

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k40-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	<u>Value on</u> POR, BOR
EB1h	CWGINPPS	_	—	_		CWGINPPS<4:0>				
EB0h	CCP2PPS	_	—	_			CCP2PPS<4:0	>		10001
EAFh	CCP1PPS	_	_	_			CCP1PPS<4:0	>		10010
EAEh	ADACTPPS	_	—	_		/	ADACTPPS<4:()>		01100
EADh	T6INPPS	_	_	_			T6INPPS<4:0>	•		01111
EACh	T4INPPS	_	—	_			T4INPPS<4:0>	•		10101
EABh	T2INPPS	_	—	_			T2INPPS<4:0>	•		10011
EAAh	T5GPPS	_	—	_			T5GPPS<4:0>			01100
EA9h	T5CKIPPS	_	—	_			T5CKIPPS<4:0	>		10010
EA8h	T3GPPS	_	—	_			T3GPPS<4:0>			10000
EA7h	T3CKIPPS	_	—	_			T3CKIPPS<4:0	>		10000
EA6h	T1GPPS	_	—	_			T1GPPS<4:0>			01101
EA5h	T1CKIPPS	_	—	_			T1CKIPPS<4:0	>		10000
EA4h	TOCKIPPS	_	—	_			T0CKIPPS<4:0	>		00100
EA3h	INT2PPS	_	—	_			INT2PPS<4:0>	•		01010
EA2h	INT1PPS	_	—	_			INT1PPS<4:0>	•		01001
EA1h	INTOPPS	_	—	_			INT0PPS<4:0>	•		01000
EA0h	PPSLOCK	_	—	_	—	—	—	—	PPSLOCKED	0
E9Fh	BAUD2CON	ABDOVF	RCIDL	_	SCKP	BRG16	_	WUE	ABDEN	01-00-00
E9Eh	TX2STA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	00000010
E9Dh	RC2STA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	00000000
E9Ch	SP2BRGH			EUSA	RT2 Baud Rat	e Generator, H	igh Byte			00000000
E9Bh	SP2BRGL			EUSA	ART2 Baud Rat	e Generator, L	ow Byte			00000000
E9Ah	TX2REG				EUSART2 Tra	ansmit Registe	r			00000000
E99h	RC2REG				EUSART2 Re	eceive Registe	r			00000000
E98h	SSP2CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	00000000
E97h	SSP2CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	00000000
E96h	SSP2CON1	WCOL	SSPOV	SSPEN	CKP		SSPN	1<3:0>		00000000
E95h	SSP2STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	00000000
E94h	SSP2MSK				MSP	<7:0>				11111111
E93h	SSP2ADD				ADE)<7:0>				00000000
E92h	SSP2BUF				BUF	<7:0>				xxxxxxxx
E91h	SSP2SSPPS	_	—	—		:	SSPSSPPS<4:()>		00101
E90h	SSP2DATPPS	—	—	—		S	SPDATPPS<4:	0>		10100
E8Fh	SSP2CLKPPS	—	—	—		S	SPCLKPPS<4:	0>		10011
E8Eh	TX2PPS	—	—	—			TXPPS<4:0>			10110
E8Dh	RX2PPS	_	—	—			RXPPS<4:0>			10111
E8Ch - E7Eh	_				Unimpl	emented				_

TABLE 10-5: REGISTER FILE SUMMARY FOR PIC18(L)F27/47K40 DEVICES (CONTINUED)

Legend: x = unknown, u = unchanged, — = unimplemented, q = value depends on condition

Note 1: Not available on LF devices.

2: Not available on PIC18(L)F27K40 (28-pin variants).

13.2 Register Definitions: CRC and Scanner Control

Long bit name prefixes for the CRC and Scanner peripherals are shown in Table 13-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 13-1:

Peripheral	Bit Name Prefix
CRC	CRC

REGISTER 13-1: CRCCON0: CRC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R-0	R/W-0/0	U-0	U-0	R/W-0/0	R-0
EN	GO	BUSY	ACCM	—	_	SHIFTM	FULL
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7	 EN: CRC Enable bit 1 = CRC module is released from Reset 0 = CRC is disabled and consumes no operating current
bit 6	GO: CRC Start bit 1 = Start CRC serial shifter 0 = CRC serial shifter turned off
bit 5	BUSY: CRC Busy bit 1 = Shifting in progress or pending 0 = All valid bits in shifter have been shifted into accumulator and EMPTY = 1
bit 4	ACCM: Accumulator Mode bit 1 = Data is augmented with zeros 0 = Data is not augmented with zeros
bit 3-2	Unimplemented: Read as '0'
bit 1	SHIFTM: Shift Mode bit 1 = Shift right (LSb) 0 = Shift left (MSb)
bit 0	FULL: Data Path Full Indicator bit 1 = CRCDATH/L registers are full 0 = CRCDATH/L registers have shifted their data into the shifter

REGISTER 13-2: CRCCON1: CRC CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
	DLEN	<3:0>		PLEN<3:0>				
bit 7							bit 0	

Legend:			
R = Readab	le bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is un	changed	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is se	et	'0' = Bit is cleared	
bit 7-4		0>: Data Length bits he length of the data word -1 (S	ee Example 13-1)
bit 3-0	PLEN<3:	D>: Polynomial Length bits	

Denotes the length of the polynomial -1 (See Example 13-1)

14.4 INTCON Registers

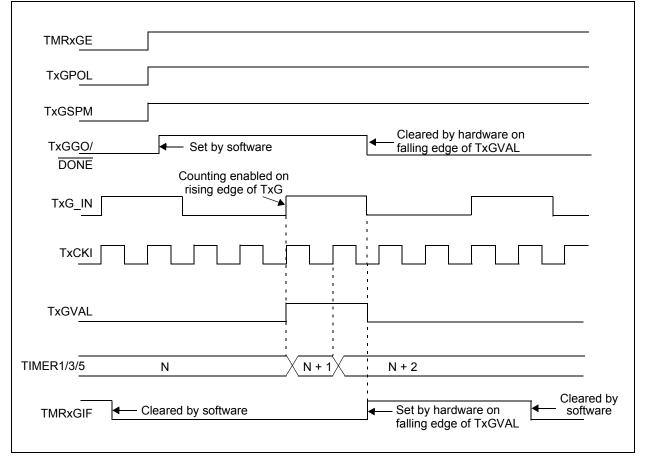
The INTCON registers are readable and writable registers, which contain various enable and priority bits.

14.5 PIR Registers

The PIR registers contain the individual flag bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Request Flag registers (PIR0, PIR1, PIR2, PIR3, PIR4, PIR5, PIR6 and PIR7).

14.6 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Enable registers (PIE0, PIE1, PIE2, PIE3, PIE4, PIE5, PIE6 and PIE7). When IPEN = 0, the PEIE/GIEL bit must be set to enable any of these peripheral interrupts.


14.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are eight Peripheral Interrupt Priority registers (IPR0, IPR1, IPR2, IPR3, IPR4 and IPR5, IPR6 and IPR7). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

PIC18(L)F27/47K40

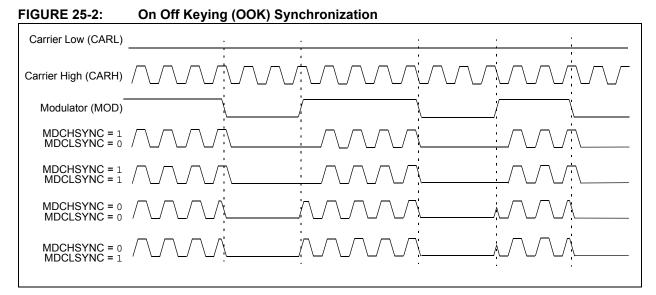

FIGURE 19-5:	TIMER1/3/5 GATE TOGGLE MODE
TMRxGE	
TxGPOL	
TxGTM	
TxTxG_IN	
ТхСКІ	
TxGVAL	
TIMER1/3/5	$N \qquad \qquad$

FIGURE 19-6: TIMER1/3/5 GATE SINGLE-PULSE MODE

R/W-0/0) R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSYNC	CPOL	CSYNC			MODE<4:0>		
bit 7							bit 0
Legend:							
R = Reada	ible bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'	
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	set	'0' = Bit is cle	ared				
bit 7	1 = TMRx P	rescaler Output	is synchroniz	n Enable bit ^{(1, 2} ed to Fosc/4 onized to Fosc/4			
bit 6	1 = Falling e 0 = Rising e	rx Clock Polarit dge of input clo dge of input clo	ock clocks time ck clocks time	er/prescaler r/prescaler			
bit 5	1 = ON regis	erx Clock Sync ster bit is synch ster bit is not sy	ronized to TM		t		
bit 4-0		Timerx Contro		ion bits ^(6, 7)			
	Setting this bit er When this bit is ' CKPOL should n	1', Timer2 cann	ot operate in S		lata value.		
3. 4:		•		hen the ON is e	nahled or disa	hled	
	When this bit is se	0	•				e ON bit is set
	Unless otherwise affecting the value	e indicated, all	•		•		
-	When TMRx = P				£ 11		

REGISTER 20-2: TxHLT: TIMERx HARDWARE LIMIT CONTROL REGISTER

FIGURE 25-3: No Synchronization (MDSHSYNC = 0, MDCLSYNC = 0)

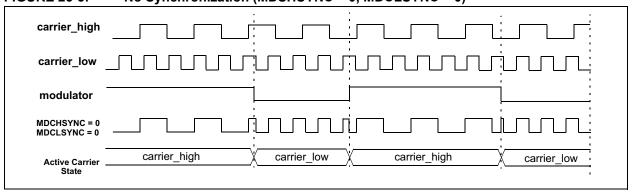
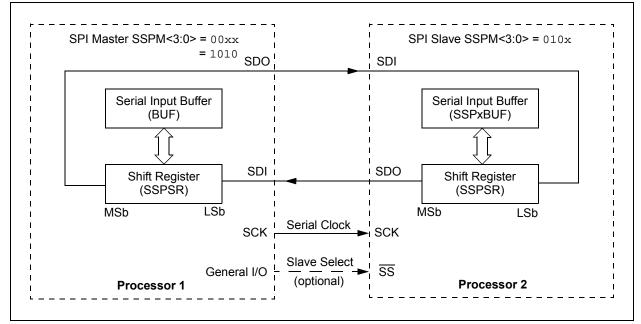



FIGURE 25-4: Carrier High Synchronization (MDSHSYNC = 1, MDCLSYNC = 0)

carrier_high	
carrier_low	
modulator	
MDCHSYNC = 1 MDCLSYNC = 0	
Active Carrier State	carrier_high /_both\carrier_low \ / carrier_high / both \ carrier_low

When the application software is expecting to receive valid data, the SSPxBUF should be read before the next byte of data to transfer is written to the SSPxBUF. The Buffer Full bit, BF of the SSPxSTAT register, indicates when SSPxBUF has been loaded with the received data (transmission is complete). When the SSPxBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

The SSPSR is not directly readable or writable and can only be accessed by addressing the SSPxBUF register. Additionally, the SSPxSTAT register indicates the various Status conditions.

FIGURE 26-3: SPI MASTER/SLAVE CONNECTION

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD)<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable bit	:	U = Unimpler	nented bit, read	d as '0'	
u = Bit is uncha	nged	x = Bit is unknow	wn	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is cleare	ed				

REGISTER 26-11: SSPxADD: MSSP ADDRESS REGISTER (I²C MASTER MODE)

Master mode: |²C mode

bit 7-0	Baud Rate Clock Divider bits ⁽¹⁾
	SCK/SCL pin clock period = ((SSPxADD<7:0> + 1) *4)/Fosc

10-Bit Slave mode – Most Significant Address Byte:

- bit 7-3 **Not used:** Unused for Most Significant Address Byte. Bit state of this register is a don't care. Bit pattern sent by master is fixed by I²C specification and must be equal to, '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<9:8>: Two Most Significant bits of 10-bit Address
- bit 0 Not used: Unused in this mode. Bit state is a don't care.

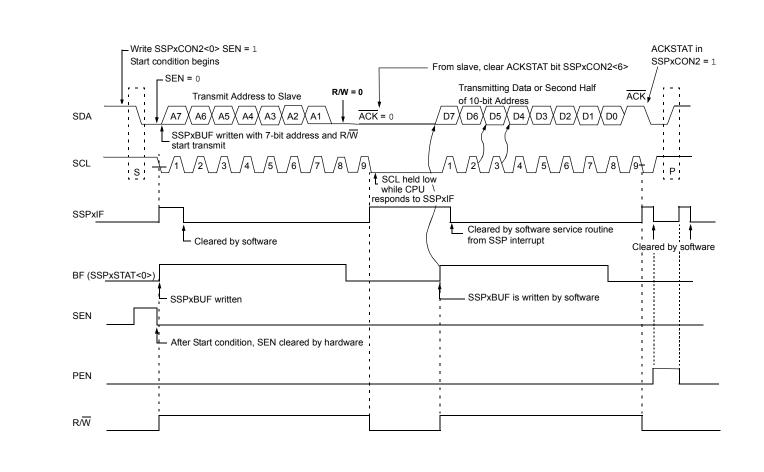
10-Bit Slave mode – Least Significant Address Byte:

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit Address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a don't care.

Note 1: Values of 0x00, 0x01 and 0x02 are not valid for SSPxADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.


REGISTER 26-12: SSPxMSK: MSSPx ADDRESS MASK REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	MSK<7:1>						
bit 7							bit 0
Legend:							

W = Writable bit	U = Unimplemented bit, read as '0'
x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'0' = Bit is cleared	
	x = Bit is unknown

bit 7-1	MSK<7:1>: Mask bits
	 1 = The received address bit n is compared to SSPxADDn to detect I²C address match 0 = The received address bit n is not used to detect I²C address match
bit 0	MSK0: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSPxADD0 to detect I ² C address match 0 = The received address bit 0 is not used to detect I ² C address match I ² C Slave mode, 7-bit address, the bit is ignored.

PIC18(L)F27/47K40

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—			DAC1R<4:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimplem	ented bit, read a	as 'O'	
u = Bit is uncha	inged	x = Bit is unkr	nown	-n/n = Value a	t POR and BOR	/Value at all oth	er Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 30-2: DAC1CON1: DAC DATA REGISTER

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **DAC1R<4:0>:** Data Input Register for DAC bits

TABLE 30-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DAC1CON0	EN	—	OE1	OE2	PSS•	<1:0>	—	NSS	428
DAC1CON1	—	—	_	DAC1R<4:0>		429			
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0> ADFVR<1:0>		۲<1:0>	423	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

REGISTER 31-19: ADRESL: ADC RESULT REGISTER LOW, ADFM = 1

				•			
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<7:0>**: ADC Result Register bits. Lower eight bits of 10-bit conversion result.

REGISTER 31-20: ADPREVH: ADC PREVIOUS RESULT REGISTER

R-x	R-x	R-x	R-x	R-x	R-x	R-x	R-x
ADPREV<15:8>							
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ADPREV<15:8>: Previous ADC Results bits If ADPSIS = 1: Upper byte of ADFLTR at the start of current ADC conversion If ADPSIS = 0: Upper bits of ADRES at the start of current ADC conversion⁽¹⁾

Note 1: If ADPSIS = 0, ADPREVH and ADPREVL are formatted the same way as ADRES is, depending on the ADFM bit.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	_	_	_		PCH<2:0>	
bit 7							bit 0
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
L:1 7 0			~ 1				
bit 7-3	Unimplemen	ted: Read as ').				
bit 2-0	PCH<2:0>: (Comparator Non	-Inverting Inp	out Channel Se	lect bits		

REGISTER 32-4: CMxPCH: COMPARATOR x NON-INVERTING CHANNEL SELECT REGISTER

111	=	AVss

110 = FVR Buffer2

101 = DAC_Output

100 = CxPCH not connected

011 = CxPCH not connected

- 010 = CxPCH not connected
- 001 = CxIN1+
- 000 = CxIN0+

REGISTER 32-5: CMOUT: COMPARATOR OUTPUT REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R-0/0	R-0/0
—	—	—	_	—	—	MC2OUT	MC1OUT
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 1 MC2OUT: Mirror copy of C2OUT bit

bit 0	MC10UT: Mirror copy of C10UT bit
-------	----------------------------------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page	
CMxCON0	EN	OUT	-	POL	—	—	HYS	SYNC	468	
CMxCON1	_	_	_	_	_	_	CxINTP	CxINTN	469	
CMxNCH	_	_	_	_	—			469		
CMxPCH	_	_	_	_	—	PCH<2:0>			470	
CMOUT	_	—	_	_	—	_	MC2OUT	MC1OUT	470	
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	′R<1:0>	ADFVI	R<1:0>	423	
INTCON	GIE/GIEH	PEIE/GIEL	IPEN	_	—	INT2EDG	INT1EDG	INT0EDG	170	
PIR2	HLVDIF	ZCDIF	_	_	—	—	C2IF	C1IF	173	
PIE2	HLVDIE	ZCDIE	_	_	—	—	C2IE	C1IE	181	
IPR2	HLVDIP	ZCDIP	_	_	—	_	C2IP	C1IP	189	
PMD2	_	DACMD	ADCMD	—	– – CMP2MD CMP1MD ZCDMD					
RxyPPS	_	_			RxyPPS<4:0>					

TABLE 32-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Legend: — = unimplemented, read as '0'. Shaded cells are unused by the comparator module.

PIC18(L)F27/47K40

BCF	Bit Clear f	BN	Branch if Negative				
Syntax:	BCF f, b {,a}	Syntax:	BN n				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	Operands: Operation:	-128 ≤ n ≤ 1 if NEGATIV (PC) + 2 + 2				
Operation:	$0 \rightarrow f \le b >$	Status Affected:	None				
Status Affected:	None	Encoding:	1110	0110 nn:	nn nnnn		
Encoding: Description:	1001bbbaffffffffBit 'b' in register 'f' is cleared.If 'a' is '0', the Access Bank is selected.If 'a' is '1', the BSR is used to select theGPR bank.If 'a' is '0' and the extended instructionset is enabled, this instruction operatesin Indexed Literal Offset Addressingmode whenever $f \le 95$ (5Fh). See Section 35.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal	Description: Words: Cycles:	If the NEGATIVE bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2)				
Words:	eral Offset Mode" for details.	Q Cycle Activity: If Jump:					
Cycles:	1	Q1	Q2	Q3	Q4		
Q Cycle Activity:		Decode	Read literal 'n'	Process Data	Write to PC		
Q1 Decode	Q2 Q3 Q4 Read Process Write register 'f' Data register 'f'	No operation If No Jump:	No operation	No operation	No operation		
		Q1	Q2	Q3	Q4		
Example: Before Instruc FLAG_R		Decode	Read literal 'n'	Process Data	No operation		
After Instructio FLAG_R		Example: Before Instruct PC After Instructio If NEGA PC If NEGA PC	= ad on TIVE = 1; = ad TIVE = 0;	BN Jump dress (HERE) dress (Jump) dress (HERE			

PIC18(L)F27/47K40

RCA	LL	Relative C	Relative Call					
Synta	ax:	RCALL n	RCALL n					
Oper	ands:	-1024 ≤ n ≤	1023					
Oper	ation:	$(PC) + 2 \rightarrow (PC) + 2 + 2$;				
Statu	s Affected:	None						
Enco	ding:	1101	1nnn	nnnn	nnn	ı		
Desc	ription:	from the cui address (PC stack. Then number '2n' have increm instruction, ' PC + 2 + 2r	Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complement number '2n' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.					
Word	ls:	1						
Cycle	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		Write to P	С		
	No	No	No		No			
	operation	operation	opera	tion	operation	1		

Example: HERE RCALL Jump

Before Instruction

PC = Address (HERE)

After Instruction

PC = Address (Jump) TOS = Address (HERE + 2)

RES	ET	Reset							
Synta	ax:	RESET	RESET						
Oper	ands:	None							
Oper	ation:		Reset all registers and flags that are affected by a MCLR Reset.						
Statu	s Affected:	All	All						
Enco	ding:	0000	0000	0000 1111		1111			
Desc	ription:		This instruction provides a way to execute a MCLR Reset by software.						
Word	ls:	1	1						
Cycle	es:	1	1						
QC	ycle Activity:								
	Q1	Q2	Q3	Q3		Q4			
	Decode	Start	No		No				
		Reset	opera	tion	op	peration			

Example:

After Instruction

Registers =	Reset Value
Flags* =	Reset Value

RESET

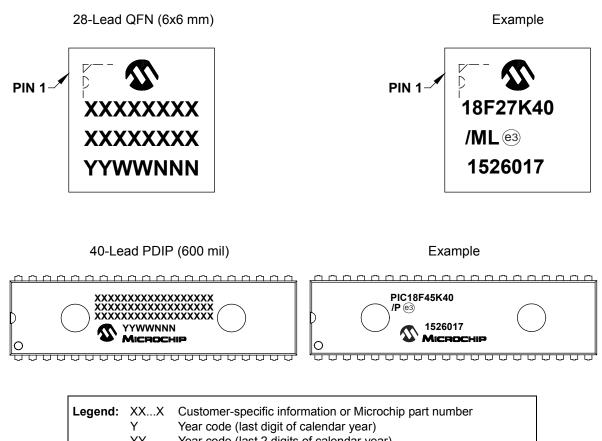
© 2016-2017 Microchip Technology Inc.

Standard Operating Conditions (unless otherwise stated)							
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
Data EE	PROM Me	mory Specifications		•			•
MEM20	ED	DataEE Byte Endurance	100k	_	_	E/W	$-40^\circ C \leq T_A \leq +85^\circ C$
MEM21	T _{D_RET}	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated
MEM22	N _{D_REF}	Total Erase/Write Cycles before Refresh	1M 500k	10M —	_	E/W	$\begin{array}{l} -40^{\circ}C \leq TA \leq +60^{\circ}C \\ -40^{\circ}C \leq TA \leq +85^{\circ}C \end{array}$
MEM23	V _{D_RW}	VDD for Read or Erase/Write operation	VDDMIN	_	VDDMAX	V	
MEM24	T _{D_BEW}	Byte Erase and Write Cycle Time	_	4.0	5.0	ms	
Program	n Flash Me	emory Specifications			•		•
MEM30	E _P	Flash Memory Cell Endurance	10k	_	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
MEM32	T _{P_RET}	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated
MEM33	V _{P_RD}	VDD for Read operation	VDDMIN	_	VDDMAX	V	
MEM34	V _{P_REW}	VDD for Row Erase or Write operation	VDDMIN	_	VDDMAX	V	
MEM35	T _{P_REW}	Self-Timed Row Erase or Self-Timed Write	_	2.0	2.5	ms	

TABLE 37-5: MEMORY PROGRAMMING SPECIFICATIONS

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

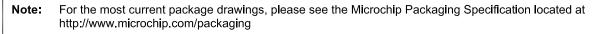
Note 1: Flash Memory Cell Endurance for the Flash memory is defined as: One Row Erase operation and one Self-Timed Write.

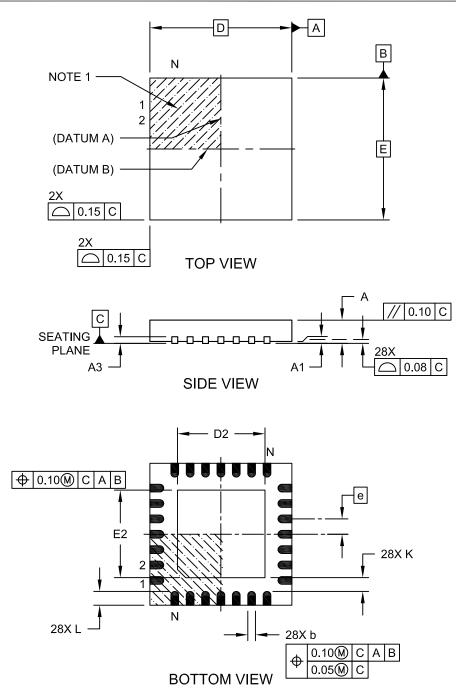

Standard Operating Conditions (unless otherwise stated)								
Param No.	Symbol	Characteristic	Min.	Тур†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	2.25*Tcy	—	_	ns		
SP71*	TscH	SCK input high time (Slave mode)	Tcy + 20		_	ns		
SP72*	TscL	SCK input low time (Slave mode)	Tcy + 20	_	_	ns		
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to SCK edge	100	—	—	ns		
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge	100	—	—	ns		
SP75*	TDOR	SDO data output rise time		10	25	ns	$3.0V \le V\text{DD} \le 5.5V$	
				25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP76*	TDOF	SDO data output fall time		10	25	ns		
SP77*	TssH2doZ	SS↑ to SDO output high-impedance	10		50	ns		
SP78*	TscR	SCK output rise time	_	10	25	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
		(Master mode)		25	50	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP79*	TSCF	SCK output fall time (Master mode)		10	25	ns		
SP80*	TscH2doV,	SDO data output valid after SCK edge			50	ns	$3.0V \leq V\text{DD} \leq 5.5V$	
	TscL2DoV				145	ns	$1.8V \leq V\text{DD} \leq 5.5V$	
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge	1 Tcy	—	—	ns		
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$ edge		_	50	ns		
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5 Tcy + 40	—	—	ns		

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

38.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES


Graphs and tables are not available at this time.



Package Marking Information (Continued)

Legend	: XXX Y YY WW NNN ©3 *	Customer-specific information or Microchip part number Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.	

28-Lead Plastic Quad Flat, No Lead Package (ML) - 6x6 mm Body [QFN] With 0.55 mm Terminal Length

Microchip Technology Drawing C04-105C Sheet 1 of 2