
		PD9	LPUART1_RX		-	-	-	-	-	-
		PD10	-		-	-	-	-	-	-
		PD11	LPUART1_CTS		-	-	-	-	-	-
		PD12	LPUART1_RTS_ DE		-	-	-	-	-	-
		PD13	-		-	-	-	-	-	-
		PD14	-		-	-	-	-	-	-
		PD15			-	-	-	-	-	-

49/136

STM32L071xx

Pin descriptions

Power supply scheme 6.1.6

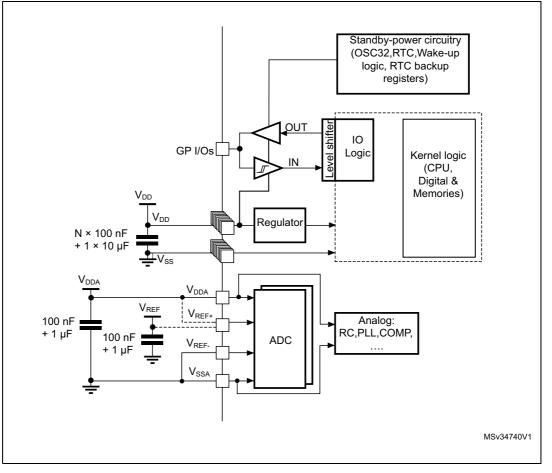
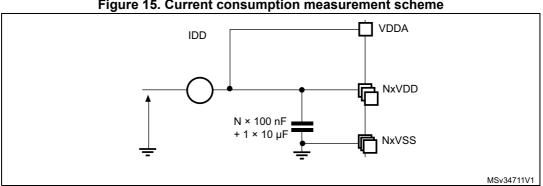



Figure 14. Power supply scheme

6.1.7 **Current consumption measurement**

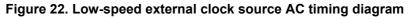
Figure 15. Current consumption measurement scheme

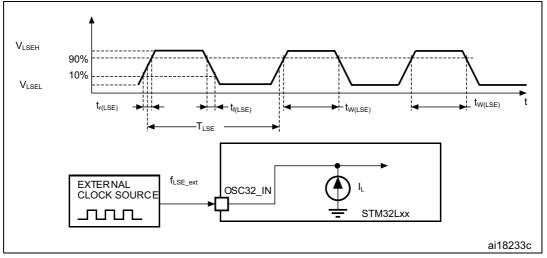
6.3 Operating conditions

6.3.1 General operating conditions

Table 25	. General	operating	conditions
----------	-----------	-----------	------------

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{HCLK}	Internal AHB clock frequency	-	0	32		
f _{PCLK1}	Internal APB1 clock frequency	-	0	32	MHz	
f _{PCLK2}	Internal APB2 clock frequency	-	0	32		
		BOR detector disabled	1.65	3.6		
V _{DD}	Standard operating voltage	BOR detector enabled, at power on	1.8	3.6	V	
$\begin{array}{ c c c c } \hline f_{HCLK} & Internal AHB clock frequency \\ \hline f_{PCLK1} & Internal APB1 clock frequency \\ \hline f_{PCLK2} & Internal APB2 clock frequency \\ \hline V_{DD} & Standard operating voltage \\ \hline V_{DDA} & Analog operating voltage (all featility of the second seco$		BOR detector disabled, after power on	1.65	3.6		
V _{DDA}	Analog operating voltage (all features)	Must be the same voltage as $V_{DD}^{(1)}$	1.65	3.6	V	
V _{DDIO2}	Standard operating voltage	-	1.65	3.6	V	
P _D	Input voltage on ET ETf and DST pips ⁽²⁾	$2.0~V \leq V_{DD} \leq 3.6~V$	-0.3	5.5		
	input voltage on F1, F11 and K31 pins.	$1.65~V \leq V_{DD} \leq 2.0~V$	-0.3	5.2	V	
	Input voltage on BOOT0 pin	-	0	5.5		
	Input voltage on TC pin	-	1.8 3.6 ad, after 1.65 3.6 Itage as 1.65 3.6 1.65 3.6 . -0.3 5.5 . -0.3 5.2 . 0 5.5 . -0.3 5.2 . 0 5.5 . -0.3 5.2 . 0 5.5 . -0.3 VDD+0.3 . -0.3 VDD+0.3 . -0.3 VDD+0.3 . -0.3 . . -0.3 VDD+0.3 . -0.3 . . -0.3 . . -1 . . -1 . . -1 . . -1 . . -1 <tr td=""> .</tr>			
		UFBGA100 package	-	0 5.5 0.3 V _{DD} +0.3 - 351 - 488 - 313		
		LQFP100 package	-	488	-	
$ \begin{array}{ c c c c } V_{DD} & \mbox{Standard operating voltage} & \mbox{BOR detector enabled, on BOR detector disabled power on } \\ \hline & \mbox{BOR detector disabled power on } \\ \hline & \mbox{V}_{DDA} & \mbox{Analog operating voltage (all features)} & \mbox{Must be the same volta} \\ \hline & \mbox{V}_{DD(O2} & \mbox{Standard operating voltage} & - & & \\ \hline & \mbox{V}_{DD(O2} & \mbox{Standard operating voltage on FT, FTf and RST pins}^{(2)} & \mbox{2.0 V} & \mbox{V}_{DD} \leq 3.6 \text{ V} \\ \hline & \mbox{Input voltage on FT, FTf and RST pins}^{(2)} & \mbox{2.0 V} & \mbox{V}_{DD} \leq 2.0 \text{ V} \\ \hline & \mbox{Input voltage on TC pin} & - & & \\ \hline & \mbox{Input voltage on TC pin} & - & & \\ \hline & \mbox{Input voltage on TC pin} & & & - & \\ \hline & \mbox{IFBGA100 package} & \\ \hline & \mbox{UFP100 package} & \\ \hline & \mbox{UFQFP132 package} & \\ \hline & \mbox{UFQFP132 package} & \\ \hline & \mbox{UFBGA100 package} & \\ \hline & \mbox{UFQFP132 package} & \\ \hline & \mbox{UFBGA100 package} & \\ \hline & \mbox{UFBGA100 package} & \\ \hline & \mbox{UFQFP132 package} & \\ \hline & UFQFP132 package$		TFBGA64 package	-	313		
	Power dissipation at $T_A = 85 \degree C$ (range 6)	LQFP64 package	-	435		
	or T _A =105 °C (rage 7) ⁽³⁾	WLCSP49 package	-	417		
	LQFP48 package	-	370			
		UFQFPN32 package	-	32 M 32 M 32 M 32 M 3.6 I 5.5 I V _{DD} +0.3 I 351 488 313 I 435 I 417 I 370 I 556 I 333 88		
р		LQFP32 package	-		mW	
Γ _D		UFBGA100 package	-	88	IIIVV	
V _{IN}		LQFP100 package	-	122		
		TFBGA64 package	-	78]	
	Power dissipation at T _A = 125 °C (range	LQFP64 package	-	109		
	3) ⁽³⁾	WLCSP49 package	-	104		
		LQFP48 package	-	93		
		UFQFPN32 package	-	139		
		LQFP32 package	-	83	-	


Low-speed external user clock generated from an external source


The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 25*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User external clock source frequency		1	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage	w level _		-	0.3V _{DD}	v
t _{w(LSE)} t _{w(LSE)}	OSC32_IN high or low time		465	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time		-	-	10	115
C _{IN(LSE)}	OSC32_IN input capacitance	-	-	0.6	-	pF
DuCy _(LSE)	Duty cycle -		45	-	55	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

Table 43. Low-speed external user clock characteristics⁽¹⁾

1. Guaranteed by design, not tested in production

6.3.12 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of $-5 \mu A/+0 \mu A$ range), or other functional failure (for example reset occurrence oscillator frequency deviation).

The test results are given in the Table 57.

		Functional s			
Symbol	Description	Negative injection	Positive injection	Unit	
I _{INJ}	Injected current on BOOT0	-0	NA	mA	
	Injected current on PA0, PA4, PA5, PC15, PH0 and PH1	-5	0		
	Injected current on any other FT, FTf pins	-5 ⁽¹⁾	NA		
	Injected current on any other pins	-5 ⁽¹⁾	+5		

Table 57. I/O current injection susceptibility

1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

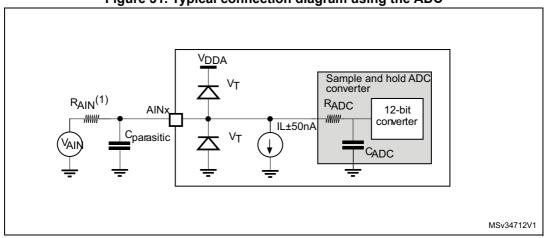


Figure 31. Typical connection diagram using the ADC

- 1. Refer to Table 62: ADC characteristics for the values of RAIN, RADC and CADC.
- C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 32* or *Figure 33*, depending on whether V_{REF+} is connected to V_{DDA} or not. The 10 nF capacitors should be ceramic (good quality). They should be placed as close as possible to the chip.

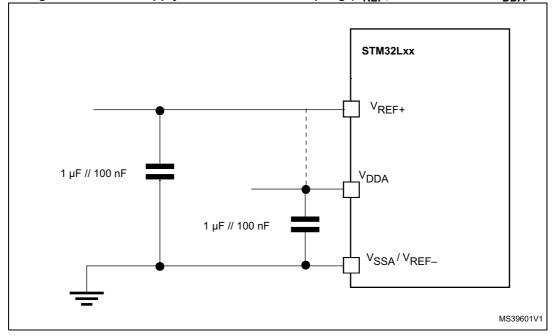


Figure 32. Power supply and reference decoupling (V_{REF+} not connected to V_{DDA})

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{SCK}	SDI alook froguonov	Master mode	-	-	2	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode			2 ⁽²⁾	
Duty _(SCK)	Duty cycle of SPI clock frequency	Slave mode	30	50	70	%
t _{su(NSS)}	NSS setup time	Slave mode, SPI presc = 2	4*Tpclk	-	-	
t _{h(NSS)}	NSS hold time	Slave mode, SPI presc = 2	2*Tpclk	-	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode	Tpclk-2	Tpclk	Tpclk+2	
t _{su(MI)}	Data input setup time	Master mode	1.5	-	-	
t _{su(SI)}	Data input setup time	Slave mode	6	-	-	
t _{h(MI)}	Data input hold time	Master mode	13.5	-	-	
t _{h(SI)}	Data input noid time	Slave mode	16	-	-	ns
t _{a(SO}	Data output access time	Slave mode	30	-	70	
t _{dis(SO)}	Data output disable time	Slave mode	40	-	80	
t _{v(SO)}	Data output valid time	Slave mode	-	30	70	
t _{v(MO)}		Master mode	-	7	9	
t _{h(SO)}	Data output hold time	Slave mode	25	-	-	
t _{h(MO)}	Data output hold time	Master mode	8	-	-	

Table 74. SPI characteristics in	voltage Range 3 ⁽¹⁾
----------------------------------	--------------------------------

1. Guaranteed by characterization results.

2. The maximum SPI clock frequency in slave transmitter mode is determined by the sum of $t_{v(SO)}$ and $t_{su(MI)}$ which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having $t_{su(MI)} = 0$ while Duty_(SCK) = 50%.

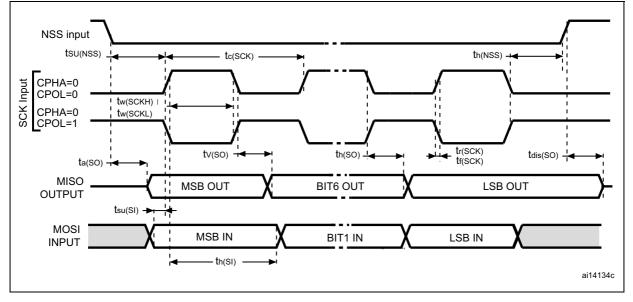


Figure 34. SPI timing diagram - slave mode and CPHA = 0

104/136

DocID027101 Rev 3

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status *are available at www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP100 package information

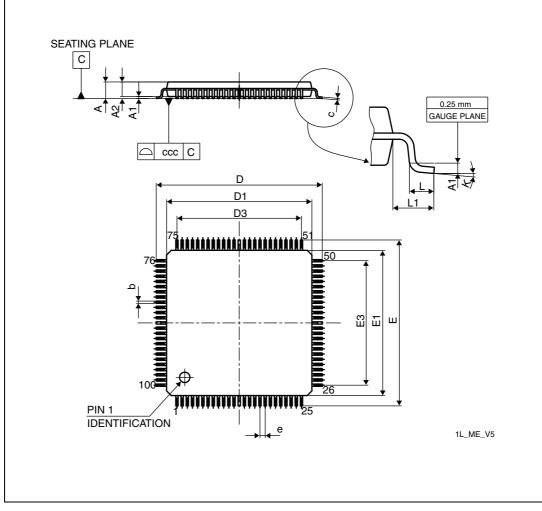


Figure 39. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale. Dimensions are in millimeters.

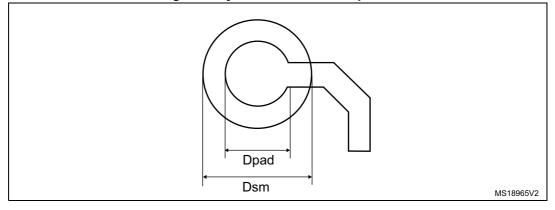


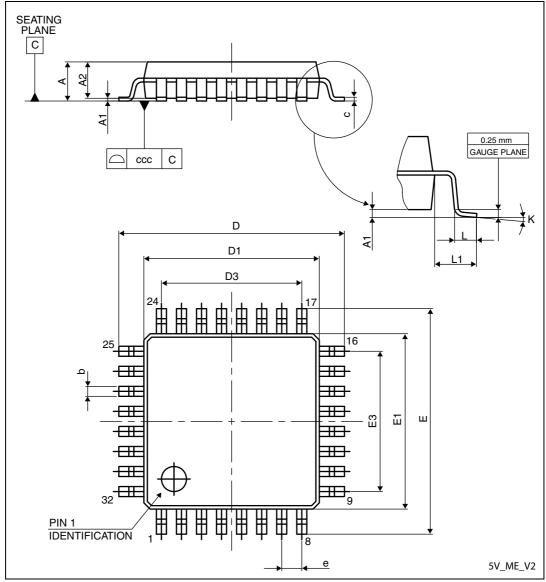
Table 80. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data (continued)

Symphol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
е	-	0.500	-	-	0.0197	-
F	-	0.750	-	-	0.0295	-
ddd	-	-	0.080	-	-	0.0031
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 48. TFBGA64 – 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint

Table 81. TFBGA64 recommended PCB design rules (0.5 mm pitch BGA)


Dimension	Recommended values
Pitch	0.5
Dpad	0.27 mm
Dsm	0.35 mm typ. (depends on the soldermask registration tolerance)
Solder paste	0.27 mm aperture diameter.

Note:Non solder mask defined (NSMD) pads are recommended.4 to 6 mils solder paste screen printing process.

7.7 LQFP32 package information

Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

7.9 Thermal characteristics

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

 $T_J \max = T_A \max + (P_D \max \times \Theta_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

P_{I/O} max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I}/\mathsf{O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma ((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient UFQFPN32 - 5 x 5 mm / 0.5 mm pitch	36	
	Thermal resistance junction-ambient LQFP32 - 7 x 7 mm / 0.8 mm pitch	60	
	Thermal resistance junction-ambient LQFP48 - 7 x 7 mm / 0.5 mm pitch	54	
Θ _{JA}	Thermal resistance junction-ambient WLCSP49 - 0.4 mm pitch	48	°C/W
	Thermal resistance junction-ambient TFBGA64 - 5 x 5 mm / 0.5 mm pitch	64	0,11
	Thermal resistance junction-ambient LQFP64 - 10 x 10 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient LQFP100 - 14 x 14 mm / 0.5 mm pitch	41	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm / 0.5 mm pitch	57	

Table 87.	Thermal	characteristics

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID027101 Rev 3

