

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k40-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F27/47K40

R/W-1	R/W-1	R/W-1	U-1	U-1	U-1	R/W-1	R/W-1	
BORE	N<1:0>	LPBOREN			_	PWRTE	MCLRE	
bit 7		•					bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '1'		
-n = Value for b	blank device	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 7-6 BOREN<1:0>: Brown-out Reset Enable bits When enabled, Brown-out Reset Voltage (VBOR) is set by BORV bit 11 = Brown-out Reset enabled, SBOREN bit is ignored 10 = Brown-out Reset enabled while running, disabled in Sleep; SBOREN is ignored 01 = Brown-out Reset enabled according to SBOREN 00 = Brown-out Reset disabled								
bit 5	LPBOREN : Lo 1 = Low-Pow 0 = Low-Pow	w-Power BOR ver Brown-out F ver Brown-out F	Enable bit Reset is disab Reset is enab	led led				
bit 4-2	Unimplemente	ed: Read as '1	,					
bit 1	PWRTE: Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled							
bit 0	MCLRE: Master If LVP = 1 RE3 pin fur If LVP = 0 1 = MCLR 0 = MCLR	er Clear (MCLF nction is MCLR pin is MCLR pin function is	Provide the second state Port defined f	unction				

REGISTER 3-3: Configuration Word 2L (30 0002h): Supervisor

4.3 Clock Source Types

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL mode), quartz crystal resonators or ceramic resonators (LP, XT and HS modes).

A 4x PLL is provided that can be used in conjunction with the external clock. When used with the HFINTOSC the 4x PLL has input frequency limitations.See **Section 4.3.1.4 "4x PLL"** for more details.

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate internal system clock sources. The High-Frequency Internal Oscillator (HFINTOSC) can produce 1, 2, 4, 8, 12, 16, 32, 48 and 64 MHz clock. The frequency can be controlled through the OSCFRQ register (Register 4-5). The Low-Frequency Internal Oscillator (LFINTOSC) generates a fixed 31 kHz frequency.

The system clock can be selected between external or internal clock sources via the NOSC bits in the OSCCON1 register. See **Section 4.4 "Clock Switching"** for additional information. The system clock can be made available on the OSC2/CLKOUT pin for any of the modes that do not use the OSC2 pin. The clock out functionality is governed by the CLKOUTEN bit in the CONFIG1H register (Register 3-2). If enabled, the clock out signal is always at a frequency of Fosc/4.

4.3.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the RSTOSC<2:0> and FEXTOSC<2:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the NOSC<2:0> and NDIV<3:0> bits in the OSCCON1 register to switch the system clock source.

See **Section 4.4 "Clock Switching"** for more information.

4.3.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 4-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through Configuration Words:

- ECH High power, above 8 MHz
- ECM Medium power, 100 kHz-8 MHz
- ECL Low power, below 100 MHz

The Oscillator Start-up Timer (OST) is disabled when EC mode is selected. Therefore, there is no delay in operation after a Power-on Reset (POR) or wake-up from Sleep. Because the PIC[®] MCU design is fully static, stopping the external clock input will have the effect of halting the device while leaving all data intact. Upon restarting the external clock, the device will resume operation as if no time had elapsed.

FIGURE 4-2: EXTERNAL CLOCK (EC) MODE OPERATION

4.3.1.2 LP, XT, HS Modes

The LP, XT and HS modes support the use of quartz crystal resonators or ceramic resonators connected to OSC1 and OSC2 (Figure 4-3). The three modes select a low, medium or high gain setting of the internal inverter-amplifier to support various resonator types and speed.

LP Oscillator mode selects the lowest gain setting of the internal inverter-amplifier. LP mode current consumption is the least of the three modes. This mode is designed to drive only 32.768 kHz tuning-fork type crystals (watch crystals).

XT Oscillator mode selects the intermediate gain setting of the internal inverter-amplifier. XT mode current consumption is the medium of the three modes. This mode is best suited to drive resonators with a medium drive level specification (above 100 kHz - 8 MHz).

HS Oscillator mode selects the highest gain setting of the internal inverter-amplifier. HS mode current consumption is the highest of the three modes. This mode is best suited for resonators that require a high drive setting (above 8 MHz).

Figure 4-3 and Figure 4-4 show typical circuits for quartz crystal and ceramic resonators, respectively.

5.0 REFERENCE CLOCK OUTPUT MODULE

The reference clock output module provides the ability to send a clock signal to the clock reference output pin (CLKR). The reference clock output can also be used as a signal for other peripherals, such as the Data Signal Modulator (DSM), Memory Scanner and Timer module.

The reference clock output module has the following features:

- Selectable clock source using the CLKRCLK register
- Programmable clock divider
- · Selectable duty cycle

FIGURE 5-1: CLOCK REFERENCE BLOCK DIAGRAM

10.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate buses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Program Flash Memory and Data EEPROM Memory is provided in **Section 11.0 "Nonvolatile Memory** (NVM) Control".

10.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2 Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2 Mbyte address will return all '0's (a NOP instruction).

These devices contains the following:

 PIC18(L)F27K40, PIC18(L)F47K40: 128 Kbytes of Flash memory, up to 65,536 single-word instructions

PIC18 devices have two interrupt vectors. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

Note: For memory information on this family of devices, see Table 10-1 and Table 10-2.

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0				
—	—	—	_	—	TMR5GIF	TMR3GIF	TMR1GIF				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 7-3	Unimplemen	ted: Read as '	0'								
bit 2	TMR5GIF: TN	/IR5 Gate Inter	rupt Flag bit								
	1 = TMR5 gate interrupt occurred (must be cleared in software)										
b :4	0 = NO TWR5	gate occurred									
DIT 1	TMR3GIF: TN	/IR3 Gate Inter	rupt Flag bit		6						
	1 = 1 MR3 gat0 = No TMR3	gate occurred	urred (must be	e cleared in so	ttware)						
bit 0	TMR1GIF: TN	/IR1 Gate Inter	rupt Flag bit								
	1 = TMR1 gat 0 = No TMR1	te interrupt occ gate occurred	urred (must be	e cleared in so	ftware)						
		0									

REGISTER 14-7: PIR5: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 5

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0
SCANIF	CRCIF	NVMIF		—	—		CWG1IF
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 7	SCANIF: SCA	AN Interrupt Fla	ig bit				
	1 = SCAN inte	errupt has occu	rred (must be	cleared in sof	tware)		
	0 = SCAN inte	errupt has not o	occurred or ha	is not been sta	irted		
bit 6	CRCIF: CRC	Interrupt Flag b	pit				
	1 = CRC inter	rupt has occuri	red (must be o	cleared in softw	vare)		
	0 = CRC inter	rupt has not oc	curred or has	not been star	ted		
bit 5	NVMIF: NVM	Interrupt Flag I	oit				
	1 = NVM inter	rupt has occur	red (must be o	cleared in soft	ware)		
	0 = NVM inter	rupt has not oc	curred or has	not been star	ted		
bit 4-1	Unimplement	ted: Read as 'd)'				
bit 0	CWG1IF: CW	G Interrupt Fla	g bit				
	1 = CWG inte 0 = CWG inte	rrupt has occur rrupt has not o	red (must be ccurred or has	cleared in soft s not been star	ware) ted		

REGISTER 14-9: PIR7: PERIPHERAL INTERRUPT REQUEST (FLAG) REGISTER 7

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
WPUx7	WPUx6	WPUx5	WPUx4	WPUx3	WPUx2	WPUx1	WPUx0				
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, read	l as '0'					
'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared		x = Bit is unknown								
-n/n = Value at	-n/n = Value at POR and BOR/Value at all other Resets										

REGISTER 15-5: WPUx: WEAK PULL-UP REGISTER

bit 7-0

WPUx<7:0>: Weak Pull-up PORTx Control bits

1 = Weak Pull-up enabled

0 = Weak Pull-up disabled

	De	vice								
Name	28 Pins	40/44 Pins	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPUA	Х	Х	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0
WPUB	Х	Х	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0
WPUC	Х	Х	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0
WPUD	Х		—	—	—	—	—	_	—	—
		Х	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0
WPUE	Х		_	—	—	—	WPUE3 ⁽¹⁾	—	—	_
		Х	_				WPUE3 ⁽¹⁾	WPUE2	WPUE1	WPUE0

TABLE 15-6: WEAK PULL-UP PORT REGISTERS

Note 1: If MCLRE = 1, the weak pull-up in RE3 is always enabled; bit WPUE3 is not affected.

19.1 Register Definitions: Timer1/3/5

Long bit name prefixes for the Timer1/3/5 are shown in Table 20-1. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information.

TABLE 19-1:

Peripheral	Bit Name Prefix
Timer1	T1
Timer3	Т3
Timer5	T5

REGISTER 19-1: TxCON: TIMERx CONTROL REGISTER

U-0	U-0	R/W-0/u	R/W-0/u	U-0	R/W-0/u	R/W-0/0	R/W-0/u
—	—	CKPS<1:0>		—	SYNC	RD16	ON
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	u = unchanged	

bit 7-6	Unimplemented: Read as '0'
---------	----------------------------

bit 5-4 CKPS<1:0>: Timerx Input Clock Prescale Select bits

- 11 = 1:8 Prescale value
- 10 = 1:4 Prescale value
- 01 = 1:2 Prescale value
- 00 = 1:1 Prescale value
- bit 3 Unimplemented: Read as '0'
- bit 2 SYNC: Timerx External Clock Input Synchronization Control bit TMRxCLK = Fosc/4 or Fosc:
 - This bit is ignored. Timer1 uses the incoming clock as is.

Else:

- 1 = Do not synchronize external clock input
- 0 = Synchronize external clock input with system clock
- bit 1 RD16: 16-Bit Read/Write Mode Enable bit
 - 1 = Enables register read/write of Timer in one 16-bit operation
 - 0 = Enables register read/write of Timer in two 8-bit operations
- bit 0 ON: Timerx On bit
 - 1 = Enables Timerx
 - 0 = Disables Timerx

20.7 Register Definitions: Timer2/4/6 Control

Long bit name prefixes for the Timer2/4/6 peripherals are shown in Table 20-2. Refer to **Section 1.4.2.2 "Long Bit Names"** for more information. **TABLE 20-2:**

Peripheral	Bit Name Prefix
Timer2	T2
Timer4	T4
Timer6	T6

24.0 COMPLEMENTARY WAVEFORM GENERATOR (CWG) MODULE

The Complementary Waveform Generator (CWG) produces half-bridge, full-bridge, and steering of PWM waveforms. It is backwards compatible with previous CCP functions. The PIC18(L)F2x/4xK40 family has one instance of the CWG module.

The CWG has the following features:

- Six operating modes:
 - Synchronous Steering mode
 - Asynchronous Steering mode
 - Full-Bridge mode, Forward
 - Full-Bridge mode, Reverse
 - Half-Bridge mode
 - Push-Pull mode
- Output polarity control
- Output steering
- Independent 6-bit rising and falling event deadband timers
 - Clocked dead band
 - Independent rising and falling dead-band enables
- Auto-shutdown control with:
 - Selectable shutdown sources
 - Auto-restart option
 - Auto-shutdown pin override control

24.1 Fundamental Operation

The CWG generates two output waveforms from the selected input source.

The off-to-on transition of each output can be delayed from the on-to-off transition of the other output, thereby, creating a time delay immediately where neither output is driven. This is referred to as dead time and is covered in **Section 24.6 "Dead-Band Control"**.

It may be necessary to guard against the possibility of circuit faults or a feedback event arriving too late or not at all. In this case, the active drive must be terminated before the Fault condition causes damage. This is referred to as auto-shutdown and is covered in **Section 24.10 "Auto-Shutdown"**.

24.2 Operating Modes

The CWG module can operate in six different modes, as specified by the MODE<2:0> bits of the CWG1CON0 register:

- Half-Bridge mode
- Push-Pull mode
- Asynchronous Steering mode
- Synchronous Steering mode
- Full-Bridge mode, Forward
- Full-Bridge mode, Reverse

All modes accept a single pulse data input, and provide up to four outputs as described in the following sections.

All modes include auto-shutdown control as described in Section 24.10 "Auto-Shutdown"

Note: Except as noted for Full-bridge mode (Section 24.2.3 "Full-Bridge Modes"), mode changes should only be performed while EN = 0 (Register 24-1).

24.2.1 HALF-BRIDGE MODE

In Half-Bridge mode, two output signals are generated as true and inverted versions of the input as illustrated in Figure 24-2. A non-overlap (dead-band) time is inserted between the two outputs to prevent shoot through current in various power supply applications. Dead-band control is described in **Section 24.6 "Dead-Band Control"**. The output steering feature cannot be used in this mode. A basic block diagram of this mode is shown in Figure 24-1.

The unused outputs CWG1C and CWG1D drive similar signals, with polarity independently controlled by the POLC and POLD bits of the CWG1CON1 register, respectively.

REGISTER 24-3: CWG1CLKCON: CWG1 CLOCK INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0
—	_	_	_	_	—	_	CS
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-1 Unimplemented: Read as '0'

bit 0 CS: CWG Clock Source Selection Select bits

CS	Clock Source
1	HFINTOSC (remains operating during Sleep)
0	Fosc

REGISTER 24-4: CWG1ISM: CWGx INPUT SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	—		ISM<2:0>	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7-3 Unimplemented Read as '0'

bit 2-0 ISM<2:0>: CWG Data Input Selection Multiplexer Select bits

ISM<2:0>	Input Source
111	DSM OUT
110	CMP2 OUT
101	CMP1 OUT
100	PWM4 OUT
011	PWM3 OUT
010	CCP2 OUT
001	CCP1 OUT
000	Pin selected by CWG1PPS

© 2016-2017 Microchip Technology Inc.

PIC18(L)F27/47K40

FIGURE 25-5:	Carrier Low Synchronization (MDSHSYNC = 0, MDCLSYNC = 1)
carrier_high	
carrier_low	
modulator	
MDCHSYNC = 0 MDCLSYNC = 1	
Active Carrier State	carrier_high X carrier_low Carrier_high X carrier_low

carrier_high	
carrier_low	
modulator	Falling edges
MDCHSYNC = 1 MDCLSYNC = 1	
Active Carrier State	carrier_high / carrier_low / carrier_high / CL

Register Definitions: MSSP Control 26.4

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
SMP	CKE ⁽¹⁾	D/A	Р	S	R/W	UA	BF				
bit 7							bit (
Legend:											
R = Reada	able bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown				
bit 7	SMP: Sampl	le bit									
	<u>SPI Master r</u>	<u>node:</u>									
	1 = Input dat	ta is sampled at	the end of data	a output time							
	0 = Input dat	0 = Input data is sampled at the middle of data output time									
	SPI Slave m	SPI Slave mode:									
	Sivip must b	e cleared when	SPI is used in	Slave mode.							
bit 6	CKE: SPI Clock Select bit"										
	1 = Transmit	1 = Transmit occurs on the transition from active to Idle clock state									
	0 = Iransmit	occurs on the t	ransition from	Idle to active cl	ock state						
bit 5	D/A: Data/A	ddress bit									
	Used in I ² C	mode only.									
bit 4	P: Stop bit										
	Used in I ² C I	mode only. This	bit is cleared w	vhen the MSSF	Px module is di	sabled; SSPEN	l is cleared.				
bit 3	S: Start bit										
	Used in I ² C i	mode only.									
bit 2	R/W: Read/	R/W: Read/Write Information bit									
	Used in I ² C	mode only.									
bit 1	UA: Update	Address bit									
	Used in I ² C	mode only.									
bit 0	BF: Buffer F	ull Status bit (Re	eceive mode o	nly)							
	1 = Receive	is complete, SS	PxBUF is full	• •							
	0 = Receive	is not complete	SSPxBUF is	empty							
Note 1:	Polarity of clock	state is set by th	ne CKP bit (SS	PxCON1<4>)							

REGISTER 26-1: SSPxSTAT: MSSPx STATUS REGISTER (SPI MODE)

							1
R/HS/HC	-0 R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ACKTIN	1 PCIE ⁽¹⁾	SCIE ⁽¹⁾	BOEN ⁽²⁾	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		HS/HC = Bit is	s set/cleared b	y hardware	
x = Bit is u	nknown	'0' = Bit is clea	ared				
bit 7	ACKTIM: Act	knowledge Time	e Status bit				
	Unused in SF	임.					
bit 6	PCIE: Stop C	ondition Interru	pt Enable bit ⁽¹)			
	1 = Enable ir	nterrupt on dete	ection of Stop	condition			
6.14 F			s are disabled	n			
DIT 5	SCIE: Start C		ipt Enable bitv	r Deetert eendit			
	1 = Enable in0 = Start dete	ection interrupts	are disabled	r Restart condit	IONS		
bit 4	BOEN: Buffe	r Overwrite Ena	able bit ⁽²⁾				
	1 = SSPxBU	- updates ever	/ time a new d	ata byte is shifte	ed in, ignoring t	the BF bit	
	0 = If a new b	oyte is received	with BF bit alr	eady set, SSPC	DV is set, and t	he buffer is not	updated
bit 3	SDAHT: SDA	Hold Time Sel	ection bit				
	Unused in SF	임.					
bit 2	SBCDE: Slav	ve Mode Bus C	ollision Detect	Enable bit			
	Unused in SF	임.					
bit 1	AHEN: Addre	ess Hold Enable	e bit				
	Unused in SF	기.					
bit 0	DHEN: Data	Hold Enable bit					
	Unused in SF	기.					
Note 1:	This bit has no ef	fect in Slave m	odes that Star	t and Stop cond	ition detection	is explicitly liste	ed as enabled.
2:	For daisy-chained	d SPI operation	; allows the us	er to ignore all b	out the last rece	eived byte. SSF	POV is still set

REGISTER 26-3: SSPxCON3: MSSPx CONTROL REGISTER 3 (SPI MODE)

For daisy-chained SPI operation; allows the user to ignore all but the last received byte. SSPOV is still set when a new byte is received and BF = 1, but hardware continues to write the most recent byte to SSPxBUF.

R/W-0	R/W/HC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
GCEN	ACKSTAT	ACKDT ⁽¹⁾	ACKEN ⁽²⁾	RCEN ⁽²⁾	PEN ⁽²⁾	RSEN ⁽²⁾	SEN ⁽²⁾
oit 7	·						bit
Legend:							
R = Readab	le bit	W = Writable	bit	HC = Bit is cle	eared by hardw	vare	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown
			1.11				
SIT 7	GCEN: Gene	eral Call Enable	DIT				
hit G		aster mode.	tuo hit (Mootor	Transmit mod			
JILO		adae was not re			e only)		
	0 = Acknowle	edge was not received	red from slave	ave			
oit 5	ACKDT: Ack	nowledge Data	bit (Master Re	ceive mode onl	_{V)} (1)		
	1 = Not Ackn	owledge			• /		
	0 = Acknowle	edge					
oit 4	ACKEN: Ack	nowledge Sequ	ience Enable b	it ⁽²⁾			
	1 = Initiates	Acknowledge s	equence on SE	DAx and SCLx	pins and transi	mits ACKDT da	ta bit;
	0 = Acknowl	edge sequence	hardware				
hit 3	RCEN: Rece	ive Enable bit (Master Receive	e mode only)(2)			
	1 = Enables	Receive mode f	for I^2C	e mode only			
	0 = Receive	is Idle					
bit 2	PEN: Stop C	ondition Enable	bit ⁽²⁾				
	1 = Initiates	Stop condition o	n SDAx and S	CLx pins; autor	natically cleare	ed by hardware	
	0 = Stop con	dition is Idle					
bit 1	RSEN: Repe	ated Start Conc	lition Enable bi	t ⁽²⁾			
	1 = Initiates 0 = Repeate	Repeated Start	condition on S n is Idle	DAx and SCLx	pins; automat	ically cleared by	y hardware
oit 0	SEN: Start C	ondition Enable	bit ⁽²⁾				
	1 = Initiates \$ 0 = Start con	Start condition c dition is Idle	n SDAx and S	CLx pins; autor	matically cleare	ed by hardware	
Note 1: ⊺	he value that w	ill be transmitte	d when the use	er initiates an A	cknowledae se	equence at the e	end of a

2: If the I²C module is active, these bits may not be set (no spooling) and the SSPxBUF may not be written (or writes to the SSPxBUF are disabled).

PIC18(L)F27/47K40

BRA		Unconditional Branch								
Syntax:		BRA n								
Operands:		$-1024 \le n \le 1023$								
Operation:		(PC) + 2 +	2n	\rightarrow PC						
Status Affec	ted:	None								
Encoding:		1101	0	nnn	nnnr	1	nnnn			
Description:		Add the 2's the PC. Sin mented to f new addres instruction	ice fetc ss v is a	mplem the PC h the n vill be F 2-cycl	ent num will hav ext instr PC + 2 + e instrue	nber ve ir ruct + 2n ctior	[•] '2n' to ncre- ion, the ı. This n.			
Words:		1								
Cycles:		2								
Q Cycle Ac	tivity:									
G	Q1	Q2		C	23		Q4			
Dec	code	Read liter 'n'	al	Pro Da	cess ata	W	rite to PC			
N	lo	No		Ν	ło		No			
oper	ation	operation	n	oper	ation	0	peration			
Example:		HERE		BRA	Jump					
Before	Instruc C	tion =	ad	dress	(HERE)					

BSF		Bit Set f									
Synta	ax:	BSF f, b	{,a}								
Oper	ands:	0 ≤ f ≤ 255 0 ≤ b ≤ 7 a ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$								
Oper	ation:	$1 \rightarrow f \le b >$	$1 \rightarrow f \le b >$								
Statu	is Affected:	None									
Enco	oding:	1000	bbba	ffff	ffff						
Desc	nption:	Bit 'b' in re If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode when tion 35.2.3 Oriented I eral Offset	Bit 'b' in register 't' is set. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank. If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Sec- tion 35.2.3 "Byte-Oriented and Bit- Oriented Instructions in Indexed Lit-								
Word	ls:	1									
Cycle	es:	1	1								
QC	ycle Activity:										
	Q1	Q2	Q3		Q4						
	Decode	Read register 'f'	Proce Dat	ess a re	Write egister 'f'						
<u>Exan</u>	Example: BSF FLAG_REG,7,1 Before Instruction FLAG_REG = 0Ah After Instruction										
FLAG_REG = 8Ah											

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

For the most current package drawings, please see the Microchip Packaging Specification located at Note: http://www.microchip.com/packaging

Units		MILLIMETERS					
Dimension Limits		MIN	NOM	MAX			
Number of Pins	N	40					
Pitch	е	0.40 BSC					
Overall Height	A	0.45	0.50	0.55			
Standoff	A1	0.00	0.02	0.05			
Contact Thickness	A3	0.127 REF					
Overall Width	E	5.00 BSC					
Exposed Pad Width	E2	3.60	3.70	3.80			
Overall Length	D	5.00 BSC					
Exposed Pad Length	D2	3.60	3.70	3.80			
Contact Width	b	0.15	0.20	0.25			
Contact Length	L	0.30	0.40	0.50			
Contact-to-Exposed Pad	K	0.20	-	-			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN or VQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	44			
Pitch	е	0.65 BSC			
Overall Height	Α	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Terminal Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60	
Terminal Width	b	0.20	0.30	0.35	
Terminal Length	L	0.30	0.40	0.50	
Terminal-to-Exposed-Pad	K	0.20	-	-	

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103D Sheet 2 of 2