

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	64MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	25
Program Memory Size	128KB (64K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	3.6K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 24x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f27k40-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles up to 10K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. By using a boot loader routine located in the protected Boot Block at the top of program memory, it becomes possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F2x/ 4xK40 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension, enabled as a device configuration option, has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced Peripheral Pin Select: The Peripheral Pin Select (PPS) module connects peripheral inputs and outputs to the device I/O pins. Only digital signals are included in the selections. All analog inputs and outputs remain fixed to their assigned pins.
- Enhanced Addressable EUSART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution. When the microcontroller is using the internal oscillator block, the EUSART provides stable operation for applications that talk to the outside world without using an external crystal (or its accompanying power requirement).
- **10-bit A/D Converter with Computation:** This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead. It has a new module called ADC² with computation features, which provides a digital filter and threshold interrupt functions.
- Windowed Watchdog Timer (WWDT):
 - Timer monitoring of overflow and underflow events
 - Variable prescaler selection
 - Variable window size selection
 - All sources configurable in hardware or software

1.3 Details on Individual Family Members

Devices in the PIC18(L)F2x/4xK40 family are available in 28-pin and 40/44-pin packages. The block diagram for this device is shown in Figure 1-1.

The devices have the following differences:

- 1. Program Flash Memory
- 2. Data Memory SRAM
- 3. Data Memory EEPROM
- 4. A/D channels
- 5. I/O ports
- 6. Enhanced USART
- 7. Input Voltage Range/Power Consumption

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in the pin summary tables (Table 1 and Table 2).

	PIC18(L)F24K40	PIC18(L)F25K40 PIC18(L)F45K40	PIC18(L)F26K40 PIC18(L)F46K40	PIC18(L)F27K40 PIC18(L)F47K40					
ſ	PC<21:0>	PC<21:0>	PC<21:0>	PC<21:0>					
-	Ŧ	Ŧ	Ŧ	Ŧ					
Note 1	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)	Stack (31 levels)					
	ŧ	¥	ŧ	¥					
0000h	Reset Vector	Reset Vector	Reset Vector	Reset Vector					
•••	• • •	•••	•••	•••					
0008h	Interrupt Vector High	Interrupt Vector High	Interrupt Vector High	Interrupt Vector High					
018h	Interrupt Vector Low	Interrupt Vector Low	Interrupt Vector Low	Interrupt Vector Low					
001Ah	User Flash Memory								
• REEEh	(8KW)	Lloor Floob Momony							
.000h		(16KW)							
•		()	User Flash Memory						
′FFFh			(32KVV)	PFM Flash Memory					
8000h				(64KW)					
FFFh									
0000h	Not present ⁽¹⁾			-					
•		Not present ⁽¹⁾							
FFFh		Not present ⁽¹⁾							
0000h				Not procept(1)					
FFFh				Not presente					
000h									
•••		User IDs (8 Words)							
000Fh									
		Rese	erved						
FFFh									
0000h									
•••		Configuration W	/ords (6 Words)						
000Bh									
•••		Rese	erved						
FFFh			1						
0000h	DataE	EByte0	DataEl	EByte0					
00FFh	• DataFF	Bvte255		-					
		,		•					
•••	Unimple	emented	DataEEE	Byte1023					
03FFh				-					
0400h		Rese	erved						
FFBh		intest							
FFCh									
•••		Revision ID	(1 Word) ⁽²⁾						
FFDh									
		Device ID	(1 Word) ⁽²⁾						
FFFh		Device ID							

TABLE 10-1: PROGRAM AND DATA MEMORY MAP

10.3 PIC18 Instruction Cycle

10.3.1 CLOCKING SCHEME

The microcontroller clock input, whether from an internal or external source, is internally divided by four to generate four non-overlapping quadrature clocks (Q1, Q2, Q3 and Q4). Internally, the program counter is incremented on every Q1; the instruction is fetched from the program memory and latched into the instruction register during Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 10-2.

10.3.2 INSTRUCTION FLOW/PIPELINING

An "Instruction Cycle" consists of four Q cycles: Q1 through Q4. The instruction fetch and execute are pipelined in such a manner that a fetch takes one instruction cycle, while the decode and execute take another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 10-3).

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the Instruction Register (IR) in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 10-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 10-3: INSTRUCTION PIPELINE FLOW

	TCY0	TCY1	Tcy2	Тсү3	TcY4	TcY5
1. MOVLW 55h	Fetch 1	Execute 1				
2. MOVWF PORTB		Fetch 2	Execute 2		_	
3. BRA SUB_1			Fetch 3	Execute 3		
4. BSF PORTA, BIT3 (Forced NOP)			Fetch 4	Flush (NOP)	
5. Instruction @ addre	ss SUB_1				Fetch SUB_1	Execute SUB_1

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

FIGURE 10-4: DATA MEMORY MAP FOR PIC18(L)F2X/4XK40 DEVICES

Note 1: It depends on the number of SFRs. Refer to Table 10-3 and Table 10-4.

11.1.6.2 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit. Since program memory is stored as a full page, the stored program memory contents are compared with the intended data stored in RAM after the last write is complete.

FIGURE 11-10: PROGRAM FLASH MEMORY VERIFY FLOWCHART

11.1.6.3 Unexpected Termination of Write Operation

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

11.1.6.4 Protection Against Spurious Writes

A write sequence is valid only when both the following conditions are met, this prevents spurious writes which might lead to data corruption.

- The WR bit is gated through the WREN bit. It is suggested to have the WREN bit cleared at all times except during memory writes. This prevents memory writes if the WR bit gets set accidentally.
- 2. The NVM unlock sequence must be performed each time before a write operation.

11.2 User ID, Device ID and Configuration Word Access

When NVMREG<1:0> = 0x01 or 0x11 in the NVMCON1 register, the User ID's, Device ID/ Revision ID and Configuration Words can be accessed. Different access may exist for reads and writes (see Table 11-3).

11.2.1 Reading Access

The user can read from these blocks by setting the NVMREG bits to 0x01 or 0x11. The user needs to load the address into the TBLPTR registers. Executing a TBLRD after that moves the byte pointed to the TAB-LAT register. The CPU operation is suspended during the read and resumes after. When read access is initiated on an address outside the parameters listed in Table 11-3, the TABLAT register is cleared, reading back '0's.

11.2.2 Writing Access

The WREN bit in NVMCON1 must be set to enable writes. This prevents accidental writes to the CONFIG words due to errant (unexpected) code execution. The WREN bit should be kept clear at all times, except when updating the CONFIG words. The WREN bit is not cleared by hardware. The WR bit will be inhibited from being set unless the WREN bit is set.

REGISTER 13-3: CRCDATH: CRC DATA HIGH BYTE REGISTER

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
			DATA	<15:8>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unchar	nged	x = Bit is unkn	nown	wn -n/n = Value at POR and BOR/Value at all other F			

bit 7-0 DATA<15:8>: CRC Input/Output Data bits

'1' = Bit is set

REGISTER 13-4: CRCDATL: CRC DATA LOW BYTE REGISTER

'0' = Bit is cleared

R/W-xx	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x		
DATA<7:0>									
bit 7	bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **DATA<7:0>**: CRC Input/Output Data bits Writing to this register fills the shifter.

REGISTER 13-5: CRCACCH: CRC ACCUMULATOR HIGH BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
	ACC<15:8>								
bit 7 bit 0									

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 ACC<15:8>: CRC Accumulator Register bits Writing to this register writes to the CRC accumulator register. Reading from this register reads the CRC accumulator.

© 2016-2017 Microchip Technology Inc.

PIC18(L)F27/47K40

20.5.2 HARDWARE GATE MODE

The Hardware Gate modes operate the same as the Software Gate mode except the TMRx_ers external signal can also gate the timer. When used with the CCP the gating extends the PWM period. If the timer is stopped when the PWM output is high then the duty cycle is also extended.

When MODE<4:0> = 00001 then the timer is stopped when the external signal is high. When MODE<4:0> = 00010 then the timer is stopped when the external signal is low.

Figure 20-5 illustrates the Hardware Gating mode for MODE<4:0> = 00001 in which a high input level starts the counter.

Rev. 10.000 1988 5/30/2014	
MODE 0b00001	
TMRx_ers	
PRx 5	
$TMRx \left(\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	
TMRx_postscaled	
PWM Duty 3 Cycle	

20.5.6 EDGE-TRIGGERED ONE-SHOT MODE

The Edge-Triggered One-Shot modes start the timer on an edge from the external signal input, after the ON bit is set, and clear the ON bit when the timer matches the PRx period value. The following edges will start the timer:

- Rising edge (MODE<4:0> = 01001)
- Falling edge (MODE<4:0> = 01010)
- Rising or Falling edge (MODE<4:0> = 01011)

If the timer is halted by clearing the ON bit then another TMRx_ers edge is required after the ON bit is set to resume counting. Figure 20-9 illustrates operation in the rising edge One-Shot mode.

When Edge-Triggered One-Shot mode is used in conjunction with the CCP then the edge-trigger will activate the PWM drive and the PWM drive will deactivate when the timer matches the CCPRx pulse width value and stay deactivated when the timer halts at the PRx period count match.

FIGURE 20-9: EDGE-TRIGGERED ONE-SHOT MODE TIMING DIAGRAM (MODE = 01001)

MODE	0b01001
TMRx_clk	
PRx	5
Instruction ⁽¹⁾ —	BSF BSF BCF
ON	
TMRx_ers	
TMRx	$0 \qquad 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 0 \\ 1 \\ 2 \\ 2$
CCP_pset	
TMRx_postscaled	
PWM Duty	3
PWM Output	

20.5.7 EDGE-TRIGGERED HARDWARE LIMIT ONE-SHOT MODE

In Edge-Triggered Hardware Limit One-Shot modes the timer starts on the first external signal edge after the ON bit is set and resets on all subsequent edges. Only the first edge after the ON bit is set is needed to start the timer. The counter will resume counting automatically two clocks after all subsequent external Reset edges. Edge triggers are as follows:

- Rising edge start and Reset (MODE<4:0> = 01100)
- Falling edge start and Reset (MODE<4:0> = 01101)

The timer resets and clears the ON bit when the timer value matches the PRx period value. External signal edges will have no effect until after software sets the ON bit. Figure 20-10 illustrates the rising edge hardware limit one-shot operation.

When this mode is used in conjunction with the CCP then the first starting edge trigger, and all subsequent Reset edges, will activate the PWM drive. The PWM drive will deactivate when the timer matches the CCPRx pulse-width value and stay deactivated until the timer halts at the PRx period match unless an external signal edge resets the timer before the match occurs.

R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
TxON		CKPS<2:0>			OUTP	S<3:0>					
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BC	DR/Value at all	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	vare					
bit 7	ON : Timerx	On hit(1)									
Sit 1	1 = Timerx i	merx is on									
	0 = Timerx i	is off: all counter	rs and state m	achines are res	set						
bit 6-4	CKPS<2:0>	: Timerx-type Cl	ock Prescale	Select bits							
	111 = 1:12 8	8 Prescaler									
	110 = 1:64	Prescaler									
	101 = 1:32 Prescaler										
	100 = 1.10 Prescaler $0.11 = 1.8 Prescaler$										
	010 = 1:4 F	010 = 1:4 Prescaler									
	001 = 1:2 F	Prescaler									
	000 = 1:1 F	Prescaler									
bit 3-0	OUTPS<3:0	OUTPS<3:0>: Timerx Output Postscaler Select bits									
	1111 = 1:16	1111 = 1:16 Postscaler									
	1110 - 1.10 1101 = 1.10	1110 = 1.15 Postscaler $1101 = 1.14 Postscaler$									
	1100 = 1:13	1100 = 1:13 Postscaler									
	1011 = 1 : 1 2	1011 = 1:12 Postscaler									
	1010 = 1:11	Postscaler									
	1001 = 1:10) Postscaler									
	1000 = 1.9	1000 = 1:9 Postscaler									
	0110 = 1.7 Postscaler										
	0101 = 1:6	Postscaler									
	0100 = 1:5	Postscaler									
	0011 = 1:4	Postscaler									
	0010 = 1:3	Postscaler									
	0001 = 1.2 0000 = 1.1	Postscaler									

REGISTER 20-1: TxCON: TIMERx CONTROL REGISTER

Note 1: In certain modes, the TxON bit will be auto-cleared by hardware. See Section 20.5 "Operation Examples".

REGISTER 20-3: TxCLKCON: TIMERx CLOCK SELECTION REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	—	—	CS<3:0>			
bit 7							bit 0
Lawardi							

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

bit 3-0 CS<3:0>: Timerx Clock Selection bits

00-22-05	TMR2	TMR4	TMR6		
03<3:02	Clock Source	Clock Source	Clock Source		
1111-1001	Reserved	Reserved	Reserved		
1000	ZCD_OUT	ZCD_OUT	ZCD_OUT		
0111	CLKREF_OUT	CLKREF_OUT	CLKREF_OUT		
0110	SOSC	SOSC	SOSC		
0101	MFINTOSC (31 kHz)	MFINTOSC (31 kHz)	MFINTOSC (31 kHz)		
0100	LFINTOSC	LFINTOSC	LFINTOSC		
0011	HFINTOSC	HFINTOSC	HFINTOSC		
0010	Fosc	Fosc	Fosc		
0001	Fosc/4	Fosc/4	Fosc/4		
0000	Pin selected by T2INPPS	Pin selected by T4INPPS	Pin selected by T6INPPS		

23.2 ZCD Logic Output

The ZCD module includes a Status bit, which can be read to determine whether the current source or sink is active. The ZCDOUT bit of the ZCDCON register is set when the current sink is active, and cleared when the current source is active. The ZCDOUT bit is affected by the polarity bit.

The ZCDOUT signal can also be used as input to other modules. This is controlled by the registers of the corresponding module. ZCDOUT can be used as follows:

- Gate source for TMR1/3/5
- Clock source for TMR2/4/6
- Reset source for TMR2/4/6

23.3 ZCD Logic Polarity

The ZCDPOL bit of the ZCDCON register inverts the ZCDOUT bit relative to the current source and sink output. When the ZCDPOL bit is set, a ZCDOUT high indicates that the current source is active, and a low output indicates that the current sink is active.

The ZCDPOL bit affects the ZCD interrupts.

23.4 ZCD Interrupts

An interrupt will be generated upon a change in the ZCD logic output when the appropriate interrupt enables are set. A rising edge detector and a falling edge detector are present in the ZCD for this purpose.

The ZCDIF bit of the PIR2 register will be set when either edge detector is triggered and its associated enable bit is set. The ZCDINTP enables rising edge interrupts and the ZCDINTN bit enables falling edge interrupts. Both are located in the ZCDCON register. Priority of the interrupt can be changed if the IPEN bit of the INTCON register is set. The ZCD interrupt can be made high or low priority by setting or clearing the ZCDIP bit of the IPR2 register.

To fully enable the interrupt, the following bits must be set:

- · ZCDIE bit of the PIE2 register
- ZCDINTP bit of the ZCDCON register (for a rising edge detection)
- ZCDINTN bit of the ZCDCON register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

Changing the ZCDPOL bit will cause an interrupt, regardless of the level of the ZCDSEN bit.

The ZCDIF bit of the PIR2 register must be cleared in software as part of the interrupt service. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

23.5 Correcting for VCPINV offset

The actual voltage at which the ZCD switches is the reference voltage at the non-inverting input of the ZCD op amp. For external voltage source waveforms other than square waves, this voltage offset from zero causes the zero-cross event to occur either too early or too late.

23.5.1 CORRECTION BY AC COUPLING

When the external voltage source is sinusoidal, the effects of the ZCPINV offset can be eliminated by isolating the external voltage source from the ZCD pin with a capacitor, in addition to the voltage reducing resistor. The capacitor will cause a phase shift resulting in the ZCD output switch in advance of the actual zero-crossing event. The phase shift will be the same for both rising and falling zero crossings, which can be compensated for by either delaying the CPU response to the ZCD switch by a timer or other means, or selecting a capacitor value large enough that the phase shift is negligible.

To determine the series resistor and capacitor values for this configuration, start by computing the impedance, Z, to obtain a peak current of $300 \ \mu$ A. Next, arbitrarily select a suitably large non-polar capacitor and compute its reactance, Xc, at the external voltage source frequency. Finally, compute the series resistor, capacitor peak voltage, and phase shift by the formulas shown in Equation 23-2.

When this technique is used and the input signal is not present, the ZCD will tend to oscillate. To avoid this oscillation, connect the ZCD pin to VDD or GND with a high-impedance resistor such as 200K.

FIGURE 26-17: I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 1, DHEN = 1)

PIC18(L)F27/47K40

	SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—	_							_	300	0.16	207
1200		_		1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	—	57.60k	0.00	3	—	_	—
115.2k	—	_		—	_	_	115.2k	0.00	1	—	_	—

TABLE 27-5: SAMPLE BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	_	_	_	—	_	_	115.2k	0.00	1	—	_	_

TABLE 31-3:	COMPUTATION	MODES

		Bit Clear Conditions	ns Value after Trigger completion			hold Operation	ons	Value at ADTIF interrupt			
Mode	ADMD	ADACC and ADCNT	ADACC	ADCNT	Retrigger	Threshold Test	Interrupt	ADAOV	ADFLTR	ADCNT	
Basic	0	ADACLR = 1	Unchanged	Unchanged	No	Every Sample	If thresh- old=true	N/A	N/A	count	
Accumulate	1	ADACLR = 1	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	Every Sample	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count	
Average	2	ADACLR = 1 or ADCNT>=ADRPT at ADGO or retrigger	S + ADACC or (S2-S1) + ADACC	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	count	
Burst Average	3	ADACLR = 1 or ADGO set or retrigger	Each repetition: same as Average End with sum of all samples	Each repetition: same as Average End with ADCNT=ADRPT	Repeat while ADCNT <adrpt< td=""><td>lf ADCNT>= ADRPT</td><td>If thresh- old=true</td><td>ADACC Overflow</td><td>ADACC/2^{ADCRS}</td><td>ADRPT</td></adrpt<>	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	ADACC/2 ^{ADCRS}	ADRPT	
Low-pass Filter	4	ADACLR = 1	S+ADACC-ADACC/ 2 ^{ADCRS} or (S2-S1)+ADACC-ADACC/ 2 ^{ADCRS}	If (ADCNT=FF): ADCNT, otherwise: ADCNT+1	No	lf ADCNT>= ADRPT	If thresh- old=true	ADACC Overflow	Filtered Value	count	

Note: S1 and S2 are abbreviations for Sample 1 and Sample 2, respectively. When ADDSEN = 0, S1 = ADRES; When ADDSEN = 1, S1 = ADREV and S2 = ADRES.

31.5.5 BURST AVERAGE MODE

The Burst Average mode (ADMD = 011) acts the same as the Average mode in most respects. The one way it differs is that it continuously retriggers ADC sampling until the ADCNT value is greater than or equal to ADRPT, even if Continuous Sampling mode (see **Section 31.5.8 "Continuous Sampling mode"**) is not enabled. This allows for a threshold comparison on the average of a short burst of ADC samples.

31.5.6 LOW-PASS FILTER MODE

The Low-pass Filter mode (ADMD = 100) acts similarly to the Average mode in how it handles samples (accumulates samples until ADCNT value greater than or equal to ADRPT, then triggers threshold comparison), but instead of a simple average, it performs a low-pass filter operation on all of the samples, reducing the effect of high-frequency noise on the average, then performs a threshold comparison on the results. (see Table 31-3 for a more detailed description of the mathematical operation). In this mode, the ADCRS bits determine the cut-off frequency of the low-pass filter (as demonstrated by Table 31-4).

31.5.7 THRESHOLD COMPARISON

At the end of each computation:

- The conversion results are latched and held stable at the end-of-conversion.
- The error is calculated based on a difference calculation which is selected by the ADCALC<2:0> bits in the ADCON3 register. The value can be one of the following calculations (see Register 31-4 for more details):
 - The first derivative of single measurements
 - The CVD result in CVD mode
 - The current result vs. a setpoint
 - The current result vs. the filtered/average result
 - The first derivative of the filtered/average value
 - Filtered/average value vs. a setpoint
- The result of the calculation (ADERR) is compared to the upper and lower thresholds, ADUTH<ADUTHH:ADUTHL> and ADLTH<ADLTHH:ADLTHL> registers, to set the ADUTHR and ADLTHR flag bits. The threshold logic is selected by ADTMD<2:0> bits in the ADCON3 register. The threshold trigger option can be one of the following:
 - Never interrupt
 - Error is less than lower threshold
 - Error is greater than or equal to lower threshold
 - Error is between thresholds (inclusive)
 - Error is outside of thresholds
 - Error is less than or equal to upper threshold
 - Error is greater than upper threshold
 - Always interrupt regardless of threshold test results
 - If the threshold condition is met, the threshold interrupt flag ADTIF is set.

Note 1: The threshold tests are signed operations.2: If ADAOV is set, a threshold interrupt is

 If ADAOV is set, a threshold interrupt is signaled.

33.2 HLVD Setup

To set up the HLVD module:

- Select the desired HLVD trip point by writing the value to the HLVDSEL<3:0> bits of the HLVDCON1 register.
- Depending on the application to detect high-voltage peaks or low-voltage drops or both, set the HLVDINTH or HLVDINTL bit appropriately.
- 3. Enable the HLVD module by setting the HLVDEN bit.
- Clear the HLVD interrupt flag (PIR2 register), which may have been set from a previous interrupt.
- 5. If interrupts are desired, enable the HLVD interrupt by setting the HLVDIE in the PIE2 register and GIE bits.

An interrupt will not be generated until the HLVDRDY bit is set.

Note: Before changing any module settings (HLVDINTH, HLVDINTL, HLVDSEL<3:0>), first disable the module (HLVDEN = 0), make the changes and re-enable the module. This prevents the generation of false HLVD events.

33.3 Current Consumption

When the module is enabled, the HLVD comparator and voltage divider are enabled and consume static current. The total current consumption, when enabled, is specified in electrical specification Parameter **D206** (Table 37-3).

Depending on the application, the HLVD module does not need to operate constantly. To reduce current requirements, the HLVD circuitry may only need to be enabled for short periods where the voltage is checked. After such a check, the module could be disabled.

33.4 HLVD Start-up Time

The internal reference voltage of the HLVD module, specified in electrical specification (Table 37-17), may be used by other internal circuitry, such as the programmable Brown-out Reset. If the HLVD or other circuits using the voltage reference are disabled to lower the device's current consumption, the reference voltage circuit will require time to become stable before a low or high-voltage condition can be reliably detected. This start-up time, TFVRST, is an interval that is independent of device clock speed. It is specified in electrical specification (Table 37-17).

The HLVD interrupt flag is not enabled until TFVRST has expired and a stable reference voltage is reached. For this reason, brief excursions beyond the set point may not be detected during this interval (see Figure 33-2 or Figure 33-3).

36.6 MPLAB X SIM Software Simulator

The MPLAB X SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB X SIM Software Simulator fully supports symbolic debugging using the MPLAB XC Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

36.7 MPLAB REAL ICE In-Circuit Emulator System

The MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs all 8, 16 and 32-bit MCU, and DSC devices with the easy-to-use, powerful graphical user interface of the MPLAB X IDE.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ-11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB X IDE. MPLAB REAL ICE offers significant advantages over competitive emulators including full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, logic probes, a ruggedized probe interface and long (up to three meters) interconnection cables.

36.8 MPLAB ICD 3 In-Circuit Debugger System

The MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost-effective, high-speed hardware debugger/programmer for Microchip Flash DSC and MCU devices. It debugs and programs PIC Flash microcontrollers and dsPIC DSCs with the powerful, yet easy-to-use graphical user interface of the MPLAB IDE.

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a highspeed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

36.9 PICkit 3 In-Circuit Debugger/ Programmer

The MPLAB PICkit 3 allows debugging and programming of PIC and dsPIC Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB IDE. The MPLAB PICkit 3 is connected to the design engineer's PC using a fullspeed USB interface and can be connected to the target via a Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the Reset line to implement in-circuit debugging and In-Circuit Serial Programming[™] (ICSP[™]).

36.10 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages, and a modular, detachable socket assembly to support various package types. The ICSP cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices, and incorporates an MMC card for file storage and data applications.

37.0 ELECTRICAL SPECIFICATIONS

37.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC18F27/47K40	0.3V to +6.5V
PIC18LF27/47K40	0.3V to +4.0V
on MCLR pin	-0.3V to +9.0V
on all other pins	0.3V to (VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	350 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	120 mA
on VDD pin for 28-Pin devices ⁽¹⁾	
-40°C \leq TA \leq +85°C	250 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	85 mA
on VDD pin for 40-Pin devices ⁽¹⁾	
$-40^{\circ}C \leq TA \leq +85^{\circ}C$	350 mA
$85^{\circ}C < TA \leq +125^{\circ}C$	120 mA
on any standard I/O pin	±50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 37-6 to calculate device specifications.

2: Power dissipation is calculated as follows:

PDIS = VDD x {IDD - Σ IOH} + Σ {(VDD - VOH) x IOH} + Σ (VOI x IOL)

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

